
Code Reorganization

Magdalen Dobson

November 2022

1 Introduction

Some applications of ANNS require stronger guarantees than DiskANN cur-
rently provided. Chiefly among these is linearization of insertions, deletions,
and queries, as well as efficient snapshotting. In order to support running the
DiskANN algorithm using data structures that provide these guarantees, we
need to abstract the core functioning of the algorithm—that is, the building,
searching, and update logic—from the core functions of the object that stores
the graph—primarily reading and writing to the graph object, but also functions
such as saving and loading.

In this document I propose a framework for abstracting the DiskANN code
to use multiple graph types. DiskANN will now be organized using a Graph

object, where data will be stored and manipulated, and an Index object, where
building and updating takes place.

One example of an alternative framework is the Aspen graph data structure.
An initial implementation of diskann using aspen can be found at https://

github.com/ParAlg/CPAM/tree/versionedDiskANN/examples/diskann. At a
high level, Aspen will provide linearizability by directing nearest neighbor queries
to a past version of the graph, while a batch of insertions and deletions is im-
plemented without locks on a new version. When the batch operation ends, a
new version is released, and future queries are answered using this version. The
Aspen graph is also a purely functional data structure, so it is fully persistent
and can be easily snapshotted.

Our general approach is that the Graph will store data, adjacency infor-
mation, and auxiliary structures needed to support reading and writing. It
may also need to store information about the state of the index to ensure that
operations are performed legally.

There are some outstanding questions about how such a framework should
look to a developer and to a user. For example, when using Aspen, should the
user have to manually call a batch of insertions or deletions to trigger, or should
this be handled entirely by the backend?

In the attached pseudocode, the object Graph contains the following meth-
ods; all are virtual and will be overloaded by classes inheriting Graph.

1. Saving and loading: methods save graph() and load graph().

1



2. Adding new points to the index. Methods insert() and delete() take in
a vector of new tags as well as their corresponding data points and make
them live in Graph.

3. Reading:

(a) read() return an adjacency list for some vertex ID.

(b) read static() when the graph is in a state where adjacency lists
are not being modified, there is no need to take locks while reading.
In some Graphs, this function will redirect to read().

(c) read coords() reads data associated with a tag.

(d) size() returns the number of out-neighbors associated with a tag.

4. Writing:

(a) write() takes in a vector of tags and a new adjacency list for each
tag and updates the adjacency list information accordingly.

(b) write inplace() is used for building a static graph; it is mostly for
use with Aspen, where it makes in-place updates instead of functional
ones. Intended for settings where thread safety is not an issue.

5. Safety and other management:

(a) Safety calling static functions

i. Graph object will contain a boolean flag for whether the index is
dynamic or not; changed using declare index dynamic().

(b) Safety during insertions

i. For Aspen, the user will supply insertions in batches which are
processed in one call. The insert tick() function ensures that
no new writes/versions are released during this time.

(c) Safety during deletions

i. The delete tick() function works the same as the insert ver-
sion.

ii. Since Aspen processes a delete set using multiple calls to
consolidate deletes(), we provide a boolean flag which in-
dicates whether a delete epoch is currently running, and which
stops another one from starting or tags being deleted from the
graph. This is shown in initiate delete epoch().

2


