
Streaming ANNS with guarantees

Suhas Jayaram Subramanya
(suhasj@cs.cmu.edu)

November 2022

1 Basics

There exists an in-memory graph with each adjacency list represented by an 8-
byte pointer. Unless stated otherwise, pointers (in this document) always point
to a valid memory address with capacity to store a maximum of R edges for any
vertex. In DRAM, our graph can be represented as an array of pointers (e.g. G
= new uint64 t[N MAX]; for Nmax points in the index).

Claim: When multiple operations (insert/delete) are modifying the graph
G in parallel, we don’t need to ensure that each operation gets access to an
immutable globally consistent adjacency list for every vertex. Let Gt be the
state of the graph at time t. If an insert is triggered at time ti = t, Aspen
ensures that this insert will see Gt until it finishes execution at time tf when
it commits updates to Gt. If another thread finishes modifying the graph at
time t2 (and ti < t2 < tf ), then under Aspen, the insert that began at ti < t2
must not see changes committed to Gt at t2. For our purpose, I argue that this
property is not necessary.

Vamana graphs are approximations to an ideal Monotonic Relative Neigh-
borhood Graph. Since the underlying graph is an approximate graph anyway,
letting the insert thread see the updated edges at t2 is mostly beneficial and
rarely harmful. For example – say, the insert thread is about to read G(v) for
some vertex v and G(v) is updated to G(v)+. If G(v)+ has better edges than
G(v), it will improve the quality of visited list used for insertion. For the other
case, if G(v)+ is worse than G(v), there exists sufficient redundant paths in the
graph for the insert algorithm to get to the right neighborhood (GreedySearch
might converge a bit slower). Basically, the argument here is that reading G(v)+

vs G(v) does not drastically change the visited set that is used for RobustPrune;
and even if it did, both visited sets are approximate anyway and the resulting
vertex set would have been approximate too.

Proposal: Make operations locally consistent – graph update operations get
atomic access to adjacency lists. This is a finer level of update and gives us
higher concurrency due to the size of the graph. Update operations on adja-
cency lists are atomic with all reads being atomic, but only successful writes
are guaranteed to be atomic. Since G(v) is an 8-byte pointer and x86 guaran-
tees 64-bit reads are atomic, reading G(v) is always atomic. Failed writes don’t

1



modify state of the graph and the insertion algorithm will have to handle write
failures. We’ll touch on why some writes can fail and how to handle the failed
writes later.

2 Notation

• G - Graph with N vertices already.

• v - vec(v) gives us the d dimensional vector represented by vertex v. G(v)
is the adjacency list for vertex v.

3 Log basics

We will assume a WAL-style logging for this system with each log entry de-
scribed by a 6 tuple: <TIMESTAMP, TXN-ID, OLD-PTR, NEW-PTR, DEL-SET,

ADD-SET> where:

• TIMESTAMP – Wall-clock timestamp generated by the thread logging the
entry

• TXN-ID – A GUID for each sequence of operations on the graph

• OLD-PTR – Raw 8-byte pointer value; exact PTR → VERTEX-ID map
can also be constructed using the log (like register-renaming in computer
architecture). You can also think of raw pointer values as representing
unique versions of the adjacency lists.

• NEW-PTR – New 8-byte pointer value containing changes described in DEL-SET
and ADD-SET

• DEL-SET – Exact set of edges to delete for the adjacency list stored in
OLD-PTR

• ADD-SET – Exact set of edges to add to the adjacency list stored in OLD-PTR

4 Insert operations

Let us try to insert a new vertex r into G. We’ll first run GreedySearch(G, r)

to get a visited set, then run RobustPrune on this to get G(r). This bit does
not require any concurrency since we assume atomic reads for adjacency lists in
GreedySearch(r). We can also write G(r) to DRAM since we haven’t yet added
any in-edges to r in G, so GreedySearch can access r in G yet. InterInsert

then triggers the following loop for each out-edge (r, v) – (a) read G(v) from
DRAM, (b) compute updates G(v)′ ← G(v)\Drv∪Arv for some removed edges
Drv and added edges Arv, and (c) write G(v)′ to DRAM. Concurrency affects
steps (a) and (c), and not (b). We will use Compare and Swap operations (CAS)

2



to write back G(v)′ to DRAM to ensure writes are atomic if they succeed. So
when can writes fail?

Consider the following sequence of events for some vertex v being modified
by 2 threads (thread-0 and thread-1): thread-0 reads G(v) for its step-(a) →
thread-1 succeeds in CAS(G(v), G(v)1) for its step-(c) → thread-0 attempts to
CAS(G(v), G(v)0) in its step-(c). Thread-0’s CAS will fail since thread-1’s CAS
succeeded and G(v)1 ̸= G(v). So, the insert logic has two options –

• Option-1: Force over-write thread-1’s results using CAS(G(v)1, G(v)0).
This is not a good idea.

• Option-2: Re-run steps (a) and (b) again and retry CAS with updated
G(v)0. This is the right way to ensure quality of graph does not degrade
over time.

4.1 Logging

CAS operations must be logged before executing. There is a simple mapping
between CAS operations and the log entries –

• TIMESTAMP – Generated timestamp at logging time

• TXN-ID – GUID for insert r

• OLD-PTR – Raw 8-byte pointer value of G(v)

• NEW-PTR – New 8-byte pointer value for G(v)′

• DEL-SET – Drv

• ADD-SET – Arv

If the logged CAS fails, then the insert thread will retry CAS with an updated
G(v). If step-(c) executes successfully, the WAL will contain a log entry with
a later TIMESTAMP with an updated OLD-PTR. The previous log entry for the
failed CAS can stay in the WAL (i.e. no-op on the failed log entry that might
already be persisted to disk) as it is possible to ignore failed CAS log entries
while replaying the log. One way – if currently parsing entry with timestamp
tf and old-ptr pf , this is a failed CAS entry if there exists a successful CAS
entry with timestamp ts > tf and old-ptr ps = pf (and their TXN-ID fields will
be different).

5 Log replay

Using our persistent WAL, we can recover the state of the graph until the last
logged entry in the WAL. If there were inserts or deletes in flight, we have 2
options –

3



• Undo in-flight operations using WAL as if they never executed – This is
easy to do and requires no additional metadata to be logged to WAL.

• Redo in-flight operations using WAL as if they did finish execution – This
is also easy to do, but requires us to log the vector vec(r) being insert to
the WAL as well.

We’ll first cover log replay when no operations were in flight at the time the
system crashed. We’ll then look at the other, more interesting case where there
were some operations in flight when the system crashed.

5.1 Redo log operations

Let there be a checkpoint-ed state of the graph Gt at some time t and our WAL
has logs for all operations done on Gt from t to some time tcrash > t where the
system crashed without having any operations in flight. This is easily handled
by bringing up Gt into DRAM, replaying each operation in the log as described
without running any additional compute (since all operations are consistent and
completed in WAL). The final state of the graph G after re-doing the operations
in WAL on Gt WAS the state of the graph before the system crashed (strong
guarantee as WAL imposes an ordering on the operations as well).

5.2 Redo in-flight operations

Let there be a checkpoint-ed state of the graph Gt at some time t and our WAL
has logs for all operations done on Gt from t to some time tcrash > t where the
system crashed having some set of operations in flight – O = [O1, O2, . . . , Ok]
where {O1 . . . Ok} are sorted in ascending order of the start of their execution
in the WAL. In this subsection, we will develop a procedure to replay in-flight
operations using the WAL as if they did finish execution and to do so, we will
assume that we have vec(r) available for all in-flight operations.

Let t1 be the earliest in-flight operation that was not completed before
tcrash > t1. Then, for all operations that finished before t1, we can replay
the log using the process discussed above since they are not impacted by any in-
flight operations. There may still be many operations that overlap with in-flight
operations, and were completed sometime between t1 and tcrash. Since we can
recover the state of the graph till t1, we will assume that we have already done
that and that the WAL only contains log entries after t1. We are now interested
in replaying operations from t1 to tcrash and beyond – what could have been if
all in-flight ops completed.

For ops completed in [t1, tcrash], we can continue replaying as we did before.
For in-flight operations, we use graph state at t1 (i.e. Gt1) to compute the
visited sets for insertions (and process any deletions as appropriate) and given
some strict ordering of these in-flight operations (any order, shouldn’t matter),
we will arrive at a graph Gtcomplete

when all in-flight operations are completely
re-done. Gtcomplete

could have been the state of the in-memory graph at some
point had all the in-flight operations completed, so it is valid and consistent.

4



5.3 Undo in-flight operations

This is a more interesting case where you would like to retain all inserts that
fully completed before tcrash in the WAL and we would like to discard all the
modifications to the index after the last fully completed insert.

Let tf be the timestamp for the last completed insert in the WAL and let ti
be the start of the first in-flight operation in the WAL. If ti ≥ tf , we are already
done and we can re-do operations till tf to get the state of the graph before the
earliest in-flight operation began in the WAL. What happens when ti < tf?

Let’s pick the span in the WAL corresponding to [ti, tf ]. We need to design a
mechanism to selectively keep the updates that belong to completed operations
in [ti, tf ], but discard updates committed by in-flight ops. Let us pick one
vertex v ∈ G and look at updates committed by both in-flight and committed
ops. Let the sequence of updates committed to G(v) be described in the WAL
as O = [O1, O2, . . . Ok]. Let O = Og ∪ Ob, Og ∩ Ob = ϕ be a partitioning of
O such that Og contains all updates committed by the completed operations
and Ob are updates committed by the in-flight operations (partially inserted,
but committed adjacency list update to G(v) in memory before crash). Let the
state of graph at ti be Gi and Gi(v) be the state of adjacency list for vertex v
at time ti. We can then use the exact set of updates described in each of Ob

and Og to undo the ops in Ob using the following steps –

1. Compute set of edges deleted by in-flight ops in Ob: Db ←
(⋃

Ob
DEL-SET

)
;

filter Db to not contain any edges to points corresponding to in-flight
inserts

2. Similarly, compute set of edges deleted and added by completed ops in
Og: Dg, Ag; filter out any edges to in-flight inserts

3. Compute new candidate edges C as C ← Gi(v) ∪Db ∪Ag ∪Dg

4. New adjacency list G(v) is then computed using RobustPrune(v, C)

This algorithm attempts to restore the edges that were deleted by in-flight
inserts and re-computes the best edge set if you executed all updates in Og at
once without committing any updates from Ob. At the end of this algorithm, the
adjacency list for the vertex v, G(v) contains no edges to in-flight inserts and its
quality is as good as it would have been if Ob did not execute and Og committed
in one operation. So, we’ve successfully developed an Undo operation for the
WAL, at least for in-flight inserts.

5.4 Undo completed inserts

Another interesting case where you would like to start at a graph state and roll-
back some updates to the graph using the WAL. Here, we will assume that we
start with graph state Gt at time t and we would like to roll-back an insertion
that started execution in the WAL at time ti < t, so we will assume that the
WAL has log entries going back all the way to at least some time t0 < ti < tf < t

5



where tf is the timestamp when the insert Or completed. Same as before, we
will pick a particular vertex, say v, and show how to roll-back updates from Or

to v.

1. Compute set of all edges added to G(v) after time ti: A←
(⋃t

ti
ADD-SET

)
;

similarly, compute D ←
(⋃t

ti
DEL-SET

)
.

2. Filter out any edges in A and D to the operation corresponding to Or.

3. Compute new candidate edges C as C ← Gt(v) ∪D ∪A

4. New adjacency list G(v) is then computed using RobustPrune(v, C)

When this algorithm finishes, the graph does not contain any information about
the operation Or since step-2 prunes out the vertex whose insertion is being
rolled-back. The state of graph after the roll-back is also valid ANN graph state
since step-4 restores the navigability properties of the graph after rolling back
the insertion.

6 ACID Properties

Our transactions have Atomicity, Consistency, and Durability, but not Isolation.
We’ll discuss each property and how our system behaves wrt the property below
–

• Atomicity – “All changes to data are performed as if they are a single
operation.”. Each update to an adjacency list (a statement in the transac-
tion) either executes (CAS succeeds) or it does not. If our CAS succeeds,
the update was written to our WAL and successfully applied. If our CAS
fails, the update is written to WAL, but not applied. If this CAS is re-
played, it will be ignored in favour of a later CAS to the same vertex, so
we have atomicity in our updates. Further, since x86 guarantees atomic
reads at 64 bit granularity, we are guaranteed to see atomic reads in our
system. If an insert is in-flight, it will eventually commit its last update
and its updates would be written to the graph.

• Consistency – “Data is in a consistent state when a transaction starts
and when it ends.”. Our update rules make changes to the graph in a
predictable and consistent way. Atomic updates on adjacency lists ensures
that we have a valid and consistent ANN graph at every point in time; so
our system has consistency.

• Isolation – “The intermediate state of a transaction is invisible to other
transactions.” Our update rules do not provide isolation by design. Iso-
lation would slow down update propagation in the graph for no apparent
benefit w.r.t. ANN search. Since the graph itself is an approximation
to the true MRNG for the data points, isolation is not necessary as each

6



statement in the transaction (i.e. each adjacency list update for a given in-
sert) sees a consistent and valid ANN graph. So, Isolation is not necessary
and is missing in our system by design.

• Durability – “After a transaction successfully completes, changes to data
persist and are not undone, even in the event of a system failure.”. Our
WAL allows us to persist the updates from inserts to disk. Since we
assume a persistent WAL, when the last update in an insert is committed,
it gets persisted to disk. If a crash occurs after the last commit, the WAL
contains a record of completion. If a crash occurs before the last commit,
the WAL contains a start of transaction, but not the completion; so we
can either choose to re-do this in-flight transaction or un-do it using the
rules described previously. In both cases, if an inserts is tagged completed,
its updates are persisted to disk using the WAL, giving us durability.

7


