Fast and flexible numerical library for Java featuring N-dimensional arrays
Branch: develop
Clone or download
Type Name Latest commit message Commit time
Failed to load latest commit information.
src Minor refactoring Feb 8, 2019
.gitignore Ignore dlls Apr 1, 2016
.travis.yml Remove oraclejdk7 from travis config Sep 2, 2017 add dependencies check Feb 14, 2015
lgpl-3.0.txt Add LGPL Apr 1, 2013
pom.xml Update edn-java dependency Feb 8, 2019

Vectorz Logo

Fast double-precision vector and matrix maths library for Java, based around the concept of N-dimensional arrays.

This library is designed for use in games, simulations, raytracers, machine learning etc. where fast vector maths is important.

Some highlights:

  • Vectorz can do over 1 billion 3D vector operations per second on a single thread.
  • Specialised matrix types for efficient optimised operations (identity, diagonal, sparse etc.).
  • Support for arbitrary n-dimensional numerical arrays.


Vectorz is reasonably mature, battle tested and being used in production applications. The API is still evolving however as new features get added so you can expect a few minor changes, at least until version 1.0.0

Build Status Dependency Status


See the Vectorz Wiki

Example usage

    Vector3 v=Vector3.of(1.0,2.0,3.0);		
    v.normalise();                       // normalise v to a unit vector
    Vector3 d=Vector3.of(10.0,0.0,0.0);		
    d.addMultiple(v, 5.0);               // d = d + (v * 5)
	Matrix33 m=Matrixx.createXAxisRotationMatrix(Math.PI);
	Vector3 rotated=m.transform(d);      // rotate 180 degrees around x axis	    

Key features

  • Supports double typed vectors of arbitrary size
  • Both mutable and immutable vectors are supported, enabling high performance algorithms
  • Support for any size matrices, including higher dimensional (NDArray) matrices
  • Ability to create lightweight view vectors (e.g. to access subranges of other vectors)
  • Library of useful mathematical functions on vectors
  • Vectors have lots of utility functionality implemented - Cloneable, Serializable, Comparable etc.
  • Various specialised types of vectors/matrices types (e.g. identity matrices, diagonal matrices)
  • Support for affine and other matrix transformations
  • sparse arrays for space efficient large vectors and matrices where most elements are zero
  • Operator system provides composable operators that can be applied to array elements
  • Input / output of vectors and matrices - in various formats including readable edn format

Vectorz is designed to allow the maximum performance possible for vector maths on the JVM.

This focus has driven a number of important design decisions:

  • Support for sparse vectors and other specialised array types
  • Specialised primitive-backed small vectors (1,2,3 and 4 dimensions) and matrices (1x1, 2x2, 3x3 and M*3)
  • Abstract base classes preferred over interfaces to allow more efficient method dispatch
  • Multiple types of vector are provided for optimised performance in special cases
  • Hard-coded fast paths for most common 2D and 3D operations
  • Vector operations are generally not thread safe, by design
  • Concrete classes are generally final

If you have a use case that isn't yet well optimised then please post an issue - the aim is to make all common operations as efficient as possible.