
WEB APPLICATION
PENETRATION

TESTING REPORT
for

Microweber

Public
This report is made as effort to increase security in open source projects.

20/11/2023

Prepared by:

GrozdniyAndy of XSS.is

Public
This report is made as effort to increase security in open source projects.

Table Of Contents

Table Of Contents

Executive Summary
1.1 Grading Criteria
1.2 Project Objectives
1.3 Methodology
1.4 Summary of Findings

Findings
2.Broken Access Control
 2.1 Files or Directories Accessible to External Parties
 2.2 Cross-Site Request Forgery (CSRF)

3.Injection
 3.1 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

Public
This report is made as effort to increase security in open source projects.

Executive Summary
This report presents the results of the Black Box penetration testing for the
Microweber Open-Source CMS. The recommendations provided herein are
structured to facilitate the remediation of the identified security risks. This
document serves as a formal letter of attestation for the recent Microweber CMS
penetration testing. Evaluation ratings compare information gathered during the
engagement to "best in class" criteria for security standards. We believe that the
statements made in this document provide an accurate assessment of
Microweber's current security as it relates to Microweber data. We highly
recommend reviewing the Summary section for business risks and High-Level
Recommendations to better understand the risks and discovered security issues.

Grading Criteria
The penetration test for Microweber utilized the Common Weakness Enumeration
(CWE) and the OWASP Top 10 as key grading criteria. The CWE framework was
employed to identify and categorize specific vulnerabilities, while the OWASP Top
10 served as a guide to focus on critical web application security risks. The
Common Vulnerability Scoring System (CVSSv3) was applied to quantify the
severity of identified vulnerabilities, aiding in prioritizing remediation efforts based
on potential impact.

Project Objectives
The overarching goal of the penetration test was to assess the security posture of
Microweber, uncovering vulnerabilities in line with the CWE and OWASP Top 10
frameworks. Specific objectives included the identification and validation of
security weaknesses, the quantification of risk using CVSSv3, and the provision of
actionable recommendations to enhance the overall security of Microweber.

Vulnerability Assessment: Applying automated tools and manual techniques
based on CWE and OWASP Top 10 to discover and validate vulnerabilities.
Exploitation: Ethical exploitation of identified vulnerabilities to assess impact,
with severity quantified using CVSSv3.
Post-Exploitation: Analyzing the extent of compromise and determining
potential risks associated with successful exploitation.
Reporting: Documenting findings, including identified vulnerabilities, their CWE
categorization, OWASP Top 10 relevance, and CVSSv3 scores, with actionable
recommendations for remediation.

The penetration test followed a black-box approach. The methodology included:
1.

2.

3.

4.

Methodology

Vulnerability # Score

1
5.3

AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

2
5.3

AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

3
3.8

AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N

4
8.1

AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N

5
4.6

AV:N/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:N

6
3.5

AV:N/AC:L/PR:L/UI:R/S:U/C:N/I:L/A:N

Public
This report is made as effort to increase security in open source projects.

Summary of Findings

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:L/UI:R/S:U/C:N/I:L/A:N&version=3.1

Public
This report is made as effort to increase security in open source projects.

Findings
2. Broken Access Control
Broken Access Control refers to a security vulnerability that occurs when an
application or system fails to properly enforce restrictions on what authenticated
users are allowed to do. This vulnerability arises when access controls, such as
permissions and restrictions, are not effectively implemented or are easily
bypassed. It allows unauthorized users to access sensitive data, perform actions
they shouldn't be allowed to, or exploit functionalities that should be restricted.

The consequences of Broken Access Control can be severe, as it can lead to
unauthorized access to confidential information, unauthorized modification of
data, and other security breaches. Common examples include a user being able to
view or modify another user's data, gaining access to privileged functionalities
without proper authorization, or manipulating URLs or parameters to access
restricted areas of a website or application.

Reference: https://owasp.org/Top10/A01_2021-Broken_Access_Control/

2.1 Files or Directories Accessible to External Parties
Description:
The product makes files or directories accessible to unauthorized actors, even
though they should not be.

Location:
http://microweber.local/userfiles/install_log.txt
http://microweber.local/api/image-generate-tn-request/{Number}?saved

Impact:
Some files are accessible to unauthenticated users and this may lead to sensitive
data leakage.

Reference: https://cwe.mitre.org/data/definitions/552.html

Vulnerability Detail [1]
File install_log.txt has logs stored and they can be viewed with anyone who knows
the right value of parameter ‘_’. Those logs store installed modules and other debug
information which may be considered as sensitive.

Proof of Vulnerability [1]
Install the microweber and check both requests (client-side) and request logs
(server-side).

Image number 2 shows only partial logs, full logs to be seen we should open URL as
in Image [1]. This file is stored in the server and not deleted. When I googled
inurl:install_log.txt

Public
This report is made as effort to increase security in open source projects.

Image [2]

Image [1]

Image [3]

Public
This report is made as effort to increase security in open source projects.

Vulnerability Detail [2]
It is possible to view images uploaded by administration but not used.

Proof of Vulnerability [2]
Upload any image in any way, but don’t use it anywhere. To see uploaded images
you can use Media Libary.

Image [4]

Image [5]

Public
This report is made as effort to increase security in open source projects.

I was able to view image 46 as unauthenticated user even though I shouldn’t be.

Image [6]

Remediation
remove the log file after installation and restrict access to view images only to
authorised users.

Description:
The web application does not, or can not, sufficiently verify whether a well-formed,
valid, consistent request was intentionally provided by the user who submitted the
request.

Location:
http://microweber.local/livewire/message/admin::edit-user.update-profile-form

Impact:
The consequences will vary depending on the nature of the functionality that is
vulnerable to CSRF. An attacker could effectively perform any operations as the
victim. If the victim is an administrator or privileged user, the consequences may
include obtaining complete control over the web application - deleting or stealing
data, uninstalling the product, or using it to launch other attacks against all of the
product's users. Because the attacker has the identity of the victim, the scope of
CSRF is limited only by the victim's privileges.

Reference: https://owasp.org/www-community/attacks/csrf

Vulnerability Detail [3]
When uploading an image, for example a profile photo, it gets stored in the server
and when saving it the full URL is used to save it. Attacker can put URL from
external source. It may be intended when adding a category image, but not when
uploading a profile photo. Vulnerability exists in uploading profile photo. Also there
is a check for extension, which can be bypassed

Proof of Vulnerability [3]
In Image [7] we put external URL, for example some random image from github and
in the Image [8] we can see that it is in source attribute. Application would allow me
to add URLs that end only with .jpg, so I used #.jpg, it will comment .jpg and I would
be able to add any URL I want, which will allow me to make anyone viewing the
profile send any malicious request I want. As you can see in Image [9], I added #
before the .jpg and in Image [10], the request was sent without #.jpg, as it is a
comment. This way we bypassed the security implemented.

Public
This report is made as effort to increase security in open source projects.

2.2 Cross-Site Request Forgery (CSRF)

Public
This report is made as effort to increase security in open source projects.

Image [7]

Image [8]

Public
This report is made as effort to increase security in open source projects.

Image [9]

Image [10]

Remediation
Use relative paths when adding an image instead of using full URLs.

Public
This report is made as effort to increase security in open source projects.

3. Injection

User-supplied data is not validated, filtered, or sanitized by the application.
Dynamic queries or non-parameterized calls without context-aware escaping
are used directly in the interpreter.
Hostile data is used within object-relational mapping (ORM) search parameters
to extract additional, sensitive records.
Hostile data is directly used or concatenated. The SQL or command contains
the structure and malicious data in dynamic queries, commands, or stored
procedures.

An application is vulnerable to attack when:

Reference: https://owasp.org/Top10/A03_2021-Injection/

3.1 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')
Description:
The product does not neutralize or incorrectly neutralizes user-controllable input
before it is placed in output that is used as a web page that is served to other users.

Location:
http://microweber.local/login?username={payload}&password={payload}
http://microweber.local/module
http://microweber.local/api/save_option

Impact:
In some circumstances it may be possible to run arbitrary code on a victim's
computer when cross-site scripting is combined with other flaws.

Reference: https://cwe.mitre.org/data/definitions/79.html

Vulnerability Detail [4]
There is XSS vulnerability in the login. The vulnerability arises from the ability of
inserting credentials in GET request, which then allows attacker to bypass the
security measures implemented and execute javascript code.

Proof of Vulnerability [4]
I simply used request to add username and password and then checked where it
gets reflected in the source code, Image [11]. Then instead of escaping the input
tag, I executed the javascript code inside it Image [12], Image [13]. Same can be
done for password parameter, Image [14].

Public
This report is made as effort to increase security in open source projects.

Image [11]

Image [12]

Public
This report is made as effort to increase security in open source projects.

Image [14]

Image [13]

Public
This report is made as effort to increase security in open source projects.

Vulnerability Detail [5]
There is a CSS Injection while sending request to /module/. Module adds
parameters inside div which can be misused.

Proof of Vulnerability [5]
In Image [15] I added background URL and it sent a request to my server, Image
[16]. In this case the style attribute was injected with external url. More information
about CSS injection: https://owasp.org/www-project-web-security-testing-
guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/05-
Testing_for_CSS_Injection

Image [15]

Public
This report is made as effort to increase security in open source projects.

Image [16]

Vulnerability Detail [6]
There is HTML Injection in the /api/save_option. The vulnerability appears while
editing email.

Proof of Vulnerability [6]
In Image [17] I edit email sender name and use a payload. In Image [18] we can see
that our payload worked and it is in all the fields which can be seen in the picture.

Public
This report is made as effort to increase security in open source projects.

Image [17]

Image [18]

