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Q# Language
Q# is part of Microsoft’s Quantum Development Kit and provides rich IDE support and tools for program
visualization and analysis. Our goal is to support the development of future large-scale applications while
supporting user’s first efforts in that direction on current quantum hardware.
The type systempermitsQ# programs to safely interleave and naturally represent the composition of classical
and quantum computations. AQ# programmay express arbitrary classical computations based on quantum
measurements that execute while qubits remain live, meaning they are not released and maintain their state.
Even though the full complexity of such computations requires further hardware development, Q# programs
can be targeted to run on various quantum hardware backends in Azure Quantum.
Q# is a stand-alone language offering a high level of abstraction. There is no notion of a quantum state
or a circuit; instead, Q# implements programs in terms of statements and expressions, much like classical
programming languages. Distinct quantum capabilities (such as support for functors and control-flow con-
structs) facilitate expressing, for example, phase estimation and quantum chemistry algorithms.
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Program execution
The following program gives a first glimpse at how a Q# command-line application is implemented:
namespace Microsoft.Quantum.Samples {

open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Arrays as Array;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Diagnostics as Diagnostics;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Preparation;

operation ApplyQFT (reg : LittleEndian) : Unit
is Adj + Ctl {

let qs = reg!;
SwapReverseRegister(qs);

for (i in Array.IndexRange(qs)) {
for (j in 0 .. i-1) {

Controlled R1Frac([qs[i]], (1, i - j, qs[j]));
}
H(qs[i]);

}
}

@EntryPoint()
operation RunProgram(vector : Double[]) : Unit {

let n = Floor(Log(IntAsDouble(Length(vector))) / LogOf2());
if (1 <<< n != Length(vector)) {

fail "Length(vector) needs to be a power of two.";
}

let amps = Array.Mapped(ComplexPolar(_,0.), vector);
use qs = Qubit[n] {

let reg = LittleEndian(qs);

PrepareArbitraryState(amps, reg);
Message("Before QFT:");
Diagnostics.DumpRegister((), qs);

ApplyQFT(reg);
Message("After QFT:");
Diagnostics.DumpRegister((), qs);

ResetAll(qs);
}

}
}

The operation PrepareArbitraryState initializes a quantum state where the amplitudes for each basis state
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correspond to the normalized entries of the specified vector. A quantum Fourier transformation (QFT) is
then applied to that state.
The corresponding project file to build the application is the following:
<Project Sdk="Microsoft.Quantum.Sdk/0.12.20070124">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1</TargetFramework>

</PropertyGroup>

</Project>

The first line specifies the version number of the software development kit used to build the application,
and line 4 indicates that the project is executable opposed to e.g. a library that cannot be invoked from the
command line.
To run the application, you will need to install .NET Core. Then put both files in the same folder and run
dotnet build <projectFile>, where <projectFile> is to be replaced with the path to the project file.
To run the program after having built it, run the command

dotnet run --no-build --vector 1. 0. 0. 0.

The output from this invocation shows that the amplitudes of the quantum state after application of the QFT
are evenly distributed and real. Note that the reason that we can so readily output the amplitudes of the state
vector is that the previous program is, by default, run on a full state simulator, which supports outputting
the tracked quantum state via DumpRegister for debugging purposes. The same would not be possible if
we were to run it on quantum hardware instead, in which case the two calls to DumpRegister wouldn’t do
anything. You can see this by targeting the application to a particular hardware platform by adding the
project property <ExecutionTarget>honeywell.qpu</ExecutionTarget> after <PropertyGroup>.

Namespaces
At its top-level, a Q# program consists of a set of namespaces. Aside from comments, namespaces are the
only top-level elements in a Q# program, and any other elements must reside within a namespace. Each file
may contain zero or more namespaces, and each namespace may span multiple files. Q# does not support
nested namespaces.
A namespace block consists of the keyword namespace, followed by the namespace name, and the content
of the block inside braces { }. Namespace names consist of a sequence of one or more legal symbols sep-
arated by a dot (.). Double underscores (__), double dots (..), or an underscore followed by a dot (_.)
are not permitted since these character sequences are reserved. More precisely, a fully qualified name may
not contain such a sequence, and namespace names correspondingly cannot end with an underscore. While
namespace names may contain dots for better readability, Q# does not support relative references to names-
paces. For example, two namespaces Foo and Foo.Bar are unrelated, and there is no notion of a hierarchy. In
particular, for a function Baz defined in Foo.Bar, it is not possible to open Foo and then access that function
via Bar.Baz.
Within a namespace block, open directives precede any other namespace elements. Aside from open direc-
tives, namespace blocks may contain operation, function, and type declarations. These may occur in any
order and are recursive by default, meaning they can be declared and used in any order and can call them-
selves; there is no need for the declaration of a type or callable to precede its use.

Open Directives

By default, everything declared within the same namespace can be accessed without further qualification.
However, declarations in a different namespace can only be used by qualifying their name with the name
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of the namespace they belong to or by opening that namespace before it is used, as shown in the following
example.
namespace Microsoft.Quantum.Samples {

open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Arrays as Array;

// ...
}

The example uses an opendirective to import all types and callables declared in theMicrosoft.Quantum.Artithmetic
namespace. They can then be referred to by their unqualified name unless that name conflicts with a decla-
ration in the namespace block or another opened namespace.
To avoid typing out the full name while still distinguishing where certain elements come from, you can
define an alternative name, or alias, which is usually shorter, for a particular namespace. In this case, all
types and callables declared in that namespace can be qualified by the defined short name instead. In the
previous example, this is the case for the Microsoft.Quantum.Arrays namespace. A function IndexRange
declared in Microsoft.Quantum.Arrays, for example, can then be used via Array.IndexRange within that
namespace block.
Defining namespace aliases is particularly helpful when combined with the code completion functionality
provided by the Q# extensions available for Visual Studio Code and Visual Studio. With the extension in-
stalled, typing the namespace alias followed by a dot will show a list of all the available elements in that
namespace that are valid at the current location.
Whether you are opening a namespace or defining an alias, open directives need to precede any other names-
pace elements and are valid throughout the namespace piece in that file only.

Type Declarations
Q# supports user-defined types. User-defined types are similar to record types in F#; they are immutable
but support a copy-and-update construct.

User-defined types

User-defined types may contain both named and anonymous items. The following declaration within a
namespace, for example, defines a type Complex which has two named items Real and Imaginary, both of
type Double:

newtype Complex = (Real: Double, Imaginary : Double);

Any combination of named and unnamed items is supported, and inner items may also be named. For
example, the type Nested, defined as
newtype Nested = (Double, (ItemName : Int, String));

contains two anonymous items of type Double and String respectively, and a named item ItemName of type
Int.
You can access the contained items via their name or by deconstruction (formore information, see item access).
You can also access a tuple of all items where the shape matches the one defined in the declaration via the
unwrap operator.
User-defined types are useful for two reasons. First, as long as the libraries and programs that use the defined
types access items via their name rather than by deconstruction, the type can be extended to contain addi-
tional items later on without breaking any library code. Because of this, accessing items via deconstruction
is generally discouraged.
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Second, Q# allows you to convey the intent and expectations for a specific data type since there is no auto-
matic conversion between values of two user-defined types, even if their item types are identical.
For example, the arithmetic library includes quantum arithmetic operations for both big-endian and little-
endian quantum integers. It hence defines two types, BigEndian and LittleEndian, both of which contain
a single anonymous item of type Qubit[]:

newtype BigEndian = Qubit[];
newtype LittleEndian = Qubit[];

These types allow operations to specify whether they are written for big-endian or little-endian representa-
tions and leverages the type system to ensure at compile-time that mismatched operands aren’t allowed.
Type names must be unique within a namespace and may not conflict with operation and function names.
Types may not have circular dependencies in Q#; that is, defining something like a directly or indirectly
recursive type is not allowed. For example, the following construct will give a compilation error:

newtype Foo = (Foo, Int); // gives an error
newtype Bar = Baz; // gives an error
newtype Baz = Bar; // gives an error

User-defined constructors

Constructors for user-defined types are automatically generated by the compiler. Currently, it is
not possible to define a custom constructor, though this may be an addition to the language in
the future.

Callable declarations
Callable declarations, or callables, are declared at a global scope and publicly visible by default; that is, they
can be used anywhere in the same project and in a project that references the assembly in which they are
declared. Access modifiers allow you to restrict their visibility to the current assembly only, such that imple-
mentation details can be changed later on without breaking code that relies on a specific library.
Q# supports two kinds of callables: operations and functions. The topic Operations and Functions elaborates
on the distinction between the two. Q# also supports defining templates; for example, type-parameterized
implementations for a certain callable. For more information, see Type parameterizations.

[!NOTE] Such type-parametrized implementations may not use any language constructs that
rely on particular properties of the type arguments; there is currently no way to express type
constraints in Q#, or to define specialized implementations for particular type arguments. How-
ever, it is conceivable to introduce a suitable mechanism, similar to type classes in Haskell, for
example, to allow for more expressiveness in the future.

Callables and functors

Q# allows specialized implementations for specific purposes; for example, operations in Q# can implicitly
or explicitly define support for certain functors, and along with it the specialized implementations to invoke
when a specific functor is applied to that callable.
A functor, in a sense, is a factory that defines a new callable implementation that has a specific relation to
the callable it was applied to. Functors are more than traditional higher-level functions in that they require
access to the implementation details of the callable they have been applied to. In that sense, they are similar
to other factories, such as templates. Correspondingly, they can be applied not just to callables, but templates
as well.
The example program shown in Program implementation, for example, defines the operation ApplyQFT and
the operation RunProgram, which is used as an entry point. ApplyQFT takes a tuple-valued argument con-
taining an integer and a value of type LittleEndian and returns a value of type Unit. The annotation is
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Adj + Ctl in the declaration of ApplyQFT indicates that the operation supports both the Adjoint and the
Controlled functor. (For more information, see Operation characteristics). If Unitary is an operation that
has an adjoint and a controlled specialization, the expression Adjoint Unitary accesses the specialization
that implements the adjoint of Unitary, and Controlled Unitary accesses the specialization that imple-
ments the controlled version of Unitary. In addition to the original operation’s argument, the controlled
version of an operation takes an array of control qubits and then applies the original operation conditional
on all of these control qubits being in a |1⟩ state.
In theory, an operation for which an adjoint version can be defined should also have a controlled version and
vice versa. In practice, however, it may be hard to develop an implementation for one or the other, especially
for probabilistic implementations following a repeat-until-success pattern. For that reason, Q# allows you to
declare support for each functor individually. However, since the two functors commute, an operation that
defines support for both also has to have an implementation (usually implicitly defined, meaning compiler-
generated) for when both functors are applied to the operation.
There are no functors that can be applied to functions, such that functions currently have exactly one body
implementation and no further specializations. For example, the declaration

function Hello (name : String) : String {
return $"Hello, {name}!";

}

is equivalent to
function Hello (name : String) : String {

body (...) {
return $"Hello, {name}!";

}
}

Here, body specifies that the given implementation applies to the default body of the function Hello, mean-
ing the implementation is invoked when no functors or other factory mechanisms have been applied prior
to invocation. The three dots in body (...) correspond to a compiler directive indicating that the argument
items in the function declaration should be copy and pasted into this spot.
The reasons behind explicitly indicating where the arguments of the parent callable declaration are to be
copied and pasted are twofold: one, it is unnecessary to repeat the argument declaration, and two, andmore
importantly, it ensures that functors that require additional arguments, like the Controlled functor, can be
introduced in a consistent manner.
The same applies to operations; when there is exactly one specialization defining the implementation of the
default body, the additional wrapping of the form body (...){ <implementation> } may be omitted.

Recursion

Q# callables can be directly or indirectly recursive and can be declared in any order; an operation or function
may call itself, or it may call another callable that directly or indirectly calls the caller.
When running on quantum hardware, stack space may be limited, and recursions that exceed that stack
space limit result in a runtime error.

Specialization declarations
As explained in the section about callable declarations, there is currently no reason to explicitly declare
specializations for functions. This topic applies to operations and elaborates on how to declare the necessary
specializations to support certain functors.
It is quite a common problem in quantum computing to require the adjoint of a given transformation. Many
quantum algorithms require both an operation and its adjoint to perform a computation. Q# employs sym-
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bolic computation that can automatically generate the corresponding adjoint implementation for a particu-
lar body implementation. This generation is possible even for implementations that freely mix classical and
quantum computations. There are, however, some restrictions that apply in this case. For example, auto-
generation is not supported for performance reasons if the implementation makes use of mutable variables.
Moreover, each operation called within the body generates the corresponding adjoint needs to support the
Adjoint functor itself.
Even though one cannot easily undo measurements in the multi-qubit case, it is possible to combine mea-
surements so that the applied transformation is unitary. In this case, it means that, even though the body
implementation contains measurements that on their own don’t support the Adjoint functor, the body in
its entirety is adjointable. Nonetheless, auto-generating the adjoint implementation will fail in this case. For
this reason, it is possible to manually specify the implementation. The compiler automatically generates
optimized implementations for common patterns such as conjugations. Nonetheless, an explicit specializa-
tion may be desirable to define a more optimized implementation by hand. It is possible to specify any one
implementation and any number of implementations explicitly.

[!NOTE] The correctness of such a manually specified implementation is not verified by the com-
piler.

In the following example, the declaration for an operation SWAP, which exchanges the state of two qubits
q1 and q2, declares an explicit specialization for its adjoint version and its controlled version. While the
implementations for Adjoint SWAP and Controlled SWAP are thus user-defined, the compiler still needs to
generate the implementation for the combination of both functors (Controlled Adjoint SWAP, which is the
same as Adjoint Controlled SWAP).

operation SWAP (q1 : Qubit, q2 : Qubit) : Unit
is Adj + Ctl {

body (...) {
CNOT(q1, q2);
CNOT(q2, q1);
CNOT(q1, q2);

}

adjoint (...) {
SWAP(q1, q2);

}

controlled (cs, ...) {
CNOT(q1, q2);
Controlled CNOT(cs, (q2, q1));
CNOT(q1, q2);

}
}

Auto-generation directives

When determining how to generate a particular specialization, the compiler prioritizes user-defined imple-
mentations. This means that if an adjoint specialization is user-defined and a controlled specialization is
auto-generated, then the controlled adjoint specialization is generated based on the user-defined adjoint and
vice versa. In this case, both specializations are user-defined. As the auto-generation of an adjoint implemen-
tation is subject to more limitation, the controlled adjoint specialization defaults to generating the controlled
specialization of the explicitly defined implementation of the adjoint specialization.
In the case of the SWAP implementation, the better option is to adjoint the controlled specialization to avoid un-
necessarily conditioning the execution of the first and the last CNOT on the state of the control qubits. Adding
an explicit declaration for the controlled adjoint version that specifies a suitable generation directive forces the
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compiler to generate the controlled adjoint specialization based on the manually specified implementation
of the controlled version instead. Such an explicit declaration of a specialization that is to be generated by
the compiler takes the form

controlled adjoint invert;

and is inserted inside the declaration of SWAP. On the other hand, inserting the line
controlled adjoint distribute;

forces the compiler to generate the specialization based on the defined (or generated) adjoint specialization.
See this partial specialization inference proposal for more details.
For the operation SWAP, there is a better option. SWAP is self-adjoint, that is, it is its own inverse; the -defined
implementation of the adjoint merely calls the body of SWAP. You express this with the directive

adjoint self;

Declaring the adjoint specialization in this manner ensures that the controlled adjoint specialization that is
automatically inserted by the compiler merely invokes the controlled specialization.
The following generation directives exist and are valid:

Specialization Directive(s)
body specialization: -
adjoint specialization: self, invert
controlled specialization: distribute
controlled adjoint specialization: self, invert, distribute

That all generation directives are valid for a controlled adjoint specialization is not a coincidence; as long as
functors commute, the set of valid generation directives for implementing the specialization for a combina-
tion of functors is always the union of the set of valid generators for each one.
In addition to the previously listed directives, the directive auto is always valid; it indicates that the compiler
should automatically pick a suitable generation directive. The declaration

operation DoNothing() : Unit {
body (...) { }
adjoint auto;
controlled auto;
controlled adjoint auto;

}

is equivalent to
operation DoNothing() : Unit
is Adj + Ctl { }

The annotation is Adj + Ctl in this example specifies the operation characteristics, which contain the infor-
mation about what functors a particular operation supports.
While for readability’s sake, it is recommended that you annotate each operation with a complete descrip-
tion of its characteristics, the compiler automatically inserts or completes the annotation based on explicitly
declared specializations. Conversely, the compiler also generates specializations that haven’t been declared
explicitly but need to exist based on the annotated characteristics. We say the given annotation has implic-
itly declared these specializations. The compiler automatically generates the necessary specializations if it
can, picking a suitable directive. Q# thus supports inference of both operation characteristics and existing
specializations based on (partial) annotations and explicitly defined specializations.
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In a sense, specializations are similar to individual overloads for the same callable, with the caveat that certain
restrictions apply to which overloads you can declare.

Comments
Comments begin with two forward slashes (//) and continue until the end of line. Such end-of-line com-
ments may appear anywhere in the source code. Q# does not currently support block comments.

Documentation Comments

Comments that beginwith three forward slashes, ///, are treated specially by the compilerwhen they appear
before a type or callable declaration. In that case, their contents are taken as documentation for the defined
type or callable, as for other .NET languages.
Within /// comments, text to appear as a part of API documentation is formatted as Markdown, with dif-
ferent parts of the documentation indicated by specially-named headers. As an extension to Markdown,
cross-references to operations, functions, and user-defined types in Q# can be included using @"<ref tar-
get>," where <ref target> is replaced by the fully qualified name of the code object being referenced.
Optionally, a documentation engine may also support additional Markdown extensions.
For example:
/// # Summary
/// Given an operation and a target for that operation,
/// applies the given operation twice.
///
/// # Input
/// ## op
/// The operation to be applied.
/// ## target
/// The target to which the operation is to be applied.
///
/// # Type Parameters
/// ## 'T
/// The type expected by the given operation as its input.
///
/// # Example
/// ```Q#
/// // Should be equivalent to the identity.
/// ApplyTwice(H, qubit);
/// ```
///
/// # See Also
/// - Microsoft.Quantum.Intrinsic.H
operation ApplyTwice<'T>(op : ('T => Unit), target : 'T) : Unit {

op(target);
op(target);

}

Q# recognizes the following names as documentation comment headers.
• Summary: A short summary of a function or operation’s behavior or the purpose of a type. The first

paragraph of the summary is used for hover information. It should be plain text.
• Description: A description of a function or operation’s behavior or the purpose of a type. The summary

and description are concatenated to form the generated documentation file for the function, operation,
or type. The description may contain in-line LaTeX-formatted symbols and equations.
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• Input: A description of the input tuple for an operation or function. May contain additionalMarkdown
subsections indicating each element of the input tuple.

• Output: A description of the tuple returned by an operation or function.
• Type Parameters: An empty section that contains one additional subsection for each generic type pa-

rameter.
• Named Items: A description of the named items in a user-defined type. May contain additional Mark-

down subsections with the description for each named item.
• Example: A short example of the operation, function, or type in use.
• Remarks: Miscellaneous prose describing some aspect of the operation, function, or type.
• See Also: A list of fully qualified names indicating related functions, operations, or user-defined types.
• References: A list of references and citations for the documented item.

Statements
Q# distinguishes between statements and expressions. Q# programs consist of a mixture of classical and
quantum computations, and the implementation looksmuch like any other classical programming language.
Some statements, such as the let and mutable bindings, are well-known from classical languages, while
others, such as conjugations or qubit allocations, are unique to the quantum domain.
The following statements are currently available in Q#:

• Call statement A call statement consists of an operation or function call returning Unit. The invoked
callable needs to satisfy the requirements imposed by the current context. See Call statements for more
details.

• Return statement A return statement terminates the execution within the current callable context and
returns control to the caller. Any finalizing tasks are run after the return value is evaluated but before
control is returned. See Returns and termination for more details.

• Fail statement A fail statement stops the entire program and collects information about the current
program state before terminating in an error. It aggregates the collected information and presents it
to the user along with the message specified as part of the statement. See returns and termination for
more details.

• Variable declarationDefines one or more local variables that are valid for the remainder of the current
scope, and binds them to the specified values. Variables can be permanently bound or declared to be
reassignable later on. See Variable declarations and reassignments for more details.

• Variable reassignment Variables that have been declared as being reassignable can be rebound to con-
tain different values. See Variable declarations and reassignments for more details.

• Iteration An iteration is a loop-like statement that, during each iteration, assigns the declared loop
variables to the next item in a sequence (a value of array or Range type) and runs a specified block of
statements. See Iterations for more details.

• While statement If a specified condition evaluates to true, a block of statements is run. The statements
are run until the condition evaluates to false. See Conditional loops for more details.

• Repeat statement A quantum-specific loop that breaks based on a condition. The statement consists
of an initial block of statements that is run before a specified condition is evaluated. If the condition
evaluates to false, an optional subsequent fixup block is run before entering the next iteration of the
loop. The loop only terminates when the condition evaluates to true. See Conditional loops for more
details.

• If statement The if statement consists of one or more blocks of statements, each preceded by a boolean
expression. The first block in which the boolean expression evaluates to true is run. Optionally, you
can specify a block of statements that will run if none of the conditions evaluate to true. See Condi-
tional branching for more details.
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• Conjugation A conjugation is a special quantum-specific statement, where a block of statements that
applies a unitary transformation to the quantum state is run, followed by another statement block,
before the transformation applied by the first block is reverted again. In mathematical notation, conju-
gations describe transformations of the form U†VU to the quantum state. See Conjugations for more
details.

• Qubit allocation Instantiates and initializes qubits, or arrays of qubits, binds them to the declared vari-
ables and runs a block of statements. The instantiated qubits are available for the duration of the block,
andwill be automatically releasedwhen the statement terminates. SeeQuantummemorymanagement
for more details.

Quantum memory management
A program always starts without qubits, meaning you cannot pass values of type Qubit as entry point argu-
ments. This restriction is intentional since the purpose of Q# is to express and reason about a program in its
entirety. Instead, a program allocates and releases qubits, or quantum memory, as it goes. In this regard, Q#
models the quantum computer as a qubit heap.
Rather than supporting separate allocate and release statements for quantum memory, Q# supports quantum
memory allocation in the form of block statements, where the memory is accessible only within the scope
of that block statement. The statement block can be implicitly defined when allocating qubits for the dura-
tion of the current scope, as described in more detail in the sections about the use and borrow statements.
Attempting to access the allocated qubits after the statement terminates results in a runtime exception.
Q# has two statements, use and borrow, that instantiate qubit values, arrays of qubits, or any combination
thereof. You can only use these statementswithin operations. They gather the instantiated qubit values, bind
them to the variables specified in the statement, and then run a block of statements. At the end of the block,
the bound variables go out of scope and are no longer defined.
Q# distinguishes between the allocation of clean and dirty qubits. Clean qubits are unentangled and are not
used by another part of the computation. Dirty qubits are qubits whose state is unknown and can even be
entangled with other parts of the quantum processor’s memory.

Use statement

Clean qubits are allocated by the use statement.
• The statement consists of the keyword use followed by a binding and an optional statement block.
• If a statement block is present, the qubits are only available within that block. Otherwise, the qubits

are available until the end of the current scope.
• The binding follows the same pattern as let statements: either a single symbol or a tuple of symbols,

followed by an equals sign =, and either a single tuple or a matching tuple of initializers.
Initializers are available either for a single qubit, indicated as Qubit(), or an array of qubits, Qubit[n], where
n is an Int expression. For example,
use qubit = Qubit();
// ...

use (aux, register) = (Qubit(), Qubit[5]);
// ...

use qubit = Qubit() {
// ...

}

use (aux, register) = (Qubit(), Qubit[5]) {
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// ...
}

The qubits are guaranteed to be in a |0⟩ state upon allocation. They are released at the end of the scope and
are required to either be in a |0⟩ state upon release, or measured right beforehand. This requirement is not
compiler-enforced since this would require a symbolic evaluation that quickly gets prohibitively expensive.
When running on simulators, the requirement can be runtime enforced. On quantum processors, the re-
quirement cannot be runtime enforced; an unmeasured qubit may be reset to |0⟩ via unitary transformation.
Failing to do so results in incorrect behavior.
The use statement allocates the qubits from the quantum processor’s free qubit heap and returns them to
the heap no later than the end of the scope in which the qubits are bound.

Borrow statement

The borrow statement grants access to qubits that are already allocated but not currently in use. These qubits
can be in an arbitrary state and need to be in the same state again when the borrow statement terminates.
Some quantum algorithms can use qubits without relying on their exact state, and without requiring that
they are unentangled with the rest of the system. That is, they require extra qubits temporarily, but they can
ensure that those qubits are returned exactly to their original state, independent of which state that was.
If there are qubits that are in use but not touched during parts of a subroutine, those qubits can be borrowed
for use by such an algorithm instead of allocating additional quantum memory. Borrowing instead of allo-
cating can significantly reduce the overall quantummemory requirements of an algorithm and is a quantum
example of a typical space-time tradeoff.
A borrow statement follows the same pattern described previously for the use statement, with the same
initializers being available. For example,
borrow qubit = Qubit();
// ...

borrow (aux, register) = (Qubit(), Qubit[5]);
// ...

borrow qubit = Qubit() {
// ...

}

borrow (aux, register) = (Qubit(), Qubit[5]) {
// ...

}

The borrowed qubits are in an unknown state and go out of scope at the end of the statement block. The
borrower commits to leaving the qubits in the same state as when they were borrowed; that is, their state at
the beginning and the end of the statement block is expected to be the same.
The borrow statement retrieves in-use qubits that are guaranteed not to be used by the program from the
time the qubit is bound until the last use of that qubit. If there aren’t enough qubits available to borrow, then
qubits are allocated from and returned to the heap like a use statement.

[!NOTE] Among the known use-cases of dirty qubits are implementations of multi-controlled
CNOT gates that require very few qubits, and implementations of incrementers. This paper on
factoring with qubits provides an example of an algorithm that utilizes borrowed qubits.
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Conditional branching
Conditional branching is expressed in the form of if statements. An if statement consists of an if clause,
followed by zero or more elif clauses and optionally an else-block. Each clause follows the pattern
keyword condition {

<statements>
}
where keyword is replaced with if or elif respectively, condition is an expression of type Bool, and
<statements> is to be replaced with zero or more statements. The optional else-block consists of the key-
word else followed by zero or more statements enclosed in braces, { }.
The first block for which the condition evaluates to true will run. The else block, if present, runs if none
of the conditions evaluate to true. The block is executed in its own scope, meaning any bindings made as
part of the statement block are not visible after the block ends.
For example, suppose qubits is value of type Qubit[] and r1 and r2 are of type Result,
if r1 == One {

let q = qubits[0];
H(q);

}
elif r2 == One {

let q = qubits[1];
H(q);

}
else {

H(qubits[2]);
}

You can also express simple branching in the form of a conditional expression.

Target-specific restrictions

The tight integration between control-flow constructs and quantum computations poses a challenge for cur-
rent quantum hardware. Certain quantum processors do not support branching based on measurement
outcomes. As such, comparison for values of type Result will always result in a compilation error for Q#
programs that are targeted to run on such hardware.
Other quantum processors support specific kinds of branching based on measurement outcomes. The more
general if statements supported in Q# are compiled into suitable instructions that can be run on such proces-
sors. The imposed restrictions are that values of type Resultmay only be compared as part of the condition
within if statements in operations. Furthermore, the conditionally run blocks cannot contain any return
statements or update mutable variables that are declared outside that block.

Conditional loops
Like most classical programming languages, Q# supports loops that break based on a condition: loops for
which the number of iterations is unknown and may vary from run to run. Since the instruction sequence
is unknown at compile-time, the compiler handles these conditional loops in a particular way in a quantum
runtime.
As long as the condition does not depend on quantum measurements, conditional loops are processed with
a just-in-time compilation before sending the instruction sequence to the quantum processor. In particular,
using conditional loops within functions is unproblematic since code within functions can always run on
conventional (non-quantum) hardware. Q#, therefore, supports to use of traditional while loops within
functions.
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Q# also allows you to express control flow that depends on the results of quantummeasurements. This capa-
bility enables probabilistic implementations that can significantly reduce computational costs. A common
example is the repeat-until-success pattern, which repeats a computation until a certain condition - which
usually depends on a measurement - is satisfied. Such repeat loops are widely used in particular classes of
quantum algorithms. Q# hence has a dedicated language construct to express them, despite that they still
pose a challenge for execution on quantum hardware.

Repeat statement

The repeat statement takes the following form
repeat {

// ...
}
until condition
fixup {

// ...
}

or alternatively
repeat {

// ...
}
until condition;

where condition is an arbitrary expression of type Bool.
The repeat statement runs a block of statements before evaluating a condition. If the condition evaluates to
true, the loop exits. If the condition evaluates to false, an additional block of statements defined as part of
an optional fixup block, if present, is run prior to entering the next loop iteration.
The compiler treats all parts of the repeat statement (both blocks and the condition) as a single scope for
each repetition; symbols that are definedwithin the repeat block are visible both to the condition andwithin
the fixup block. As for other loops, symbols go out of scope after each iteration, such that symbols defined
in the fixup block are not visible in the repeat block.

Target-specific restrictions Loops that break based on a condition are challenging to process on quantum
hardware if the condition depends on measurement outcomes since the length of the instruction sequence
to run is not known ahead of time.
Despite their common presence in particular classes of quantum algorithms, current hardware does not yet
provide native support for these kinds of control flow constructs. Running on quantum hardware can poten-
tially be supported in the future by imposing a maximum number of iterations, or as additional hardware
support becomes available.

While loop

A more familiar-looking statement for classical computations is the while loop. It is supported only within
functions.
A while statement consists of the keyword while, an expression of type Bool, and a statement block. For
example, if arr is an array of positive integers,
mutable (item, index) = (-1, 0);
while index < Length(arr) && item < 0 {

set item = arr[index];
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set index += 1;
}

The statement block is run as long as the condition evaluates to true.
[!NOTE] Due to the challenge they pose for execution, we discourage the use of loops that break
based on a condition and hence do not support while loops within operations. The use of while
loops within operations may be considered in the future, with the restriction that the condition
cannot depend on the outcome of a quantum measurement.

Iterations
Loops that iterate over a sequence of values are expressed as for loops in Q#. A for loop in Q# does not
break based on a condition but instead corresponds to an iteration, or what is often expressed as foreach or
iter in other languages. There are currently two data types in Q# that support iteration: arrays and ranges.
The statement consists of the keyword for, followed by a symbol or symbol tuple, the keyword in, an ex-
pression of array or Range type, and a statement block.
The statement block (the body of the loop) is run repeatedly, with one or more loop variables bound to each
value in the range or array. The same deconstruction rules apply to the defined loop variables as to any other
variable assignment, such as bindings in let, mutable, set, use and borrow statements. The loop variables
themselves are immutably bound, cannot be reassigned within the body of the loop, and go out of scope
when the loop terminates. The expression over which the loop iterates is evaluated before entering the loop
and does not change while the loop is running.
This is illustrated in the following example. Suppose qubits is a value of type Qubit[], then
for qubit in qubits {

H(qubit);
}

mutable results = new (Int, Result)[0];
for index in 0 .. Length(qubits) - 1 {

set results += [(index, M(qubits[index]))];
}

mutable accumulated = 0;
for (index, measured) in results {

if measured == One {
set accumulated += 1 <<< index;

}
}

Target-specific restrictions

Because there are no break or continue primitives in Q#, the length of the loop is known as soon as the
iteration value is known. As such, for loops can be run on all quantum hardware.

Conjugations
Conjugations are common in quantum computations. In mathematical terms, they are patterns of the form
U†VU for two unitary transformationsU andV. That pattern is relevant due to the particularities of quantum
memory: computations build up quantum correlations, or entanglement, to leverage the unique assets of
quantum. However, that also means that once a subroutine no longer needs its qubits, those qubits cannot
easily be reset and released since observing their state would impact the rest of the system. For that reason,
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the effect of a previous computation usually needs to be reversed before releasing and reusing quantum
memory.
Q# hence has a dedicated statement for expressing computations that require such a cleanup. The statement
consists of two code blocks, one containing the implementation ofU and one containing the implementation
of V. The uncomputation (that is, the application of U†) is done automatically as part of the statement.
The statement takes the form
within {

<statements>
}
apply {

<statements>
}

where <statements> is replaced with any number of statements defining the implementation of U and V
respectively. Both blocks may contain arbitrary classical computations, aside from the usual restrictions for
automatically generating adjoint versions that apply to the within block. Mutably bound variables used as
part of the within block may not be reassigned as part of the apply block.
The example of the ApplyXOrIfGreater operation defined in the arithmetic library illustrates the usage of
such a conjugation: The operation maps |lhs⟩|rhs⟩|res⟩ → |lhs⟩|rhs⟩|res ⊕ (lhs>rhs)⟩, that is, it coherently
applies an XOR to a given qubit res if the quantum integer represented by lhs is greater than the one in rhs.
The two integers are represented in little-endian encoding, as indicated by the usage of the corresponding
data type.

operation ApplyXOrIfGreater(
lhs : LittleEndian,
rhs : LittleEndian,
res : Qubit

) : Unit is Adj + Ctl {

let (x, y) = (lhs!, rhs!);
let shuffled = Zip3(Most(x), Rest(y), Rest(x));

use anc = Qubit();
within {

ApplyToEachCA(X, x + [anc]);
ApplyMajorityInPlace(x[0], [y[0], anc]);
ApplyToEachCA(MAJ, shuffled);

}
apply {

X(res);
CNOT(Tail(x), res);

}
}

The temporary storage qubit anc is automatically cleaned up before it is released at the end of the operation.
The statements in the within block are applied first, followed by the statements in the apply block, and
finally, the automatically generated adjoint of the within block is applied to clean up the temporary qubit
anc.

[!NOTE] Returning control from within the apply block is not yet supported. However, it may
be supported in the future. The expected behavior, in this case, is to evaluate the returned value
before the adjoint of the within block is run, then release any qubits going out of scope (anc in
this case), and finally, return control to the callee. In short, the statement should behave similarly
to a try-finally pattern in C#.
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Call statements
Call statements are an important part of any programming language. Operation and function calls, much
like partial applications, can be used as an expression anywhere as long as the returned value is of a suitable
type. However, they can also be used as statements if they return Unit.
The usefulness of calling functions in this form primarily lies in debugging, and such operation calls are one
of the most common constructs in any Q# program. At the same time, operations can only be called from
within other operations and not from within functions. For more information, see also Qubits.
With callables being first-class values, call statements are a generic way of supporting patterns that aren’t
common enough to merit their own dedicated language construct, or dedicated syntax has not (yet) been
introduced for other reasons. Some examples of library methods that serve that purpose are ApplyIf, which
invokes an operation conditional on a classical bit being set; ApplyToEach, which applies a given operation
to each element in an array; and ApplyWithInputTransformation, as shown in the following sample.

operation ApplyWithInputTransformation<'TArg, 'TIn>(
fn : 'TIn -> 'TArg,
op : 'TArg => Unit,
input : 'TIn

) : Unit {

op(fn(input));
}

ApplyWithInputTransformation takes a function fn, an operation op, and an input value as arguments
and then applies the given function to the input before invoking the given operation with the value returned
from the function.
For the compiler to auto-generate the specializations to support particular functors, it usually requires that
the called operations support those functors as well. The two exceptions are calls in outer blocks of con-
jugations, which always need to support the Adjoint functor but never need to support the Controlled
functor, and self-adjoint operations, which support the Adjoint functor without imposing any additional
requirements on the individual calls.

[!NOTE] Future development ofmore sophisticated generation directivesmay allow the compiler
to further relax this requirement.

Returns and termination
There are two statements available that conclude the execution of the current subroutine or the program; the
return and the fail statements. For callables that return any type other than Unit, each possible execution
path needs to terminate in a return or a fail statement.

Return statement

The return statement exits from the current callable and returns control to the callee. It changes the context
of the execution by popping a stack frame.
The statement always returns a value to the context of the callee; it consists of the keyword return, followed
by an expression of the appropriate type and a terminating semicolon. The return value is evaluated before
any terminating actions are performed and control is returned. Terminating actions include, for example,
cleaning up and releasing qubits that are allocated within the context of the callable. When running on a
simulator or validator, terminating actions often also include checks related to the state of those qubits, for
example, whether they are properly disentangled from all qubits that remain live.
The return statement at the end of a callable that returns a Unit value may be omitted. In that case, control
is returned automatically when all statements have run and all terminating actions have been performed.
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Callables may contain multiple return statements, one for each possible execution path, albeit the adjoint
implementation for operations containing multiple return statements cannot be automatically generated.
For example,
return 1;

or
return ();

Fail statement

The fail statement, on the other hand, ends the computation entirely. It corresponds to a fatal error that
aborts the program.
It consists of the keyword fail, followed by an expression of type String and a terminating semicolon. The
String value provides information about the encountered failure.
For example,
fail "Impossible state reached";

or, using an interpolated string,
fail $"Syndrome {syn} is incorrect";

In addition to the given String, a fail statement ideally collects and permits the retrieval of information
about the program state. This facilitates diagnosing and remedying the source of the error, and requires
support from the executing runtime and firmware, which may vary across different targets.

Variable declarations and reassignments
Values can be bound to symbols using the let and mutable statements. These kinds of bindings provide a
convenient way to access a value via the defined handle. Despite themisleading terminology borrowed from
other languages, handles declared on a local scope and containing values are called variables. This may be
misleading because let statements define single-assignment handles, which are handles that remain bound to
the same value for the duration of their validity. Variables that can be re-bound to different values at different
points in the code need to be explicitly declared as such, and are specified using the mutable statement.

let var1 = 3;
mutable var2 = 3;
set var2 = var2 + 1;

In this example, the let statement declares a variable named var1 that cannot be reassigned and always
contains the value 3. The mutable statement defines a variable var2 that is temporarily bound to the value
3 but can be reassigned to a different value later on using a set statement, as shown in the last line. You can
express the same statement with the shorter version set var2 += 1;, as is common in other languages. For
more information, see Evaluate and reassign statements.
To summarize:

• let is used to create an immutable binding.
• mutable is used to create a mutable binding.
• set is used to change the value of a mutable binding.

For all three statements, the left-hand side consists of a symbol or a symbol tuple. If the right-hand side of
the binding is a tuple, then that tuple may be fully or partially deconstructed upon assignment. The only
requirement for deconstruction is that the shape of the tuple on the right-hand side matches the shape of
the symbol tuple on the left side. The symbol tuple may contain nested tuples or omitted symbols, or both,
indicated by an underscore. For example:
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let (a, (_, b)) = (1, (2, 3)); // a is bound to 1, b is bound to 3
mutable (x, y) = ((1, 2), [3, 4]); // x is bound to (1, 2), y is bound to [3, 4]
set (x, _, y) = ((5, 6), 7, [8]); // x is re-bound to (5,6), y is re-bound to [8]

All assignments in Q# obey the same deconstruction rules, including, for example, qubit allocations and
loop-variable assignments.
For both kinds of bindings, the types of the variables are inferred from the right-hand side of the binding.
The type of a variable always remains the same, and a set statement cannot change it. Local variables can
be declared as either being mutable or immutable. There are some exceptions, such as loop-variables in for
loops, where the behavior is predefined and cannot be specified. Function and operation arguments are
always immutably bound. In combination with the lack of reference types, as discussed in the Immutability
topic, this means that a called function or operation can never change any values on the caller side.
Since the states of Qubit values are not defined or observable from within Q#, this does not preclude the
accumulation of quantum side effects, which are observable only via measurements. For more information,
see Quantum data types).
Independent of how a value is bound, the values themselves are immutable. In particular, this is true for
arrays and array items. In contrast to popular classical languages where arrays often are reference types,
arrays in Q# - like all types - are value types and always immutable; that is, you cannot modify them after
initialization. Changing the values accessed by array-type variables thus requires explicitly constructing a
new array and reassigning it to the same symbol. For more information, see Immutability and Copy and
update expressions.

Evaluate-and-reassign statements

Statements of the form set intValue += 1; are common in many other languages. Here, intValue needs
to be a mutably bound variable of type Int. Such statements provide a convenient way of concatenation if
the right-hand side consists of applying a binary operator and the result is rebound to the left argument of
the operator. For example, this code segment
mutable counter = 0;
for i in 1 .. 2 .. 10 {

set counter += 1;
// ...

}

increments the value of the counter counter in each iteration of the for loop and is equivalent to
mutable counter = 0;
for i in 1 .. 2 .. 10 {

set counter = counter + 1;
// ...

}

Similar statements exist for a wide range of operators. The set keyword in such evaluate-and-reassign state-
ments must be followed by a single mutable variable, which is inserted as the left-most sub-expression by
the compiler. Such evaluate-and-reassign statements exist for all operators where the type of the left-most
sub-expressionmatches the expression type. More precisely, they are available for binary logical and bitwise
operators including right and left shift, arithmetic expressions including exponentiation and modulus, and
concatenations, as well as copy-and-update expressions.
The following function example computes the sum of an array of Complex numbers:
function ComplexSum(values : Complex[]) : Complex {

mutable res = Complex(0., 0.);
for complex in values {
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set res w/= Re <- res::Re + complex::Re;
set res w/= Im <- res::Im + complex::Im;

}
return res;

}

Similarly, the following function multiplies each item in an array with the given factor:
function Multiplied(factor : Double, array : Double[]) : Double[] {

mutable res = new Double[Length(array)];
for i in IndexRange(res) {

set res w/= i <- factor * array[i];
}
return res;

}

For more information, see Contextual expressions, which contains other examples where expressions can be
omitted in a specific context when a suitable expression can be inferred by the compiler.

Binding scopes
In general, symbol bindings in Q# become inoperative at the end of the statement block they occur in. How-
ever, there are some exceptions to this rule.

Visibility of local variables

Scope Visibility
Loop variables Bindings of loop variables in a for loop are defined only for the body of the loop. They

are inoperative outside of the loop.
use and borrow
statements

Bindings of allocated qubits in use and borrow statements are defined for the body of
the allocation, and are inoperative after the statement terminates. This only applies to
use and borrow statements that have an associated statement block.

repeat
statements

For repeat statements, both blocks, as well as the condition, are treated as a single
scope, that is, symbols that are bound in the body are accessible in both the condition
and in the fixup block.

Loops Each iteration of a loop runs in its own scope, and all defined variables are bound anew
for each iteration.

Bindings in outer blocks are visible and defined in inner blocks. A symbolmay only be bound once per block;
it is not valid to define a symbol with the same name as another symbol that is accessible (no ”shadowing”).
The following sequences are valid:
if a == b {

...
let n = 5;
... // n is 5

}
let n = 8;
... // n is 8

and

21

https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/3_Expressions/ContextualExpressions.md#contextual-and-omitted-expressions
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/2_Statements/Iterations.md#iterations
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/2_Statements/QuantumMemoryManagement.md#quantum-memory-management
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/2_Statements/QuantumMemoryManagement.md#quantum-memory-management
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/2_Statements/ConditionalLoops.md#conditional-loops


if a == b {
...
let n = 5;
... // n is 5

} else {
...
let n = 8;
... // n is 8

}
... // n is not bound to a value

The following sequences are invalid:
let n = 5;
... // n is 5
let n = 8; // Error
...

and
let n = 8;
if a == b {

... // n is 8
let n = 5; // Error
...

}
...

For more details, see Variable Declarations and Reassignments.

Expressions
At the core, Q# expressions are either value literals or identifiers, where identifiers can refer to either locally
declared variables or to globally declared callables (there are currently no global constants inQ#). Operators,
combinators, and modifiers can be used to combine these into a wider variety of expressions.

• Operators in a sense are nothing but dedicated syntax for particular callables.
Even though Q# is not yet expressive enough to formally capture the capabilities of each
operator in the form of a backing callable declaration, that should be remedied in the future.

• Modifiers can only be applied to certain expressions. One or more modifiers can be applied to expres-
sions that are either identifiers, array item access expressions, named item access expressions, or an
expression within parenthesis which is the same as a single item tuple (see this section). They can
either precede (prefix) the expression or follow (postfix) the expression. They are thus special unary
operators that bind tighter than function or operation calls, but less tight than any kind of item access.
Concretely, functors are prefix modifiers, whereas the unwrap operator is a postfix modifier.

• Like modifiers, function and operation calls as well as item access can be seen as a special kind of
operator subject to the same restrictions regarding where they can be applied; we refer to them as
combinators.

The section on precedence and associativity contains a complete list of all operators as well as a complete list
of all modifiers and combinators.
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Precedence and associativity
Precedence and associativity define the order in which operators are applied. Operators with higher prece-
dence are bound to their arguments (operands) first, while operators with the same precedence bind in the
direction of their associativity. For example, the expression 1+2*3 according to the precedence for addi-
tion and multiplication is equivalent to 1+(2*3), and 2^3^4 equals 2^(3^4) since exponentiation is right-
associative.

Operators
The following table lists the available operators in Q#, as well as their precedence and associativity. Addi-
tional modifiers and combinators are also listed, and bind tighter than any of these operators.

Description Syntax Operator Associativity Precedence
copy-and-update
operator

w/ <- ternary left 1

range operator .. infix left 2
conditional
operator

? | ternary right 5

logical OR or infix left 10
logical AND and infix left 11
bitwise OR ||| infix left 12
bitwise XOR ^^^ infix left 13
bitwise AND &&& infix left 14
equality == infix left 20
inequality != infix left 20
less-than-or-equal <= infix left 25
less-than < infix left 25
greater-than-or-
equal

>= infix left 25

greater-than > infix left 25
right shift >>> infix left 28
left shift <<< infix left 28
addition or
concatenation

+ infix left 30

subtraction - infix left 30
multiplication * infix left 35
division / infix left 35
modulus % infix left 35
exponentiation ^ infix right 40
bitwise NOT ~~~ prefix right 45
logical NOT not prefix right 45
negative - prefix right 45

Copy-and-update expressions necessarily need to have the lowest precedence to ensure a consistent behavior
of the corresponding evaluate-and-reassign statement. Similar considerations hold for the range operator to
ensure a consistent behavior of the corresponding contextual expression.

Copy-and-update expressions

To reduce the need for mutable bindings, Q# supports copy-and-update expressions for value types with
item access. User-defined types and arrays both are immutable and fall into this category. User-defined
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types allow you to access items via name, whereas arrays allow you to access items via an index or range of
indices.
Copy-and-update expressions instantiate a new value with all items set to the corresponding value in the
original expression, except certain specified items(s), which are set to the one(s) defined on the right-hand
side of the expression. They are constructed using a ternary operator w/ <-; the syntax w/ should be read as
the commonly used short notation for ”with”:

original w/ itemAccess <- modification

where original is either an expression of user-defined type or an array expression. For the corresponding
requirements for itemAccess and modification, see Copy-and-update of user-defined types andCopy-and-
update of arrays.
In terms of precedence, the copy-and-update operator is left-associative and has lowest precedence, and, in
particular, lower precedence than the range operator (..) or the ternary conditional operator (? |). The
chosen left associativity allows easy chaining of copy-and-update expressions:

let model = Default<SequentialModel>()
w/ Structure <- ClassifierStructure()
w/ Parameters <- parameters
w/ Bias <- bias;

As for any operator that constructs an expression of the same type as the left-most expression involved,
the corresponding evaluate-and-reassign statement is available. The two following statements, for example,
achieve the following: The first statement declares a mutable variable arr and binds it to the default value
of an integer array. The second statement then builds a new array with the first item (with index 0) set to 10
and reassigns it to arr.

mutable arr = [0, size = 3]; // arr contains [0,0,0]
set arr w/= 0 <- 10; // arr contains [10,0,0]

The second statement is just short-hand for the more verbose syntax set arr = arr w/ 0 <- 10;.

Copy-and-update of user-defined types If the value original is a user-defined type, then itemAccess
denotes the name of the item that diverges from the original value. This is not just another expression, like
original and modification, because the ability to use the item name without any further qualification is
limited to this context; it is one of two contextual expressions in Q#.
The type of the modification expression needs to match the type of the named item that diverges. For
instance, if complex contains the value Complex(0., 0.), where the type Complex is defined here, then
complex w/ Re <- 1.

is an expression of type Complex that evaluates to Complex(1.,0.).

Copy-and-update of arrays For arrays, itemAccess can be an arbitrary expression of a suitable type; the
same types that are valid for array slicing are valid in this context. Concretely, the itemAccess expression
can be of type Int or Range. If itemAccess is a value of type Int, then the type of modification has to
match the item type of the array. If itemAccess is a value of type Range, then the type of modification has
to be the same as the array type.
For example, if arr contains an array [0,1,2,3], then

• arr w/ 0 <- 10 is the array [10,1,2,3].
• arr w/ 2 <- 10 is the array [0,1,10,3].
• arr w/ 0..2..3 <- [10,12] is the array [10,1,12,3].

24

https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/2_Statements/VariableDeclarationsAndReassignments.md#evaluate-and-reassign-statements
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/3_Expressions/ContextualExpressions.md#contextual-and-omitted-expressions
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/1_ProgramStructure/2_TypeDeclarations.md#type-declarations


Copy-and-update expressions allow the efficient creation of new arrays based on existing ones. The imple-
mentation for copy-and-update expressions avoids copying the entire array by duplicating only the neces-
sary parts to achieve the desired behavior and performs an in-place modification if possible. Hence, array
initializations do not incur additional overhead due to immutability.
The Microsoft.Quantum.Arrays namespace provides an arsenal of convenient tools for array creation and
manipulation. For example, the function ConstantArray creates an array of the specified length and initial-
izes each item to a given value.
Copy-and-update expressions are a convenient way to construct new arrays on the fly; the following expres-
sion, for example, evaluates to an array with all items set to PauliI, except the item at index i, which is set
to PauliZ:
ConstantArray(n, PauliI) w/ i <- PauliZ

Conditional expressions

Conditional expressions consist of three sub-expressions, where the left-most sub-expression is of type Bool
and determines which one of the two other sub-expressions is evaluated. They are of the form
cond ? ifTrue | ifFalse

Specifically, if cond evaluates to true, then the conditional expression evaluates to the ifTrue expression;
otherwise, it evaluates to the ifFalse expression. The other expression (the ifFalse and ifTrue expression,
respectively) is never evaluated, much like the branches in an if statement. For instance, in an expression a
== b ? C(qs) | D(qs), if a equals b, then the callable C is invoked. Otherwise, D is invoked.
The types of the ifTrue and the ifFalse expression have to have a commonbase type. Independent ofwhich
one ultimately yields the value to which the expression evaluates, its type always matches the determined
base type.
For example, if

• Op1 is of type Qubit[] => Unit is Adj
• Op2 is of type Qubit[] => Unit is Ctl
• Op3 is of type Qubit[] => Unit is Adj + Ctl

then
• cond ? Op1 | Op2 is of type Qubit[] => Unit
• cond ? Op1 | Op3 is of type Qubit[] => Unit is Adj
• cond ? Op2 | Op3 is of type Qubit[] => Unit is Ctl

For more details, see subtyping.

Comparative expressions

Equality comparisons Equality comparisons (==) and inequality comparisons (!=) are currently limited to the
following data types: Int, BigInt, Double, String, Bool, Result, Pauli, and Qubit. Equality comparisons
of arrays, tuples, ranges, user-defined types, or callables are currently not supported.
Equality comparison for values of type Qubit evaluates whether the two expressions identify the same qubit.
There is no notion of a quantum state in Q#; equality comparison, in particular, does not access, measure, or
modify the quantum state of the qubits.
Equality comparisons for Double values may be misleading due to rounding effects. For instance, the fol-
lowing comparison evaluates to false due to rounding errors: 49.0 * (1.0/49.0) == 1.0.

[!NOTE] In the future, qsharp may support the comparisons of ranges, as well as arrays, tuples,
and user-defined types provided their items support comparison. As for all types, the compar-
ison would be by value, meaning two values are considered equal if all of their items are. For
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values of user-defined type, their type also needs to match. Future support for the comparison
of values of type Range follows the same logic; they should be equal as long as they produce the
same sequence of integers, meaning the two ranges

let r1 = 0..2..5; // generates the sequence 0,2,4
let r2 = 0..2..4; // generates the sequence 0,2,4

should be considered equal.
Conversely, there is a good reason not to allow the comparison of callables, as the behavior would
be ill-defined. Suppose the capability is introduced to define functions locally via a possible
syntax

let f1 = (x -> Bar(x)); // not yet supported
let f2 = Bar;

for some globally declared function Bar. The first line defines a new anonymous function that
takes an argument x, invokes a function Barwith it, and then assigns it to the variable f1. The sec-
ond line assigns the function Bar to f2. Since invoking f1 or f2 does the same thing, it should be
possible to interchange f1 and f2with each other without changing the behavior of the program.
This wouldn’t be the case if the equality comparison for functions was supported and f1 == f2
evaluated to false. Conversely, if f1 == f2 evaluates to true, then this leads to determining
whether two callables have the same side effects and evaluate to the same value for all inputs,
which is not possible to determine reliably. Therefore, if we want to be able to replace f1with f2,
we can’t allow equality comparisons for callables.

Quantitative comparison The operators less-than (<), less-than-or-equal (<=), greater-than (>), and greater-
than-or-equal (>=) define quantitative comparisons. They can only be applied to data types that support such
comparisons, that is, the same data types that can also support arithmetic expressions.

Logical expressions

Logical operators are expressed as keywords. Q# supports the standard logical operators AND (and), OR
(or), and NOT (not). Currently, there is not an operator for a logical XOR. All of these operators act on
operands of type Bool, and result in an expression of type Bool. As is common in most languages, the
evaluation ofAND andOR short-circuits, meaning if the first expression ofOR evaluates to true, the second
expression is not evaluated, and the same holds if the first expression of AND evaluates to false. The
behavior of conditional expressions in a sense is similar, in that only ever the condition and one of the two
expressions is evaluated.

Bitwise expressions

Bitwise operators are expressed as three non-letter characters. In addition to bitwise versions forAND (&&&),
OR (|||), and NOT (~~~), a bitwise XOR (^^^) exists as well. They expect operands of type Int or BigInt,
and for binary operators, the type of both operands has to match. The type of the entire expression equals
the type of the operand(s).
Additionally, left- and right-shift operators (<<< and >>> respectively) exist, multiplying or dividing the
given left-hand-side (lhs) expression by powers of two. The expression lhs <<< 3 shifts the bit representa-
tion of lhs by three, meaning lhs is multiplied by 2^3, provided that is still within the valid range for the
data type of lhs. The lhs may be of type Int or BigInt. The right-hand-side expression always has to be of
type Int. The resulting expression will be of the same type as the lhs operand.
For left- and right-shift, the shift amount (the right-hand-side operand) must be greater than or equal to
zero; the behavior for negative shift amounts is undefined. If the left-hand-side operand is of type Int, then
the shift amount additionally needs to be smaller than 64; the behavior for larger shifts is undefined.
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Arithmetic expressions

Arithmetic operators are addition (+), subtraction (-), multiplication (*), division (/), negation (-), and
exponentiation (^). They can be applied to operands of type Int, BigInt, or Double. Additionally, for
integral types (Int and BigInt), an operator computing the modulus (%) is available.
For binary operators, the type of both operands must match, except for exponentiation; an exponent for a
value of type BigInt must be of type Int. The type of the entire expression matches the type of the left
operand. For exponentiation of Int and BitInt, the behavior is undefined if the exponent is negative or
requires more than 32 bits to represent (that is, if it is larger than 2147483647).
Division andmodulus for values of type Int and BigInt follow the following behavior for negative numbers:

A B A / B A % B
5 2 2 1
5 -2 -2 1
-5 2 -2 -1
-5 -2 2 -1

That is, a % b always has the same sign as a, and b * (a / b) + a % b always equals a.
Q# does not support automatic conversions between arithmetic data types or any other data types for that
matter. This is of importance especially for the Result data type and facilitates restricting how runtime
information can propagate. It has the benefit of avoiding accidental errors, such as ones related to precision
loss.

Concatenation

Concatenations are supported for values of type String and arrays. In both cases they are expressed via the
operator +. For instance, "Hello " + "world!" evaluates to "Hello world!", and [1,2,3] + [4,5,6]
evaluates to [1,2,3,4,5,6].
Concatenating two arrays requires that both arrays be of the same type, in contrast to constructing an array
literal where a common base type for all array items is determined. This is because arrays are treated as
invariant. The type of the entire expression matches the type of the operands.

Modifiers and combinators
Modifiers can be seen as special operators that can be applied to certain expressions only. They can be
assigned an artificial precedence to capture their behavior.
For more information, see Expressions.
This artificial precedence is listed in the following table, along with how the precedence of operators and
modifiers relates to how tightly item access combinators ([,] and :: respectively) and call combinators ((,
)) bind.

Description Syntax Operator Associativity Precedence
Call combinator ( ) n/a left 900
Adjoint functor Adjoint prefix right 950
Controlled functor Controlled prefix right 950
Unwrap
application

! postfix left 1000

Named item access :: n/a left 1100
Array item access [ ] n/a left 1100
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To illustrate the implications of the assigned precedences, suppose you have a unitary operation DoNothing
(as defined in Specialization declarations), a callable GetStatePrep that returns a unitary operation, and an
array algorithms that contains items of type Algorithm defined as follows

newtype Algorithm = (
Register : LittleEndian,
Initialize : Transformation,
Apply : Transformation

);

newtype Transformation =
LittleEndian => Unit is Adj + Ctl;

where LittleEndian is defined in Type declarations.
The following expressions, then, are all valid:

GetStatePrep()(arg)
(Transformation(GetStatePrep()))!(arg)
Adjoint DoNothing()
Controlled Adjoint DoNothing(cs, ())
Controlled algorithms[0]::Apply!(cs, _)
algorithms[0]::Register![i]

Looking at the precedences defined in the table above, you can see that the parentheses around (Trans-
formation(GetStatePrep())) are necessary for the subsequent unwrap operator to be applied to the
Transformation value rather than the returned operation. However, parentheses are not required in
GetStatePrep()(arg); functions are applied left-to-right, so this expression is equivalent to (Get-
StatePrep())(arg). Functor applications also don’t require parentheses around them in order to invoke
the corresponding specialization, nor do array or named item access expressions. Thus, the expression
arr2D[i][j] is perfectly valid, as is algorithms[0]::Register![i].

Closures

Closures are callables that capture variables from the enclosing environment. Both function and operation
closures can be created. An operation closure can be created inside a function, but it can only be applied in
an operation.
Q# has two mechanisms for creating closures: lambda expressions and partial application.

Lambda expressions A lambda expression creates an anonymous function or operation. The basic syntax
is a symbol tuple to bind the parameters, an arrow (-> for a function and => for an operation), and an
expression to evaluate when applied.
// Function that captures 'x':
y -> x + y

// Operation that captures 'qubit':
deg => Rx(deg * PI() / 180.0, qubit)

// Function that captures nothing:
(x, y) -> x + y

Parameters Parameters are bound using a symbol tuple that is identical to the left-hand side of a variable
declaration statement. The type of the parameter tuple is implicit. Type annotations are not supported; if type
inference fails, you may need to create a top-level callable declaration and use partial application instead.
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Mutable capture variables Mutable variables cannot be captured. If you only need to capture the value of
a mutable variable at the instant the lambda expression is created, you can create an immutable copy:
// ERROR: 'variable' cannot be captured.
mutable variable = 1;
let f = () -> variable;

// OK.
let value = variable;
let g = () -> value;

Characteristics The characteristics of an anonymous operation are inferred based on the body of the
lambda expression. For example:
// Has type Unit => Unit is Adj + Ctl because X is known to be Adj + Ctl.
() => X(q)

// Has type Unit => Result because M is neither Adj nor Ctl.
() => M(q)

Because of limitations in characteristics inference, this is based only on type information known at the point
where the lambda expression occurs. For example:
let foo = op => op(q);
foo(X);

foo is inferred to have the following type based on both the body of the lambda and the type of X:
(Qubit => Unit is Adj + Ctl) => Unit

But the most specific type that foo could have is:
(Qubit => Unit is Adj + Ctl) => Unit is Adj + Ctl

If you need different characteristics for an operation lambda than what was inferred, you will need to create
a top-level operation declaration instead.

Partial application Partial application is a convenient shorthand for applying some, but not all, of a
callable’s arguments. The syntax is the same as a call expression, but unapplied arguments are replaced
with _. Conceptually, partial application is equivalent to a lambda expression that captures the applied
arguments and takes in the unapplied arguments as parameters.
For example, given that f is a function and o is an operation, and the captured variable x is immutable:

Partial application Lambda expression
f(x, _) a -> f(x, a)
o(x, _) a => o(x, a)
f(_, (1, _)) (a, b) -> f(a, (1, b))[^1]
f((_, _, x), (1, _)) ((a, b), c) -> f((a, b, x), (1, c))

Mutable capture variables Unlike lambda expressions, partial application can automatically capture a
copy of the value of a mutable variable:
mutable variable = 1;
let f = Foo(variable, _);
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This is equivalent to the following lambda expression:
mutable variable = 1;
let value = variable;
let f = x -> Foo(value, x);

[^1]: The parameter tuple is strictly written (a, (b)), but (b) is equivalent to b.

Functor application

Functors are factories that allow you to access particular specialization implementations of a callable. Q#
currently supports two functors; the Adjoint and the Controlled, both ofwhich can be applied to operations
that provide the necessary specializations.
The Controlled and Adjoint functors commute; if ApplyUnitary is an operation that supports both func-
tors, then there is no difference between Controlled Adjoint ApplyUnitary and Adjoint Controlled
ApplyUnitary. Both have the same type and, upon invocation, execute the implementation defined for the
controlled adjoint specialization.

Adjoint functor If the operation ApplyUnitary defines a unitary transformation U of the quantum state,
Adjoint ApplyUnitary accesses the implementation of U†. The Adjoint functor is its own inverse, since
(U†)† = U by definition. For example, Adjoint Adjoint ApplyUnitary is the same as ApplyUnitary.
The expression Adjoint ApplyUnitary is an operation of the same type as ApplyUnitary; it has the same
argument and return type and supports the same functors. Like any operation, it can be invoked with an
argument of suitable type. The following expression applies the adjoint specialization of ApplyUnitary to
an argument arg:
Adjoint ApplyUnitary(arg)

Controlled functor For an operation ApplyUnitary that defines a unitary transformationU of the quantum
state, Controlled ApplyUnitary accesses the implementation that appliesU conditional on all qubits in an
array of control qubits being in the |1⟩ state.
The expression Controlled ApplyUnitary is an operation with the same return type and operation charac-
teristics as ApplyUnitary, meaning it supports the same functors. It takes an argument of type (Qubit[],
<TIn>), where <TIn> should be replaced with the argument type of ApplyUnitary, taking singleton tuple
equivalence into account.

Operation Argument Type Controlled Argument Type
X Qubit (Qubit[], Qubit)
SWAP (Qubit, Qubit) (Qubit[], (Qubit, Qubit))
ApplyQFT LittleEndian (Qubit[], LittleEndian)

Concretely, if cs contains an array of qubits, q1 and q2 are two qubits, and the operation SWAP is as defined
here, then the following expression exchanges the state of q1 and q2 if all qubits in cs are in the |1⟩ state:
Controlled SWAP(cs, (q1, q2))

[!NOTE] Conditionally applying an operation based on the control qubits being in a state other
than a zero-state may be achieved by applying the appropriate adjointable transformation to the
control qubits before invocation, and applying the inverses after. Conditioning the transforma-
tion on all control qubits being in the |0⟩ state, for example, can be achieved by applying the X
operation before and after. This can be conveniently expressed using a conjugation. Nonetheless,
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the verbosity of such a construct may merit additional support for a more compact syntax in the
future.

Item access

Q# supports item access for array items and for items in user defined types. In both cases, the access is read-
only; the value cannot be changed without creating a new instance using a copy-and-update expression.

Array item access and array slicing Given an array expression and an expression of type Int or Range, a
new expression may be formed using the array item access operator consisting of [ and ].
If the expression inside the brackets is of type Int, then the new expression contains the array item at that
index. For example, if arr is of type Double[] and contains five or more items, then arr[4] is an expression
of type Double.
If the expression inside the brackets is of type Range, then the new expression contains an array of all the
items indexed by the specified Range. If the Range is empty, then the resulting array is empty. For example,
let arr = [10, 11, 36, 49];
let ten = arr[0]; // contains the value 10
let odds = arr[1..2..4]; // contains the value [11, 49]
let reverse = arr[...-1...]; // contains the value [49, 36, 11, 10]

In the last line of the example, the start and end value of the range have been omitted for convenience. For
more information, see Contextual expressions.
If the array expression is not a simple identifier, it must be enclosed in parentheses in order to extract an item
or a slice. For instance, if arr1 and arr2 are both arrays of integers, an item from the concatenation would
be expressed as (arr1 + arr2)[13]. For more information, see Precedence and associativity.
All arrays in Q# are zero-based, that is, the first element of an array arr is always arr[0]. An exception is
thrown at runtime if the index or one of the indices used for slicing is outside the bounds of the array, for
example, if it is less than zero or larger or equal to the length of the array.

Item access for user-defined types (For more information about how to define custom types containing
one or more named or anonymous items, see Type declarations).
The contained items can be accessed via their name or by deconstruction, illustrated by the following state-
ments that may be used as part of a operation or function implementation:

let complex = Complex(1.,0.); // create a value of type Complex
let (re, _) = complex!; // item access via deconstruction
let im = complex::Imaginary; // item access via name

The item access operator (::) retrieves named items, as illustrated by the following example:
newtype TwoStrings = (str1: String, str2: String);

operation LinkTwoStrings(str : TwoStrings) : String {
let s1 = str::str1;
let s2 = str::str2:
return s1 + s2;

}

While named items can be accessed by their name or via deconstruction, anonymous items can only be
accessed by the latter. Since deconstruction relies on all of the contained items, the usage anonymous items
is discourage when these items need to be accessed outside the compilation unit in which the type is defined.
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Access via deconstruction makes use of the unwrap operator (!). The unwrap operator returns a tuple of all
contained items, where the shape of the tuple matches the one defined in the declaration, and a single item
tuple is equivalent to the item itself (see this section).
For example, for a value nested of type Nested that is defined as follows
newtype Nested = (Double, (ItemName : Int, String));

the expression nested! return a value of type (Double, (Int, String)).
The ! operator has lower precedence than both item access operators, but higher precedence than any other
operator. For a complete list of precedences, see Precedence and associativity.

Contextual and omitted expressions
Contextual expressions are expressions that are only valid in certain contexts, such as the use of item names
in copy-and-update expressions without having to qualify them.
Expressions can be omittedwhen they can be inferred and automatically inserted by the compiler, for example,
in the case of evaluate-and-reassign statements.
Open-ended ranges are another example that apply to both contextual and omitted expressions. They are are
valid only within a certain context, and the compiler translates them into normal Range expressions during
compilation by inferring suitable boundaries.
A value of type Range generates a sequence of integers, specified by a start value, a step value (optional),
and an end value. For example, the Range literal expression 1..3 generates the sequence 1,2,3. Likewise, the
expression 3..-1..1 generates the sequence 3,2,1. You can also use ranges to create a new array from an
existing one by slicing, for example:

let arr = [1,2,3,4];
let slice1 = arr[1..2..4]; // contains [2,4]
let slice2 = arr[2..-1..0]; // contains [3,2,1]

You cannot define an infinite range in Q#; the start and end values always need to be specified. The only
exception is when you use a Range to slice an array. In that case, the start or end values of the range can
reasonably be inferred by the compiler.
In the previous array slicing examples, it is reasonable for the compiler to assume that the intended range
end should be the index of the last item in the array if the step size is positive. If the step size is negative,
then the range end likely should be the index of the first item in the array, 0. The converse holds for the start
of the range.
To summarize, if you omit the range start value, the inferred start value

• is zero if no step is specified or the specified step is positive.
• is the length of the array minus one if the specified step is negative.

If you omit the range end value, the inferred end value
• is the length of the array minus one if no step is specified or the specified step is positive.
• is zero if the specified step is negative.

Q# hence allows the use of open-ended ranges within array slicing expressions, for example:
let arr = [1,2,3,4,5,6];
let slice1 = arr[3...]; // slice1 is [4,5,6];
let slice2 = arr[0..2...]; // slice2 is [1,3,5];
let slice3 = arr[...2]; // slice3 is [1,2,3];
let slice4 = arr[...2..3]; // slice4 is [1,3];
let slice5 = arr[...2...]; // slice5 is [1,3,5];
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let slice7 = arr[4..-2...]; // slice7 is [5,3,1];
let slice8 = arr[...-1..3]; // slice8 is [6,5,4];
let slice9 = arr[...-1...]; // slice9 is [6,5,4,3,2,1];
let slice10 = arr[...]; // slice10 is [1,2,3,4,5,6];

Since the determination of whether the range step is positive or negative happens at runtime, the compiler
inserts a suitable expression that will be evaluated at runtime. For omitted end values, the inserted expres-
sion is step < 0 ? 0 | Length(arr)-1, and for omitted start values it is step < 0 ? Length(arr)-1 |
0, where step is the expression given for the range step, or 1 if no step is specified.

Literals
Unit literal

The only existing literal for the Unit type is the value ().
The Unit value is commonly used as an argument to callables, either because no other arguments need to
be passed or to delay execution. It is also used as return value when no other value needs to be returned,
which is the case for unitary operations, that is, operations that support the Adjoint and/or the Controlled
functor.

Int literals

Value literals for the Int type can be expressed in binary, octal, decimal, or hexadecimal representation.
Literals expressed in binary are prefixed with 0b, with 0o for octal, and with 0x for hexadecimal. There is no
prefix for the commonly used decimal representation.

Representation Value Literal
Binary 0b101010
Octal 0o52
Decimal 42
Hexadecimal 0x2a

BigInt literals

Value literals for the BigInt type are always postfixed with L and can be expressed in binary, octal, decimal,
or hexadecimal representation. Literals expressed in binary are prefixed with 0b, with 0o for octal, and with
0x for hexadecimal. There is no prefix for the commonly used decimal representation.

Representation Value Literal
Binary 0b101010L
Octal 0o52L
Decimal 42L
Hexadecimal 0x2aL

Double literals

Value literals for the Double type can be expressed in standard or scientific notation.

Representation Value Literal
Standard 0.1973269804
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Representation Value Literal
Scientific 1.973269804e-1

If nothing follows after the decimal point, then the digit after the decimal point may be omitted. For example,
1. is a valid Double literal and the same as 1.0. Similarly, if the digits before the decimal point are all zero,
then they may be omitted. For example, .1 is a valid Double literal and the same as 0.1.

Bool literals

Existing literals for the Bool type are true and false.

String literals

A value literal for the String type is an arbitrary length sequence of Unicode characters enclosed in double
quotes. Inside of a string, the back-slash character \ may be used to escape a double quote character, and to
insert a new-line as \n, a carriage return as \r, and a tab as \t.
The following are examples for valid string literals:
"This is a simple string."
"\"This is a more complex string.\", she said.\n"

Q# also supports interpolated strings. An interpolated string is a string literal that may contain any number of
interpolation expressions. These expressions can be of arbitrary types. Upon construction, the expressions
are evaluated and their String representation is inserted at the corresponding location within the defined
literal. Interpolation is enabled by prepending the special character $ directly before the initial quote, with
no white space between them.
For instance, if res is an expression that evaluates to 1, then the second sentence in the following String
literal displays ”The result was 1.”:
$"This is an interpolated string. The result was {res}."

Qubit literals

No literals for the Qubit type exist, since quantummemory is managed by the runtime. Values of type Qubit
can hence only be obtained via allocation.
Values of type Qubit represent an opaque identifier by which a quantum bit, or qubit, can be addressed. The
only operator they support is equality comparison. For more information on the Qubit data type, See Qubits.

Result literals

Existing literals for the Result type are Zero and One.
Values of type Result represent the result of a binary quantum measurement. Zero indicates a projection
onto the +1 eigenspace, One indicates a projection onto the -1 eigenspace.

Pauli literals

Existing literals for the Pauli type are PauliI, PauliX, PauliY, and PauliZ.
Values of type Pauli represent one of the four single-qubit Pauli matrices, with PauliI representing the
identity. Values of type Pauli are commonly used to denote the axis for rotations and to specify with respect
to which basis to measure.

34

https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language/4_TypeSystem#available-types
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language/4_TypeSystem#available-types
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language/4_TypeSystem#available-types
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/2_Statements/QuantumMemoryManagement.md#quantum-memory-management
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/3_Expressions/ComparativeExpressions.md#equality-comparison
https://github.com/microsoft/qsharp-language/blob/main/Specifications/Language/4_TypeSystem/QuantumDataTypes.md#qubits
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language/4_TypeSystem#available-types
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language/4_TypeSystem#available-types
https://en.wikipedia.org/wiki/Pauli_matrices


Range literals

Value literals for the Range type are expressions of the form start..step..stop, where start, step, and
end are expressions of type Int. If the step size is one, it may be omitted. For example, start..stop is a
valid Range literal and the same as start..1..stop.
Values of type Range represent a sequence of integers, where the first element in the sequence is start, and
subsequent elements are obtained by adding step to the previous one, until stop is passed. Range values
are inclusive at both ends, that is, the last element of the range is stop if the difference between start and
stop is a multiple of step. A range may be empty if, for instance, step is positive and stop < start.
The following are examples for valid Range literals:

• 1..3 is the range 1, 2, 3.
• 2..2..5 is the range 2, 4.
• 2..2..6 is the range 2, 4, 6.
• 6..-2..2 is the range 6, 4, 2.
• 2..-2..1 is the range 2.
• 2..1 is the empty range.

For more information, see Contextual expressions.

Array literals

An array literal is a sequence of one or more expressions, separated by commas and enclosed in brackets [
and ]; for example, [1,2,3]. All expressions must have a common base type, which is the item type of the
array.
Arrays of arbitrary length, and in particular empty arrays, may be created using a new array expression.
Such an expression is of the form new <ItemType>[expr], where expr can be any expression of type Int
and <ItemType> is to be replaced by the type of the array items.
For instance, new Int[10] creates an array of integers containing ten items. The length of an array
can be queried with the function Length. It is defined in the automatically opened namespace Mi-
crosoft.Quantum.Core and returns an Int value.
All items in the created array are set to the default value of the item type. Arrays containing qubits or callables
must be properly initialized with non-default values before their elements may be safely used. Suitable
initialization routines can be found in the Microsoft.Quantum.Arrays namespace.

Tuple literals

A tuple literal is a sequence of one or more expressions of any type, separated by commas and enclosed in
parentheses ( and ). The type of the tuple includes the information about each item type.

Value Literal Type
("Id", 0, 1.) (String, Int, Double)
(PauliX,(3,1)) (Pauli, (Int, Int))

Tuples containing a single item are treated as identical to the item itself, both in type and value, which is
called singleton tuple equivalence.
Tuples are used to bundle values together into a single value, making it easier to pass them around. This
makes it possible for every callable to take exactly one input and return exactly one output.
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Literals for user-defined types

Values of a user-defined type are constructed by invoking their constructor. A default constructor is auto-
matically generated when declaring the type. It is currently not possible to define custom constructors.
For instance, if IntPair has two items of type Int, then IntPair(2, 3) creates a new instance by invoking
the default constructor.

Operation and function literals

Anonymous operations and functions can be created using a lambda expression.

Default values

Type Default
Unit ()
Int 0
BigInt 0L
Double 0.0
Bool false
String ""
Qubit invalid qubit
Result Zero
Pauli PauliI
Range empty range
Array empty array
Tuple all items are set to default values
User-defined type all items are set to default values
Operation invalid operation
Function invalid function

For qubits and callables, the default is an invalid reference that cannot be used without causing a runtime
error.

Type System
With the focus for quantumalgorithmbeingmore towardswhat should be achieved rather than on a problem
representation in terms of data structures, taking a more functional perspective on language design is a
natural choice. At the same time, the type system is a powerfulmechanism that can be leveraged for program
analysis and other compile-time checks that facilitate formulating robust code.
All in all, the Q# type system is fairlyminimalist, in the sense that there isn’t an explicit notion of classes or in-
terfaces as onemight be used to from classical languages like C# or Java. We also take a somewhat pragmatic
approach making incremental progress, such that certain construct are not yet fully integrated into the type
system. An example are functors, which can be used within expressions but don’t yet have a representation
in the type system. Correspondingly, they cannot currently be assigned or passed as arguments, similar as
it is the case for type parametrized callables. We expect to make incremental progress in extending the type
system to be more complete, and balance immediate needs with longer-term plans.

Available Types
All types in Q# are immutable.
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Type Description
Unit Represents a singleton type whose only value is ().
Int Represents a 64-bit signed integer. Values range from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807.
BigInt Represents signed integer values of any size.
Double Represents a double-precision 64-bit floating-point number. Values range from

-1.79769313486232e308 to 1.79769313486232e308 as well as NaN (not a number).
Bool Represents Boolean values. Possible values are true or false.
String Represents text as values that consist of a sequence of UTF-16 code units.
Qubit Represents an opaque identifier by which virtual quantum memory can be addressed.

Values of type Qubit are instantiated via allocation.
Result Represents the result of a projective measurement onto the eigenspaces of a quantum

operator with eigenvalues ±1. Possible values are Zero or One.
Pauli Represents a single-qubit Pauli matrix. Possible values are PauliI, PauliX, PauliY, or

PauliZ.
Range Represents an ordered sequence of equally spaced Int values. Values may represent

sequences in ascending or descending order.
Array Represents values that each contain a sequence of values of the same type.
Tuple Represents values that each contain a fixed number of items of different types. Tuples

containing a single element are equivalent to the element they contain.
User defined
type

Represents a user defined type consisting of named and anonymous items of different
types. Values are instantiated by invoking the constructor.

Operation Represents a non-deterministic callable that takes one (possibly tuple-valued) input
argument returns one (possibly tuple-valued) output. Calls to operation values may have
side effects and the output may vary for each call even when invoked with the same
argument.

Function Represents a deterministic callable that takes one (possibly tuple-valued) input argument
returns one (possibly tuple-valued) output. Calls to function values do not have side
effects and the output is will always be the same given the same input.

Operations and functions
As elaborated inmore detail in the description of the qubit data type, quantum computations are executed in
the form of side effects of operations that are natively supported on the targeted quantum processor. These
are, in fact, the only side effects in Q#. Since all types are immutable, there are no side effects that impact a
value that is explicitly represented in Q#. Hence, as long as an implementation of a certain callable does not
directly or indirectly call any of these natively implemented operations, its execution always produces the
same output, given the same input.
Q# allows you to explicitly split out such purely deterministic computations into functions. Since the set of
natively supported instructions is not fixed and built into the language itself, but rather fully configurable
and expressed as a Q# library, determinism is guaranteed by requiring that functions can only call other
functions and cannot call any operations. Additionally, native instructions that are not deterministic, that is,
because they impact the quantum state, are represented as operations. With these two restrictions, functions
can be evaluated as soon as their input value is known, and, in principle, never need to be evaluated more
than once for the same input.
Q# therefore distinguishes between two types of callables: operations and functions. All callables take a
single argument (potentially tuple-valued) as input and produce a single value (tuple) as output. Syntacti-
cally, the operation type is expressed as <TIn> => <TOut> is <Char>, where <TIn> is to be replaced by the
argument type, <TOut> is to be replaced by the return type, and <Char> is to be replaced by the operation
characteristics. If no characteristics need to be specified, the syntax simplifies to <TIn> => <TOut>. Similarly,
function types are expressed as <TIn> -> <TOut>.
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Aside from this determinism guarantee, there is little difference between operations and functions. Both are
first-class values that can be passed around freely; they can be used as return values or arguments to other
callables, as shown in the following example:
function Pow<'T>(op : 'T => Unit, pow : Int) : 'T => Unit {

return PowImpl(op, pow, _);
}

Both can be instantiated based on a type-parametrized definition, for example, the type parametrized func-
tion Pow above, and they can be partially applied as done in the return statement in the example.

Operation characteristics

In addition to the information about input and output type, the operation type contains information about
the characteristics of an operation. This information, for example, describes what functors are supported by
the operation. Additionally, the internal representation also contains optimization-relevant information that
is inferred by the compiler.
The characteristics of an operation are a set of predefined and built-in labels. They are expressed in the
form of a special expression that is part of the type signature. The expression consists either of one of the
predefined sets of labels, or of a combination of characteristics expressions via a supported binary operator.
There are two predefined sets, Adj and Ctl.

• Adj is the set that contains a single label indicating that an operation is adjointable, meaning it sup-
ports the Adjoint functor and the applied quantum transformation can be ”undone”, that is, it can be
inverted.

• Ctl is the set that contains a single label indicating that an operation is controllable, meaning it supports
the Controlled functor and its execution can be conditioned on the state of other qubits.

The two operators that are supported as part of characteristics expressions are the set union + and the set
intersection *. In EBNF,

predefined = "Adj" | "Ctl";
characteristics = predefined

| "(", characteristics, ")"
| characteristics ("+"|"*") characteristics;

As one would expect, * has higher precedence than + and both are left-associative. The type of a unitary
operation, for example, is expressed as <TIn> => <TOut> is Adj + Ctl, where <TIn> should be replaced
with the type of the operation argument, and <TOut> replaced with the type of the returned value.

[!NOTE] Indicating the characteristics of an operation in this form has two major advantages;
for one, new labels can be introduced without having exponentially many language keywords
for all combinations of labels. Perhaps more importantly, using expressions to indicate the char-
acteristics of an operation also supports parameterizations over operation characteristics in the
future.

Quantum-specific data types
This topic describes the Qubit type, along with two other types that are somewhat specific to the quantum
domain: Pauli and Result.

Qubit

Q# treats qubits as opaque items that can be passed to both functions and operations, but can only be in-
teracted with by passing them to instructions that are native to the targeted quantum processor. Such in-
structions are always defined in the form of operations, since their intent is to modify the quantum state.
The restriction that functions cannot modify the quantum state, despite the fact that qubits can be passed as
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input arguments, is enforced by the requiring that functions can only call other functions, and cannot call
operations.
The Q# libraries are compiled against a standard set of intrinsic operations, meaning operations which have
no definition for their implementation within the language. Upon targeting, the implementations that ex-
press them in terms of the instructions that are native to the execution target are linked in by the compiler.
A Q# program thus combines these operations as defined by a target machine to create new, higher-level
operations to express quantum computation. In this way, Q# makes it very easy to express the logic under-
lying quantum and hybrid quantum-classical algorithms, while also being very general with respect to the
structure of a target machine and its realization of quantum state.
Within Q# itself, there is no type or construct in Q# that represents the quantum state. Instead, a qubit
represents the smallest addressable physical unit in a quantum computer. As such, a qubit is a long-lived
item, so Q# has no need for linear types. Hence, we do not explicitly refer to the state within Q#, but rather
describe how the state is transformed by the program, for example, via the application of operations such
as X and H. Similar to how a graphics shader program accumulates a description of transformations to each
vertex, a quantum program in Q# accumulates transformations to quantum states, represented as entirely
opaque references to the internal structure of a target machine.
A Q# program has no ability to introspect into the state of a qubit, and thus is entirely agnostic about what
a quantum state is or on how it is realized. Rather, a program can call operations such as Measure to learn
information about the quantum state of the computation.

Pauli

Values of type Pauli specify a single-qubit Pauli operator; the possibilities are PauliI, PauliX, PauliY, and
PauliZ. Pauli values are used primarily to specify the basis for a quantum measurement.

Result

The Result type specifies the result of a quantum measurement. Q# mirrors most quantum hardware by
providing measurements in products of single-qubit Pauli operators; a Result of Zero indicates that the +1
eigenvalue was measured, and a Result of One indicates that the -1 eigenvalue was measured. That is, Q#
represents eigenvalues by the power to which -1 is raised. This convention is more common in the quantum
algorithms community, as it maps more closely to classical bits.

Immutability
All types in Q# are value types. Q# does not have a concept of a reference or pointer. Instead, it allows you
to reassign a new value to a previously declared variable via a set statement. For example, there is no
distinction in behavior between reassignments for variables of type Int or variables of type Int[]. Consider
the following sequence of statements:

mutable arr1 = new Int[3];
let arr2 = arr1;
set arr1 w/= 0 <- 3;

The first statement instantiates a new array of integers [0,0,0] and assigns it to arr1. The next statement
assigns that value to a variable with name arr2. The last statement creates a new array instance based on
arr1 with the same values except for the value at index 0 which is set to 3. The newly created array is then
assigned to the variable arr1. The last line makes use of the abbreviated syntax for evaluate-and-reassign
statements, and could equivalently have been written as set arr1 = arr1 w/ 0 <- 1;. After running
the three statements, arr1 will contain the value [3,0,0] while arr2 remains unchanged and contains the
value [0,0,0].
Q# clearly thus distinguishes the mutability of a handle and the behavior of a type. Mutability within Q#
is a concept that applies to a symbol rather than a type or value; it applies to the handle that allows you to
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access a value rather than to the value itself. It is not represented in the type system, implicitly or explicitly.
Of course, this is merely a description of the formally defined behavior; under the hood, the actual implemen-
tation uses a reference counting scheme to avoid copying memory as much as possible. The modification is
specifically done in place as long as there is only one currently valid handle that accesses a certain value.

Singleton tuple equivalence
To avoid any ambiguity between tuples and parentheses that group sub-expressions, a tuple with a single
element is considered to be equivalent to the contained item, including its type. For example, the types Int,
(Int), and ((Int)) are treated as being identical. The same holds true for the values 5, (5) and (((5))),
or for (5, (6)) and (5, 6). This equivalence applies for all purposes, including assignment. Since there is
no dynamic dispatch or reflection in Q# and all types in Q# are resolvable at compile-time, singleton tuple
equivalence can be readily implemented during compilation.

Subtyping and variance
Q# supports only a few conversionmechanisms. Implicit conversions can happen onlywhen applying binary
operators, evaluating conditional expressions, or constructing an array literal. In these cases, a common su-
pertype is determined and the necessary conversions are performed automatically. Aside from such implicit
conversions, explicit conversions via function calls are possible and often necessary.
Currently, the only subtyping relation that exists applies to operations. Intuitively, it makes sense that one
should be allowed to substitute an operation that supportsmore than the required set of functors. Concretely,
for any two concrete types TIn and TOut, the subtyping relation is

(TIn => TOut) :>
(TIn => TOut is Adj), (TIn => TOut is Ctl) :>
(TIn => TOut is Adj + Ctl)

where A :> B indicates that B is a subtype of A. Phrased differently, B is more restrictive than A such that a
value of type B can be used wherever a value of type A is required. If a callable relies on an argument (item)
of being of type A, then an argument of type B can safely be substituted since if provides all the necessary
capabilities.
This kind of polymorphism extends to tuples in that a tuple of type B is a subtype of a tuple type A if it
contains the same number of items and the type of each item is a subtype of the corresponding item type
in A. This is known as depth subtyping. There is currently no support for width subtyping, that is, there is
no subtype relation between any two user-defined types or a user-defined type and any built-in type. The
existence of the unwrap operator, which allows you to extract a tuple containing all named and anonymous
items, prevents this.

[!NOTE] In regards to callables, if a callable processes an argument of type A, then it is also
capable of processing an argument of type B. If a callable is passed as an argument to another
callable, then it has to be capable of processing anything that the type signature may require.
This means that if the callable needs to be able to process an argument of type B, any callable that
is capable of processing a more general argument of type A can be passed safely. Conversely, we
expect that if we require that the passed callable returns a value of type A, then the promise to
return a value of type B is sufficient, since that value will provide all necessary capabilities.

The operation or function type is contravariant in its argument type and covariant in its return type. A :> B
hence implies that for any concrete type T1,

(B → T1) :> (A → T1), and
(T1 → A) :> (T1 → B)

where → here can mean either a function or operation, and we omit any annotations for characteristics. Sub-
stituting A with (B → T2) and (T2 → A) respectively, and substituting B with (A → T2) and (T2 → B)
respectively, leads to the conclusion that, for any concrete type T2,
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((A → T2) → T1) :> ((B → T2) → T1), and
((T2 → B) → T1) :> ((T2 → A) → T1), and
(T1 → (B → T2)) :> (T1 → (A → T2)), and
(T1 → (T2 → A)) :> (T1 → (T2 → B))

By induction, it follows that every additional indirection reverses the variance of the argument type, and
leaves the variance of the return type unchanged.

[!NOTE] This also makes it clear what the variance behavior of arrays needs to be; retrieving
items via an item access operator corresponds to invoking a function of type (Int -> TItem),
where TItem is the type of the elements in the array. Since this function is implicitly passed
when passing an array, it follows that arrays need to be covariant in their item type. The same
considerations also hold for tuples, which are immutable and thus covariant with respect to each
item type. If arrays weren’t immutable, the existence of a construct that would allow you to set
items in an array, and thus take an argument of type TItem, would imply that arrays also need to
be contravariant. The only option for data types that support getting and setting items is hence
to be invariant, meaning there is no subtyping relation whatsoever; B[] is not a subtype of A[]
even if B is a subtype of A. Despite the fact that arrays in Q# are immutable, they are invariant
rather than covariant. This means, for example, that a value of type (Qubit => Unit is Adj)[]
cannot be passed to a callable that requires an argument of type (Qubit => Unit)[]. Keeping
arrays invariant allows for more flexibility related to how arrays are handled and optimized in
the runtime, but it may be possible to revise that in the future.

Type parameterizations
Q# supports type-parameterized operations and functions. The Q# standard libraries make heavy use of
type-parametrized callables to provide a host of useful abstractions, including functions like Mapped and
Fold that are familiar from functional languages.
To motivate the concept of type parameterizations, consider the example of the function Mapped, which ap-
plies a given function to each value in an array and returns a new array with the computed values. This
functionality can be perfectly described without specifying the item types of the input and output arrays.
Since the exact types do not change the implementation of the function Mapped, it makes sense that it should
be possible to define this implementation for arbitrary item types; we want to define a factory or template that,
given the concrete types for the items in the input and output array, returns the corresponding function
implementation. This notion is formalized in the form of type parameters.

Concretization

Any operation or function declarationmay specify one ormore type parameters that can be used as the types,
or part of the types, of the callable’s input or output, or both. The exceptions are entry points, which must
be concrete and cannot be type-parametrized. Type parameter names start with a tick (’) and may appear
multiple times in the input and output types. All arguments that correspond to the same type parameter in
the callable signature must be of the same type.
A type-parametrized callable needs to be concretized, that is, it must be provided with the necessary type
arguments before it can be assigned or passed as argument, such that all type parameters can be replaced
with concrete types. A type is considered to be concrete if it is one of the built-in types, a user-defined type,
or if it is concrete within the current scope. The following example illustrates what it means for a type to be
concrete within the current scope, and is explained in more detail below:

function Mapped<'T1, 'T2> (
mapper : 'T1 -> 'T2,
array : 'T1[]

) : 'T2[] {

mutable mapped = new 'T2[Length(array)];
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for (i in IndexRange(array)) {
set mapped w/= i <- mapper(array[i]);

}
return mapped;

}

function AllCControlled<'T3> (
ops : ('T3 => Unit)[]

) : ((Bool,'T3) => Unit)[] {

return Mapped(CControlled<'T3>, ops);
}

The function CControlled is defined in the Microsoft.Quantum.Canon namespace. It takes an operation
op of type 'TIn => Unit as argument and returns a new operation of type (Bool, 'TIn) => Unit that
applies the original operation, provided a classical bit (of type Bool) is set to true; this is often referred to as
the classically controlled version of op.
The function Mapped takes an array of an arbitrary item type 'T1 as argument, applies the given mapper
function to each item, and returns a new array of type 'T2[] containing the mapped items. It is defined
in the Microsoft.Quantum.Array namespace. For the purpose of the example, the type parameters are
numbered to avoid making the discussion more confusing by giving the type parameters in both functions
the same name. This is not necessary; type parameters for different callables may have the same name, and
the chosen name is only visible and relevant within the definition of that callable.
The function AllCControlled takes an array of operations and returns a new array containing the classically
controlled versions of these operations. The call of Mapped resolves its type parameter 'T1 to 'T3 => Unit,
and its type parameter 'T2 to (Bool,'T3) => Unit. The resolving type arguments are inferred by the
compiler based on the type of the given argument. We say that they are implicitly defined by the argument
of the call expression. Type arguments can also be specified explicitly, as is done for CControlled in the
same line. The explicit concretization CControlled<'T3> is necessary when the type arguments cannot be
inferred.
The type 'T3 is concrete within the context of AllCControlled, since it is known for each invocation of AllC-
Controlled. That means that as soon as the entry point of the program -which cannot be type-parametrized
- is known, so is the concrete type 'T3 for each call to AllCControlled, such that a suitable implementation
for that particular type resolution can be generated. Once the entry point to a program is known, all usages
of type parameters can be eliminated at compile-time. We refer to this process as monomorphization.
Some restrictions are needed to ensure that this can indeed be done at compile-time as opposed to only at
run time.

Restrictions

Consider the following example:
operation Foo<'TArg> (

op : 'TArg => Unit,
arg : 'TArg

) : Unit {

let cbit = RandomInt(2) == 0;
Foo(CControlled(op), (cbit, arg));

}

Ignoring that an invocation of Foowill result in an infinite loop, it serves for the purpose of illustration. Foo
invokes itself with the classically controlled version of the original operation op that has been passed in, as
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well as a tuple containing a random classical bit in addition to the original argument.
For each iteration in the recursion, the type parameter 'TArg of the next call is resolved to (Bool, 'TArg),
where 'TArg is the type parameter of the current call. Concretely, suppose Foo is invoked with the operation
H and an argument arg of type Qubit. Foo will then invoke itself with a type argument (Bool, Qubit),
which will then invoke Foo with a type argument (Bool, (Bool, Qubit)), and so on. Clearly, in this case
Foo cannot be monomorphized at compile-time.
Additional restrictions apply to cycles in the call graph that involve only type-parametrized callables. Each
callable needs to be invoked with the same set of type arguments after traversing the cycle.

[!NOTE] It would be possible to be less restrictive and require that for each callable in the cycle,
there is a finite number of cycles after which it is invoked with the original set of type arguments,
such as the case for the following function:

function Bar<'T1,'T2,'T3>(a1:'T1, a2:'T2, a3:'T3) : Unit{
Bar<'T2,'T3,'T1>(a2, a3, a1);

}

For simplicity, the more restrictive requirement is enforced. Note that for cycles that involve at
least one concrete callable without any type parameter, such a callable will ensure that the type-
parametrized callables within that cycle are always called with a fixed set of type arguments.

Type inference
Q#’s type inference algorithm is based on inference algorithms designed for the Hindley-Milner type system.
While top-level callables must be declared with explicit type annotations, most types used within a callable
can be inferred. For example, given these callables:
function Length<'a>(xs : 'a[]) : Int
function Mapped<'a, 'b>(f : 'a -> 'b, xs : 'a[]) : 'b[]

and this expression:
Mapped(Length, [[], ["a"], ["b", "c"]])

then the type argument to Length is inferred to be Length<String[]>, and the type arguments to Mapped
are inferred to be Mapped<String[], Int>. It is not required to write these types explicitly.

Ambiguous types

Sometimes there is not one single principal type that can be inferred for a type variable. In these cases, type
inference fails with an error referring to an ambiguous type. For example, change the previous example
slightly:
Mapped(Length, [[]])

What is the type of [[]]? In some type systems, it’s possible to give it the type ∀a. a[][], but this is not sup-
ported in Q#. A concrete type is required, but there are an infinite number of types that work: String[][],
(Int, Int)[][], Double[][][], and so on. You must explicitly say which type you meant.
There are multiple ways to do this, depending on the situation. For example:

1. Call Length with a type argument.
Mapped(Length<String>, [[]])

2. Call Mappedwith its first type argument. (The _ for its second type argument means that it should still
be inferred.)
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Mapped<String[], _>(Length, [[]])

3. Replace the empty array literal with an explicitly-typed call to a library function.
Mapped<String[], _>(Length, [EmptyArray<String>()])

Grammar
A reference implementation of the Q# grammar is available in the ANTLR4 format. The grammar source
files are listed below:

• QSharpLexer.g4 describes the lexical structure of Q#.
• QSharpParser.g4 describes the syntax of Q#.

Target language
The ANTLR grammar contains some embedded C# code. It looks like this (enclosed in curly braces):
BraceRight : '}' { if (ModeStack.Count > 0) PopMode(); };

If you want to generate a parser for a target language other than C#, you will need to change these code
snippets.
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