
RBE 502 : Robot Controls

Robust Trajectory Tracking for Quadrotor UAVs

using Sliding Mode Control

Aabha Tamhankar
Miheer Diwan

Problem Statement

To design a sliding mode controller for altitude and attitude control of the Crazyflie 2.0 to
enable the quadrotor to track desired trajectories and visit a set of desired waypoints.

Part 1 : Trajectory Generation & Plots

We generated quintic trajectories for (x,y,z) co-ordinates of the quadrotor. It generated
position, velocity and acceleration desired trajectories for visiting 5 waypoints in a particular
sequence, as follows.

• p0 = (0, 0, 0) to p1 = (0, 0, 1) in 5 seconds

• p1 = (0, 0, 1) to p2 = (1, 0, 1) in 15 seconds

• p2 = (1, 0, 1) to p3 = (1, 1, 1) in 15 seconds

• p3 = (1, 1, 1) to p4 = (0, 1, 1) in 15 seconds

• p4 = (0, 1, 1) to p5 = (0, 0, 1) in 15 seconds

The first order and second order derivatives of the equations were then calculated for the
trajectory plotting. The plotted trajectories are in the figure below.

1

Figure 1: Graph of x Position, Velocity and Acceleration vs Time

Figure 2: Graph of y Position, Velocity and Acceleration vs Time

Figure 3: Graph of z Position, Velocity and Acceleration vs Time

2

Part 2 : Derivation of Sliding Mode Control Laws

Equations of Motion

ẍ =
1

m
(cosϕ sinθ cosψ + sinϕ sinψ) u1

ÿ =
1

m
(cosϕ sinθ sinψ − sinϕ cosψ) u1

z̈ =
1

m
(cosϕ cosθ) u1 − g

Fx = m(−kp(x− xd)− kd(ẋ− ẋd) + ẍd)

Fy = m(−kp(y − yd)− kd(ẏ − ẏd) + ÿd)

θd = sin−1(
Fx

u1
)

θ̇d = 0

θ̈ = ϕ̇ψ̇
Iz − Ix
Iy

+
Ip
Iy

Ω ϕ̇+
1

Iy
u3

ϕd = sin−1(
−Fy

u1
)

ϕ̇d = 0

ϕ̈ = θ̇ψ̇
Iy − Iz
Ix

− Ip
Ix

Ω θ̇ +
1

Ix
u20

ψd = 0

ψ̇d = 0

ψ̈ = ϕ̇θ̇
Ix − Iy
Iz

+
1

Iz
u4

Using these equations of motion, we can now calculate the control inputs, i.e. u1, u2, u3,
u4.

3

Calculations for u1
e = zd − z

ė = żd − ż

ë = z̈d − z̈ = z̈d −
1

m
(cosϕ cosθ) u1 + g

s = ė+ λ1e

ṡ = ë+ λ1ė

ṡ = z̈d −
1

m
(cosϕ cosθ) u1 + g + λ1ė

sṡ ≤ −K1|s|

u1 =
m

(cosϕ cosθ)
(z̈d + g + λ1ė+K1sign(s))

By using the sat function in place of sign function, it was seen that we could avoid chattering.

u1 =
m

(cosϕ cosθ)
(z̈d + g + λ1ė+K1sat(s, ρ1))

Calculations for u2
e = ϕd − ϕ

ė = ϕ̇d − ϕ̇

ë = ϕ̈d − ϕ̈ = ϕ̈d − θ̇ψ̇
Iy − Iz
Ix

+
Ip
Ix

Ω θ̇ − 1

Ix
u2

s = ė+ λ2e

ṡ = ë+ λ2ė

ṡ = ϕ̈d − θ̇ψ̇
Iy − Iz
Ix

+
Ip
Ix

Ω θ̇ − 1

Ix
u2 + λ2ė

sṡ ≤ −K2|s|

u2 = Ixϕ̈d − θ̇ψ̇ (Iy − Iz) + Ip Ω θ̇ + Ixλ2ė+ Ixu2r

u2 = Ixϕ̈d − θ̇ψ̇ (Iy − Iz) + Ip Ω θ̇ + Ixλ2ė+ Ixu2r

−s(u2r) ≤ −K2|s|

u2r = K2sign(s)

u2 = Ixϕ̈d − θ̇ψ̇ (Iy − Iz) + Ip Ω θ̇ + Ixλ2ė+ IxK2sign(s)

4

Calculations for u3
e = θd − θ

ė = θ̇d − θ̇

ë = θ̈d − θ̈ = θ̈d − ϕ̇ψ̇
Iz − Ix
Iy

− Ip
Iy

Ω ϕ̇− 1

Iy
u3

s = ė+ λ3e

ṡ = ë+ λ3ė = θ̈d − ϕ̇ψ̇
Iz − Ix
Iy

− Ip
Iy

Ω ϕ̇− 1

Iy
u3 + λ3ė

sṡ ≤ −K3|s|
u3 = Iyθ̈d − ϕ̇ψ̇ (Iz − Ix)− Ip Ω ϕ̇+ Iyλ3ė+ Iyu3r

−s(u3r) ≤ −K3|s|
u3r = K3sign(s)

u3 = Iyθ̈d − ϕ̇ψ̇ (Iz − Ix)− Ip Ω ϕ̇+ Iyλ3ė+ IyK3sign(s)

By using the sat function in place of sign function, it was seen that we could avoid chattering.

u3 = Iyθ̈d − ϕ̇ψ̇ (Iz − Ix)− Ip Ω ϕ̇+ Iyλ3ė+ IyK3sat(s, ρ3)

Calculations for u4
e = ψd − ψ

ė = ψ̇d − ψ̇

ë = ψ̈d − ψ̈ = ψ̈d − ϕ̇θ̇
Ix − Iy
Iz

− 1

Iz
u4

s = ė+ λ4e

ṡ = ë+ λ4ė = ψ̈d − ϕ̇θ̇
Ix − Iy
Iz

− 1

Iz
u4 + λ4ė

sṡ ≤ −K4|s|
u4 = Izψ̈d − ϕ̇ψ̇ (Ix − Iy) + Izλ4ė+ Izu4r

−s(u4r) ≤ −K4|s|
u4r = K4sign(s)

u4 = Izψ̈d − ϕ̇ψ̇ (Ix − Iy) + Izλ4ė+ IzK4sign(s)

By using the sat function in place of sign function, it was seen that we could avoid chattering.

u4 = Izψ̈d − ϕ̇ψ̇ (Ix − Iy) + Izλ4ė+ IzK4sat(s, ρ4)

5

Design and Tuning Parameters

Design Parameters Values

k1 12
k2 380
k3 400
k4 4

Increasing the K values will make the respective control inputs (i.e. u values) aggressive
and it will lead to faster convergence.

Design Parameters Values

Kp1 50
Kd1 10

This affects the θd values, and thus, they affect the error seen in the x-direction.

Design Parameters Values

Kp2 30
Kd2 10

This affects the ϕd values, and thus, they affect the error seen in the y-direction.

Design Parameters Values

λ1 7
λ2 9
λ3 9
λ4 7

The λ values will make the results aggressive exponentially towards the origin. Thus,
increasing the values will ensure converging faster to the desired trajectory.

Boundary Layer Parameter (ρ = 0): Rho (ρ) is the boundary layer parameter that
increases the robustness of the controller by adding a tracing error. To reduce chattering we
tried multiple values of ρ and set it to 0.9 to reduce chattering.

6

Part 3 : Code Explanation
Our code consists of two python files (traj.py and Visualize.py) and a MATLAB file (traj.m)

1. First, we calculate and plot the desired trajectories using the traj.m file. It takes the
initial position, final position, initial time and final time as inputs and gives us the
desired position, velocity, and acceleration in the X, Y, and Z direction.

2. The traj.py file consists of the major part of our control implementation. We hard-coded
the desired trajectory values obtained from the traj.m file.

3. The signum function is used to implement the boundary layer for the sliding mode
controller. It also acts as the saturation function which improves the signum fn. and
helps in reducing the chattering observed in our controller.

4. Using the system dynamics, equations of motion, and the equations derived above, we
obtain the values of u1.u2, u3, u4. We multiply the u matrix with the allocation matrix
to obtain the rotor speeds which are then relayed to Crazyflie.

Note: As mentioned in the document, we also wrap the roll, pitch, and yaw errors
between [−π,π].

5. The Visualize.py file is used to Visualize the 3D plot of the tracked and the desired
trajectory.

7

Part 4 : Results & Plots

Previously, the motion in the x direction was causing errors in the calculation of ψ, which
in turn affected the accuracy of our trajectory tracking. However, we were able to overcome
this issue by switching to an extended version of the controller, which made our trajectory
tracking independent of ψ errors. As a result, we achieved improved tracking performance.
Despite expecting ψ errors to be zero, we still observed a slight deviation in the trajectory.
The following are the results.

Figure 4: Top View of the Desired Trajectories

Figure 5: Orthogonal View of the Desired Trajectories

In order to achieve convergence of the actual trajectory of the Quadrotor with the desired
trajectory, which was calculated using a quintic fifth-order equation, tuning of the controller
was necessary. We were able to accomplish this by ensuring that the trajectory reached the
sliding surface and slid on it until convergence, while also avoiding chattering by implementing
a boundary layer. After carefully tuning the relevant parameters, we successfully achieved
convergence of the actual trajectory with the desired one. Overall, we are satisfied with the
performance of the designed controller.

8

