Skip to content

incremental symbol learning for natural language understanding

License

CC-BY-4.0, MIT licenses found

Licenses found

CC-BY-4.0
LICENSE
MIT
LICENSE-CODE
Notifications You must be signed in to change notification settings

microsoft/nlu-incremental-symbol-learning

Incremental Symbol Learning

Code and data for the paper: When More Data Hurts: A Troubling Quirk in Developing Broad-Coverage Natural Language Understanding Systems

Installation

All dependencies can be installed with ./install_requirements.sh

Downloading Data

The first step to replicating experiments is to download the data and glove embeddings.

From the project home directory:

mkdir -p data 
cd data
# This may take some time 
wget https://veliass.blob.core.windows.net/ifl-data/data_clean.tar.gz
tar -xzvf data_clean.tar.gz 
mv data_clean/* .
rm -r data_clean 

Downloading models

The models can be downloaded with the following command:

wget https://veliass.blob.core.windows.net/ifl-models/models.tar.gz 
tar -xzvf models.tar.gz

The models distributed are the full dataset models reported in Table 1. The other models are too numerous to be distributed but can be replicated using the config files.

MISO model

The semantic parsing experiments in this paper use the MISO parser, which was developed across a series of papers:

More information on MISO can be found here

File Organization

Important directories:

  • miso: contains all the parsing code for the different MISO models
  • scripts: contains helper scripts for analysis and creating config files/data splits
  • experiments: contains bash files for running MISO parser (see MISO_README.md for more details)

The main change between different .jsonnet files is the data path at the top. This points the model to the correct data split to use, e.g. data/smcalflow_samples_curated/FindManager/5000_100/ points the model to the 5000 train sample subset with 100 FindManager examples. The assumption is that each experiment has a jsonnet file. For example, the experiment which trains a transformer model with the seed=12 for the 5000-100 FindManager corresponds to the .jsonnet file miso/training_configs/calflow_transformer/FindManager/12_seed/5000_100.jsonnet. In the released configs, the data dir argument is an environment variable

Important Scripts

  • scripts/sample_functions.py: samples functions (e.g. FindManager) to create the different splits. Can be used to manually curate examples.
  • scripts/make_subsamples.sh: iteratively runs sampling for each split (5000-max), curating the first one and then using those examples later.
  • scripts/make_subsamples_uncurated.sh: same idea, but doesn't require curation (for non-100 splits, no curation is done).
  • scripts/make_configs.py: can be used to modify a base jsonnet config to change the path to the split
  • scripts/prepare_data.sh: Data is assumed to be pre-processed according to Task Oriented Parsing as Dataflow Synthesis instructions. This is a modified version of the instructions in the README there to include agent utterances and previous user turns.
  • scripts/collect_results.py: script to collect exact match results from predictions, written to CHECKPOINT_DIR/translate_output. Aggregates all scores into a csv specified as an arg.
  • experiments/calflow.sh: main training/testing commands for calflow

Other scripts

  • scripts/split_valid.py: splits all valid dialogs into dev and test subsets.
  • scripts/error_analysis.py: for a given function, analyze predicted plans into 3 groups: correct predictions, incorrect examples wihtout the function, incorrect examples with the function.
  • scripts/oversample.py: either over-sample examples for a given function (e.g. turn 5000-100 FindManager into 5000-200 by doubling the 100 FindManager examples) or over-sample the rest of the training data to get a split of e.g. 200k-100 where 200k is upsampled from the max setting.

Training Models

Models can be trained locally using experiments/calflow.sh. experiments/calflow.sh expects the following environment variables to be set: CHECKPOINT_DIR, TRAINING_CONFIG, and DATA_ROOT. DATA_ROOT is the location where you downloaded the data. The former points to a directory where the model will store checkpoints. The latter is a .jsonnet config that will be read by AllenNLP. Optionally, the FXN variable can also be set, for function-specific evaluation.

Model checkpoints and logs will be written to CHECKPOINT_DIR/ckpt. Decoded outputs will be written to CHECKPOINT_DIR/translate_output/<split}>.tgt

For additional details, see miso_docs/TRAINING.md

Testing models

The following environment variables need to set:

  1. CHECKPOINT_DIR: the directory containing a subdirectory ckpt, which contains an archive model.tar.gz. If training is interrupted or canceled, the archive may be missing. It can be created manually by the following commands:
cp best.th weights.th 
tar -czvf model.tar.gz weights.th config.json vocabulary
  1. TEST_DATA is the path to the test data without the extension. An example would be TEST_DATA=data/smcalflow.agent.data/dev_valid.
  2. FXN is the function of interest. Example: FXN=FindManager

The model can then be tested using ./experiments/calflow.sh -a eval_fxn

The output at the end will have the following rows:

Exact Match: The overall exact match accuracy of produced and reference programs. 
FXN Coarse: The percentage of programs for which, if FXN is in the reference, it is also in the predicted program. It doesn't matter if the programs match or not. 
FindManager Fine: The percentage of programs with FXN in the reference where the predicted program is an exact match. 
FindManager Precision: The percentage of predicted programs that have FXN in them and also have FXN in the reference program. 
FindManager Recall: Same as Coarse 
FindManager F1: Harmonic mean of precision and recall 

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Legal Notices

Note that our data release is effectively a repartitioning of the SMCalFlow dataset and an English intent recognition dataset released by Liu et al. The SMCalFlow dataset is available here under a MIT license, which is available here. The intent recognition dataset is available here under a CC BY 4.0 license, which is available here.

Microsoft and any contributors grant you a license to the Microsoft documentation and other content in this repository under the Creative Commons Attribution 4.0 International Public License, see the LICENSE file, and grant you a license to any code in the repository under the MIT License, see the LICENSE-CODE file.

Microsoft, Windows, Microsoft Azure and/or other Microsoft products and services referenced in the documentation may be either trademarks or registered trademarks of Microsoft in the United States and/or other countries. The licenses for this project do not grant you rights to use any Microsoft names, logos, or trademarks. Microsoft's general trademark guidelines can be found at http://go.microsoft.com/fwlink/?LinkID=254653.

Privacy information can be found at https://privacy.microsoft.com/en-us/

Microsoft and any contributors reserve all other rights, whether under their respective copyrights, patents, or trademarks, whether by implication, estoppel or otherwise.

About

incremental symbol learning for natural language understanding

Resources

License

CC-BY-4.0, MIT licenses found

Licenses found

CC-BY-4.0
LICENSE
MIT
LICENSE-CODE

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published