-
Notifications
You must be signed in to change notification settings - Fork 8.4k
/
libpopcnt.h
841 lines (694 loc) · 20.6 KB
/
libpopcnt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
* libpopcnt.h - C/C++ library for counting the number of 1 bits (bit
* population count) in an array as quickly as possible using
* specialized CPU instructions i.e. POPCNT, AVX2, AVX512, NEON.
*
* Copyright (c) 2016 - 2019, Kim Walisch
* Copyright (c) 2016 - 2018, Wojciech Muła
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LIBPOPCNT_H
#define LIBPOPCNT_H
#include <stdint.h>
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
#ifdef __GNUC__
#define GNUC_PREREQ(x, y) \
(__GNUC__ > x || (__GNUC__ == x && __GNUC_MINOR__ >= y))
#else
#define GNUC_PREREQ(x, y) 0
#endif
#ifdef __clang__
#define CLANG_PREREQ(x, y) \
(__clang_major__ > x || (__clang_major__ == x && __clang_minor__ >= y))
#else
#define CLANG_PREREQ(x, y) 0
#endif
#if (_MSC_VER < 1900) && \
!defined(__cplusplus)
#define inline __inline
#endif
#if (defined(__i386__) || \
defined(__x86_64__) || \
defined(_M_IX86) || \
defined(_M_X64))
#define X86_OR_X64
#endif
#if defined(X86_OR_X64) && \
(defined(__cplusplus) || \
defined(_MSC_VER) || \
(GNUC_PREREQ(4, 2) || \
__has_builtin(__sync_val_compare_and_swap)))
#define HAVE_CPUID
#endif
#if GNUC_PREREQ(4, 2) || \
__has_builtin(__builtin_popcount)
#define HAVE_BUILTIN_POPCOUNT
#endif
#if GNUC_PREREQ(4, 2) || \
CLANG_PREREQ(3, 0)
#define HAVE_ASM_POPCNT
#endif
#if defined(HAVE_CPUID) && \
(defined(HAVE_ASM_POPCNT) || \
defined(_MSC_VER))
#define HAVE_POPCNT
#endif
#if defined(HAVE_CPUID) && \
GNUC_PREREQ(4, 9)
#define HAVE_AVX2
#endif
#if defined(HAVE_CPUID) && \
GNUC_PREREQ(5, 0)
#define HAVE_AVX512
#endif
#if defined(HAVE_CPUID) && \
defined(_MSC_VER) && \
defined(__AVX2__)
#define HAVE_AVX2
#endif
#if defined(HAVE_CPUID) && \
defined(_MSC_VER) && \
defined(__AVX512__)
#define HAVE_AVX512
#endif
#if defined(HAVE_CPUID) && \
CLANG_PREREQ(3, 8) && \
__has_attribute(target) && \
(!defined(_MSC_VER) || defined(__AVX2__)) && \
(!defined(__apple_build_version__) || __apple_build_version__ >= 8000000)
#define HAVE_AVX2
#define HAVE_AVX512
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
* This uses fewer arithmetic operations than any other known
* implementation on machines with fast multiplication.
* It uses 12 arithmetic operations, one of which is a multiply.
* http://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation
*/
static inline uint64_t popcount64(uint64_t x)
{
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
#if defined(HAVE_ASM_POPCNT) && \
defined(__x86_64__)
static inline uint64_t popcnt64(uint64_t x)
{
__asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x));
return x;
}
#elif defined(HAVE_ASM_POPCNT) && \
defined(__i386__)
static inline uint32_t popcnt32(uint32_t x)
{
__asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x));
return x;
}
static inline uint64_t popcnt64(uint64_t x)
{
return popcnt32((uint32_t) x) +
popcnt32((uint32_t)(x >> 32));
}
#elif defined(_MSC_VER) && \
defined(_M_X64)
#include <nmmintrin.h>
static inline uint64_t popcnt64(uint64_t x)
{
return _mm_popcnt_u64(x);
}
#elif defined(_MSC_VER) && \
defined(_M_IX86)
#include <nmmintrin.h>
static inline uint64_t popcnt64(uint64_t x)
{
return _mm_popcnt_u32((uint32_t) x) +
_mm_popcnt_u32((uint32_t)(x >> 32));
}
/* non x86 CPUs */
#elif defined(HAVE_BUILTIN_POPCOUNT)
static inline uint64_t popcnt64(uint64_t x)
{
return __builtin_popcountll(x);
}
/* no hardware POPCNT,
* use pure integer algorithm */
#else
static inline uint64_t popcnt64(uint64_t x)
{
return popcount64(x);
}
#endif
static inline uint64_t popcnt64_unrolled(const uint64_t* data, uint64_t size)
{
uint64_t i = 0;
uint64_t limit = size - size % 4;
uint64_t cnt = 0;
for (; i < limit; i += 4)
{
cnt += popcnt64(data[i+0]);
cnt += popcnt64(data[i+1]);
cnt += popcnt64(data[i+2]);
cnt += popcnt64(data[i+3]);
}
for (; i < size; i++)
cnt += popcnt64(data[i]);
return cnt;
}
#if defined(HAVE_CPUID)
#if defined(_MSC_VER)
#include <intrin.h>
#include <immintrin.h>
#endif
/* %ecx bit flags */
#define bit_POPCNT (1 << 23)
/* %ebx bit flags */
#define bit_AVX2 (1 << 5)
#define bit_AVX512 (1 << 30)
/* xgetbv bit flags */
#define XSTATE_SSE (1 << 1)
#define XSTATE_YMM (1 << 2)
#define XSTATE_ZMM (7 << 5)
static inline void run_cpuid(int eax, int ecx, int* abcd)
{
#if defined(_MSC_VER)
__cpuidex(abcd, eax, ecx);
#else
int ebx = 0;
int edx = 0;
#if defined(__i386__) && \
defined(__PIC__)
/* in case of PIC under 32-bit EBX cannot be clobbered */
__asm__ ("movl %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=D" (ebx),
"+a" (eax),
"+c" (ecx),
"=d" (edx));
#else
__asm__ ("cpuid;"
: "+b" (ebx),
"+a" (eax),
"+c" (ecx),
"=d" (edx));
#endif
abcd[0] = eax;
abcd[1] = ebx;
abcd[2] = ecx;
abcd[3] = edx;
#endif
}
#if defined(HAVE_AVX2) || \
defined(HAVE_AVX512)
static inline int get_xcr0()
{
int xcr0;
#if defined(_MSC_VER)
xcr0 = (int) _xgetbv(0);
#else
__asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx" );
#endif
return xcr0;
}
#endif
static inline int get_cpuid()
{
int flags = 0;
int abcd[4];
run_cpuid(1, 0, abcd);
if ((abcd[2] & bit_POPCNT) == bit_POPCNT)
flags |= bit_POPCNT;
#if defined(HAVE_AVX2) || \
defined(HAVE_AVX512)
int osxsave_mask = (1 << 27);
/* ensure OS supports extended processor state management */
if ((abcd[2] & osxsave_mask) != osxsave_mask)
return 0;
int ymm_mask = XSTATE_SSE | XSTATE_YMM;
int zmm_mask = XSTATE_SSE | XSTATE_YMM | XSTATE_ZMM;
int xcr0 = get_xcr0();
if ((xcr0 & ymm_mask) == ymm_mask)
{
run_cpuid(7, 0, abcd);
if ((abcd[1] & bit_AVX2) == bit_AVX2)
flags |= bit_AVX2;
if ((xcr0 & zmm_mask) == zmm_mask)
{
if ((abcd[1] & bit_AVX512) == bit_AVX512)
flags |= bit_AVX512;
}
}
#endif
return flags;
}
#endif /* cpuid */
#if defined(HAVE_AVX2)
#include <immintrin.h>
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline void CSA256(__m256i* h, __m256i* l, __m256i a, __m256i b, __m256i c)
{
__m256i u = _mm256_xor_si256(a, b);
*h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
*l = _mm256_xor_si256(u, c);
}
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline __m256i popcnt256(__m256i v)
{
__m256i lookup1 = _mm256_setr_epi8(
4, 5, 5, 6, 5, 6, 6, 7,
5, 6, 6, 7, 6, 7, 7, 8,
4, 5, 5, 6, 5, 6, 6, 7,
5, 6, 6, 7, 6, 7, 7, 8
);
__m256i lookup2 = _mm256_setr_epi8(
4, 3, 3, 2, 3, 2, 2, 1,
3, 2, 2, 1, 2, 1, 1, 0,
4, 3, 3, 2, 3, 2, 2, 1,
3, 2, 2, 1, 2, 1, 1, 0
);
__m256i low_mask = _mm256_set1_epi8(0x0f);
__m256i lo = _mm256_and_si256(v, low_mask);
__m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
__m256i popcnt1 = _mm256_shuffle_epi8(lookup1, lo);
__m256i popcnt2 = _mm256_shuffle_epi8(lookup2, hi);
return _mm256_sad_epu8(popcnt1, popcnt2);
}
/*
* AVX2 Harley-Seal popcount (4th iteration).
* The algorithm is based on the paper "Faster Population Counts
* using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and
* Wojciech Mula (23 Nov 2016).
* @see https://arxiv.org/abs/1611.07612
*/
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline uint64_t popcnt_avx2(const __m256i* data, uint64_t size)
{
__m256i cnt = _mm256_setzero_si256();
__m256i ones = _mm256_setzero_si256();
__m256i twos = _mm256_setzero_si256();
__m256i fours = _mm256_setzero_si256();
__m256i eights = _mm256_setzero_si256();
__m256i sixteens = _mm256_setzero_si256();
__m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
uint64_t i = 0;
uint64_t limit = size - size % 16;
uint64_t* cnt64;
for(; i < limit; i += 16)
{
CSA256(&twosA, &ones, ones, data[i+0], data[i+1]);
CSA256(&twosB, &ones, ones, data[i+2], data[i+3]);
CSA256(&foursA, &twos, twos, twosA, twosB);
CSA256(&twosA, &ones, ones, data[i+4], data[i+5]);
CSA256(&twosB, &ones, ones, data[i+6], data[i+7]);
CSA256(&foursB, &twos, twos, twosA, twosB);
CSA256(&eightsA, &fours, fours, foursA, foursB);
CSA256(&twosA, &ones, ones, data[i+8], data[i+9]);
CSA256(&twosB, &ones, ones, data[i+10], data[i+11]);
CSA256(&foursA, &twos, twos, twosA, twosB);
CSA256(&twosA, &ones, ones, data[i+12], data[i+13]);
CSA256(&twosB, &ones, ones, data[i+14], data[i+15]);
CSA256(&foursB, &twos, twos, twosA, twosB);
CSA256(&eightsB, &fours, fours, foursA, foursB);
CSA256(&sixteens, &eights, eights, eightsA, eightsB);
cnt = _mm256_add_epi64(cnt, popcnt256(sixteens));
}
cnt = _mm256_slli_epi64(cnt, 4);
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(eights), 3));
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(fours), 2));
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(twos), 1));
cnt = _mm256_add_epi64(cnt, popcnt256(ones));
for(; i < size; i++)
cnt = _mm256_add_epi64(cnt, popcnt256(data[i]));
cnt64 = (uint64_t*) &cnt;
return cnt64[0] +
cnt64[1] +
cnt64[2] +
cnt64[3];
}
/* Align memory to 32 bytes boundary */
static inline void align_avx2(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
for (; (uintptr_t) *p % 32; (*p) += 8)
{
*cnt += popcnt64(
*(const uint64_t*) *p);
*size -= 8;
}
}
#endif
#if defined(HAVE_AVX512)
#include <immintrin.h>
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline __m512i popcnt512(__m512i v)
{
__m512i m1 = _mm512_set1_epi8(0x55);
__m512i m2 = _mm512_set1_epi8(0x33);
__m512i m4 = _mm512_set1_epi8(0x0F);
__m512i t1 = _mm512_sub_epi8(v, (_mm512_srli_epi16(v, 1) & m1));
__m512i t2 = _mm512_add_epi8(t1 & m2, (_mm512_srli_epi16(t1, 2) & m2));
__m512i t3 = _mm512_add_epi8(t2, _mm512_srli_epi16(t2, 4)) & m4;
return _mm512_sad_epu8(t3, _mm512_setzero_si512());
}
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline void CSA512(__m512i* h, __m512i* l, __m512i a, __m512i b, __m512i c)
{
*l = _mm512_ternarylogic_epi32(c, b, a, 0x96);
*h = _mm512_ternarylogic_epi32(c, b, a, 0xe8);
}
/*
* AVX512 Harley-Seal popcount (4th iteration).
* The algorithm is based on the paper "Faster Population Counts
* using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and
* Wojciech Mula (23 Nov 2016).
* @see https://arxiv.org/abs/1611.07612
*/
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline uint64_t popcnt_avx512(const __m512i* data, const uint64_t size)
{
__m512i cnt = _mm512_setzero_si512();
__m512i ones = _mm512_setzero_si512();
__m512i twos = _mm512_setzero_si512();
__m512i fours = _mm512_setzero_si512();
__m512i eights = _mm512_setzero_si512();
__m512i sixteens = _mm512_setzero_si512();
__m512i twosA, twosB, foursA, foursB, eightsA, eightsB;
uint64_t i = 0;
uint64_t limit = size - size % 16;
uint64_t* cnt64;
for(; i < limit; i += 16)
{
CSA512(&twosA, &ones, ones, data[i+0], data[i+1]);
CSA512(&twosB, &ones, ones, data[i+2], data[i+3]);
CSA512(&foursA, &twos, twos, twosA, twosB);
CSA512(&twosA, &ones, ones, data[i+4], data[i+5]);
CSA512(&twosB, &ones, ones, data[i+6], data[i+7]);
CSA512(&foursB, &twos, twos, twosA, twosB);
CSA512(&eightsA, &fours, fours, foursA, foursB);
CSA512(&twosA, &ones, ones, data[i+8], data[i+9]);
CSA512(&twosB, &ones, ones, data[i+10], data[i+11]);
CSA512(&foursA, &twos, twos, twosA, twosB);
CSA512(&twosA, &ones, ones, data[i+12], data[i+13]);
CSA512(&twosB, &ones, ones, data[i+14], data[i+15]);
CSA512(&foursB, &twos, twos, twosA, twosB);
CSA512(&eightsB, &fours, fours, foursA, foursB);
CSA512(&sixteens, &eights, eights, eightsA, eightsB);
cnt = _mm512_add_epi64(cnt, popcnt512(sixteens));
}
cnt = _mm512_slli_epi64(cnt, 4);
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(eights), 3));
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(fours), 2));
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(twos), 1));
cnt = _mm512_add_epi64(cnt, popcnt512(ones));
for(; i < size; i++)
cnt = _mm512_add_epi64(cnt, popcnt512(data[i]));
cnt64 = (uint64_t*) &cnt;
return cnt64[0] +
cnt64[1] +
cnt64[2] +
cnt64[3] +
cnt64[4] +
cnt64[5] +
cnt64[6] +
cnt64[7];
}
/* Align memory to 64 bytes boundary */
static inline void align_avx512(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
for (; (uintptr_t) *p % 64; (*p) += 8)
{
*cnt += popcnt64(
*(const uint64_t*) *p);
*size -= 8;
}
}
#endif
/* x86 CPUs */
#if defined(X86_OR_X64)
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcount64(**p);
*size -= 1;
}
}
static inline uint64_t popcount64_unrolled(const uint64_t* data, uint64_t size)
{
uint64_t i = 0;
uint64_t limit = size - size % 4;
uint64_t cnt = 0;
for (; i < limit; i += 4)
{
cnt += popcount64(data[i+0]);
cnt += popcount64(data[i+1]);
cnt += popcount64(data[i+2]);
cnt += popcount64(data[i+3]);
}
for (; i < size; i++)
cnt += popcount64(data[i]);
return cnt;
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
const uint8_t* ptr = (const uint8_t*) data;
uint64_t cnt = 0;
uint64_t i;
#if defined(HAVE_CPUID)
#if defined(__cplusplus)
/* C++11 thread-safe singleton */
static const int cpuid = get_cpuid();
#else
static int cpuid_ = -1;
int cpuid = cpuid_;
if (cpuid == -1)
{
cpuid = get_cpuid();
#if defined(_MSC_VER)
_InterlockedCompareExchange(&cpuid_, cpuid, -1);
#else
__sync_val_compare_and_swap(&cpuid_, -1, cpuid);
#endif
}
#endif
#endif
#if defined(HAVE_AVX512)
/* AVX512 requires arrays >= 1024 bytes */
if ((cpuid & bit_AVX512) &&
size >= 1024)
{
align_avx512(&ptr, &size, &cnt);
cnt += popcnt_avx512((const __m512i*) ptr, size / 64);
ptr += size - size % 64;
size = size % 64;
}
#endif
#if defined(HAVE_AVX2)
/* AVX2 requires arrays >= 512 bytes */
if ((cpuid & bit_AVX2) &&
size >= 512)
{
align_avx2(&ptr, &size, &cnt);
cnt += popcnt_avx2((const __m256i*) ptr, size / 32);
ptr += size - size % 32;
size = size % 32;
}
#endif
#if defined(HAVE_POPCNT)
if (cpuid & bit_POPCNT)
{
cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
for (i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
#endif
/* pure integer popcount algorithm */
if (size >= 8)
{
align_8(&ptr, &size, &cnt);
cnt += popcount64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
}
/* pure integer popcount algorithm */
for (i = 0; i < size; i++)
cnt += popcount64(ptr[i]);
return cnt;
}
#elif defined(__ARM_NEON) || \
defined(__aarch64__)
#include <arm_neon.h>
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
}
static inline uint64x2_t vpadalq(uint64x2_t sum, uint8x16_t t)
{
return vpadalq_u32(sum, vpaddlq_u16(vpaddlq_u8(t)));
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
uint64_t cnt = 0;
uint64_t chunk_size = 64;
const uint8_t* ptr = (const uint8_t*) data;
if (size >= chunk_size)
{
uint64_t i = 0;
uint64_t iters = size / chunk_size;
uint64x2_t sum = vcombine_u64(vcreate_u64(0), vcreate_u64(0));
uint8x16_t zero = vcombine_u8(vcreate_u8(0), vcreate_u8(0));
do
{
uint8x16_t t0 = zero;
uint8x16_t t1 = zero;
uint8x16_t t2 = zero;
uint8x16_t t3 = zero;
/*
* After every 31 iterations we need to add the
* temporary sums (t0, t1, t2, t3) to the total sum.
* We must ensure that the temporary sums <= 255
* and 31 * 8 bits = 248 which is OK.
*/
uint64_t limit = (i + 31 < iters) ? i + 31 : iters;
/* Each iteration processes 64 bytes */
for (; i < limit; i++)
{
uint8x16x4_t input = vld4q_u8(ptr);
ptr += chunk_size;
t0 = vaddq_u8(t0, vcntq_u8(input.val[0]));
t1 = vaddq_u8(t1, vcntq_u8(input.val[1]));
t2 = vaddq_u8(t2, vcntq_u8(input.val[2]));
t3 = vaddq_u8(t3, vcntq_u8(input.val[3]));
}
sum = vpadalq(sum, t0);
sum = vpadalq(sum, t1);
sum = vpadalq(sum, t2);
sum = vpadalq(sum, t3);
}
while (i < iters);
uint64_t tmp[2];
vst1q_u64(tmp, sum);
cnt += tmp[0];
cnt += tmp[1];
}
size %= chunk_size;
align_8(&ptr, &size, &cnt);
const uint64_t* ptr64 = (const uint64_t*) ptr;
uint64_t iters = size / 8;
for (uint64_t i = 0; i < iters; i++)
cnt += popcnt64(ptr64[i]);
ptr += size - size % 8;
size = size % 8;
for (uint64_t i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
/* all other CPUs */
#else
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
const uint8_t* ptr = (const uint8_t*) data;
uint64_t cnt = 0;
uint64_t i;
align_8(&ptr, &size, &cnt);
cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
for (i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* LIBPOPCNT_H */