
SigPy for MRI Tutorial Part 1: Gridding
Reconstruction
Welcome!

In this notebook, we will go through basic features of SigPy using the gridding reconstruction as an example
usage. Gridding is a core operation in non-Cartesian MRI, but still can be a computational bottleneck in many
applications. We will show how SigPy can easily change parameters and computing devices to speed things up.

Before moving on to the tutorial, we want to point out our documentation (https://sigpy.readthedocs.io) if you
want to find out more information about each function.

Setup
If you haven't installed SigPy already, please follow the installation instructions
(https://sigpy.readthedocs.io/en/latest/index.html#installation), and come back to this tutorial after.

SigPy is designed to use along with NumPy. In particular, SigPy operates on NumPy arrays directly, and relies
on NumPy to provide basic data manipulation functions. Almost aways, we will import NumPy along with SigPy.

We will also import the sigpy.plot (https://sigpy.readthedocs.io/en/latest/plot.html) sub-module for plotting. The
module provides convenient plotting functions for multi-dimensional arrays. Only hot-keys are needed for
controlling the plots. We will use them to show images, but will not focus on them in this tutorial.

Finally, the %matplotlib notebook  magic allows us to get interactive plots in jupyter notebooks.

In [1]:

We will use a non-Cartesian dataset created by Prof. Martin Uecker for the ISMRM reproducible challenge
(https://blog.ismrm.org/2019/04/02/ismrm-reproducible-research-study-group-2019-reproduce-a-seminal-paper-
initiative/). The dataset contains k-space measurements of a brain scan acquired with a projection
reconstruction trajectory. We have re-saved the dataset in NumPy data format. Let us load the dataset and look
at the array shapes.

In [2]:

k-space array shape: (12, 96, 512)

coordinate array shape: (96, 512, 2)


%matplotlib notebook
import numpy as np
import sigpy as sp
import sigpy.plot as pl
from sigpy import fourier
import sigpy.mri as mr

ksp = np.load('data/projection_ksp.npy')
coord = np.load('data/projection_coord.npy')

print('k-space array shape: {}'.format(ksp.shape))
print('coordinate array shape: {}'.format(coord.shape))

https://sigpy.readthedocs.io/
https://sigpy.readthedocs.io/en/latest/index.html#installation
https://sigpy.readthedocs.io/en/latest/plot.html
https://blog.ismrm.org/2019/04/02/ismrm-reproducible-research-study-group-2019-reproduce-a-seminal-paper-initiative/


First, a few words about array shapes. Because NumPy by default stores arrays by row-major, the array shapes
are flipped compared to what you would expect in Matlab or Fortran, which uses column-major. The k-space
array has its shape arranged as number of coil channels, number of repetitions, and number of readout points.
The coordinate array has its shape arranged as number of repetitions, number of readout points and number of
dimensions. In this case, you can see this is a 2D dataset, because the last dimension of coord  is 2.

Gridding Reconstruction
In gridding reconstruction, we approximate the inverse Fourier transform by a element-wise multiplication
operation to compensate for density, followed by the non-uniform fast Fourier transform (NUFFT) adjoint
operation.

First, we will need the density compensation factor ( dcf ). For the projection reconstruction trajectory, it is
proportional to the radius of the k-space coordinates.

Let us compute the density compensation factor and visualize it with the function ScatterPlot
(https://sigpy.readthedocs.io/en/latest/generated/sigpy.plot.ScatterPlot.html#sigpy.plot.ScatterPlot):

In [3]:

To perform a gridding reconstruction, we simply call nufft_adjoint
(https://sigpy.readthedocs.io/en/latest/generated/sigpy.nufft_adjoint.html#sigpy.nufft_adjoint) on the density
compensated k-space ksp * dcf . The function will loop through the coil dimension. This is inferred by the

Out[3]:

<sigpy.plot.ScatterPlot at 0x12577caf7f0>

dcf = (coord[..., 0]**2 + coord[..., 1]**2)**0.5
pl.ScatterPlot(coord, dcf, title='Density compensation')

https://sigpy.readthedocs.io/en/latest/generated/sigpy.plot.ScatterPlot.html#sigpy.plot.ScatterPlot
https://sigpy.readthedocs.io/en/latest/generated/sigpy.nufft_adjoint.html#sigpy.nufft_adjoint


difference between the coordinate array and k-space array dimensions. Applying the function gives us the
gridded multi-channel images:

In [4]:

We will combine the coil images by performing root-sum-of-squares along the coil dimension. This can be easily
done using NumPy functions:

Out[4]:

<sigpy.plot.ImagePlot at 0x125017f3b80>

img_grid = sp.nufft_adjoint(ksp * dcf, coord)
pl.ImagePlot(img_grid, z=0, title='Multi-channel Gridding')



In [5]:

The gridding reconstruction isn't too slow, but perhaps we might want it to be faster when we have a stack of
images. One way we can make the reconstruction faster is tuning the oversampling ratio oversamp  and kernel
widths width  of nufft_adjoint
(https://sigpy.readthedocs.io/en/latest/generated/sigpy.nufft_adjoint.html#sigpy.nufft_adjoint).

Out[5]:

<sigpy.plot.ImagePlot at 0x12502a14c40>

img_rss = np.sum(np.abs(img_grid)**2, axis=0)**0.5
pl.ImagePlot(img_rss, title='Root-sum-of-squares Gridding')

https://sigpy.readthedocs.io/en/latest/generated/sigpy.nufft_adjoint.html#sigpy.nufft_adjoint


We will prepend the magic command % time  to the nufft_adjoint call to time it. Feel free to change the nufft
parameters and see how they affect the run-time and artifacts!

In [6]:

Wall time: 72.8 ms


Out[6]:

<sigpy.plot.ImagePlot at 0x125021a52e0>

%time img_grid_tune = sp.nufft_adjoint(ksp * dcf, coord, oversamp=1, width=2)

img_rss_tune = np.sum(np.abs(img_grid_tune)**2, axis=0)**0.5
pl.ImagePlot(img_rss_tune, title='Root-sum-of-squares Gridding with Tuned Parameters')



In [7]:

A Jupyter widget could not be displayed because the widget state could not be found. This
could happen if the kernel storing the widget is no longer available, or if the widget state was
not saved in the notebook. You may be able to create the widget by running the appropriate
cells.

Out[7]:

ksp_grid = fourier.fft(img_grid_tune, axes=(-2,-1) )

mps = mr.app.EspiritCalib(ksp_grid).run()

pl.ImagePlot(mps, z=0, title='Sensitivity Maps Estimated by ESPIRiT')



In [8]:

As you can see, smaller oversampling ratio and kernel width cause artifacts near the image boundaries. But
because the image is occupying a slightly smaller field-of-view, these artifacts may be fine if we only care about
the brain.

Gridding Reconstruction on GPU

<sigpy.plot.ImagePlot at 0x1250635fc40>

A Jupyter widget could not be displayed because the widget state could not be found. This
could happen if the kernel storing the widget is no longer available, or if the widget state was
not saved in the notebook. You may be able to create the widget by running the appropriate
cells.

A Jupyter widget could not be displayed because the widget state could not be found. This
could happen if the kernel storing the widget is no longer available, or if the widget state was
not saved in the notebook. You may be able to create the widget by running the appropriate
cells.

Out[8]:

<sigpy.plot.ImagePlot at 0x12506439e50>

lamda = 0.005
img_tv = mr.app.TotalVariationRecon(ksp * dcf, mps, lamda, coord=coord).run()

pl.ImagePlot(img_tv, title='Total Variation Regularized Reconstruction')



A main feature of SigPy is that most functions can run on both CPU and GPU with the same interface. To run 
nufft_adjoint  on GPU, all we have to do is to move the arrays to a GPU device, and wrap the function with a

SigPy GPU device context. If you have some experience with Tensorflow or Pytorch, this is similar to how they
specify computing devices as well.

The following shows a conceptual illustration of running operations on GPU 1 when you have two GPUs. Each
device is numbered, with -1 reserved for CPU.

In order to run the following code, you will need to have a GPU, and install the package cupy
(https://cupy.chainer.org). We will use GPU 0. Try adding %time  to time the speedup.

https://cupy.chainer.org/


In [9]:

Similar to using NumPy for the root-sum-of-squares operation, we use CuPy for GPU operations. CuPy is
essentialy NumPy for GPU, with the same syntax. We will import the library, and perform root-sum-of-squares.

Out[9]:

<sigpy.plot.ImagePlot at 0x125046399a0>

device = sp.Device(0)

ksp_gpu = sp.to_device(ksp, device=device)
coord_gpu = sp.to_device(coord, device=device)
dcf_gpu = sp.to_device(dcf, device=device)

with device:
    img_grid_gpu = sp.nufft_adjoint(ksp_gpu * dcf_gpu, coord_gpu)

pl.ImagePlot(img_grid_gpu, z=0, title='GPU Multi-channel Gridding')



In [10]:

And that's it! This is how you can use SigPy for gridding reconstruction on CPU and GPU. There are also many
other signal processing functions (https://sigpy.readthedocs.io/en/latest/core.html), such as fft , 
array_to_blocks  and convolve , that you may find useful for processing MRI datasets. They are all run on

CPU and GPU.

Out[10]:

<sigpy.plot.ImagePlot at 0x1250635fc10>

import cupy as cp
with device:
    img_rss_gpu = cp.sum(cp.abs(img_grid_gpu)**2, axis=0)**0.5

pl.ImagePlot(img_rss_gpu, title='GPU Root-sum-of-squares Gridding')

https://sigpy.readthedocs.io/en/latest/core.html


For MRI iterative reconstructions, SigPy provides many pre-built reconstruction App
(https://sigpy.readthedocs.io/en/latest/generated/sigpy.app.App.html#sigpy.app.App)s so that you don't have to
start from scratch. Please check out part 2 (02-parallel-imaging-compressed-sensing-reconstruction.ipynb) of
the tutorial to find out more.

https://sigpy.readthedocs.io/en/latest/generated/sigpy.app.App.html#sigpy.app.App
http://localhost:8888/notebooks/02-parallel-imaging-compressed-sensing-reconstruction.ipynb

