-
Notifications
You must be signed in to change notification settings - Fork 2
/
delaunay.js
246 lines (228 loc) · 6.3 KB
/
delaunay.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"use strict"
var iota = require("iota-array")
var orientation = require("robust-orientation")
var pointInSimplex = require("robust-point-in-simplex")
var inSphere = require("robust-in-sphere")
module.exports = createDelaunayTriangulation
function Simplex(triangulation, vertices, children, next, prev) {
this.triangulation = triangulation
this.vertices = vertices
this.children = children
this.next = next
this.prev = prev
}
var proto = Simplex.prototype
proto.insert = function(p) {
if(this.children) {
for(var i=0; i<this.children.length; ++i) {
if(this.children[i].contains(this.triangulation.points[p])) {
this.children[i].insert(p)
}
}
} else {
//Unlink from list
this.prev.next = this.next
this.next.prev = this.prev
this.next = this.prev = null
//Add child
this.children = []
for(var i=this.vertices.length-1; i>=0; --i) {
//Remove from dual
var v = this.vertices[i]
var d = this.triangulation._dual[v]
for(var j=d.length-1; j>=0; --j) {
if(d[j] === this) {
d[j] = d[d.length-1]
d.pop()
break
}
}
//Add child
var nv = this.vertices.slice()
nv[i] = p
var child = new Simplex(this.triangulation, nv, null, this.triangulation.next, this.triangulation)
if(!child.degenerate()) {
this.children.push(child)
this.triangulation.next.prev = child
this.triangulation.next = child
for(var j=0; j<nv.length; ++j) {
this.triangulation._dual[nv[j]].push(child)
}
}
}
}
}
proto.contains = function(p) {
var pointList = new Array(this.vertices.length)
for(var i=0; i<this.vertices.length; ++i) {
pointList[i] = this.triangulation.points[this.vertices[i]]
}
return pointInSimplex(pointList, p) >= 0
}
proto.degenerate = function() {
var pointList = new Array(this.vertices.length)
for(var i=0; i<this.vertices.length; ++i) {
pointList[i] = this.triangulation.points[this.vertices[i]]
}
return orientation.apply(undefined, pointList) === 0
}
function DelaunayTriangulation(points, dual, root) {
this.points = points
this._dual = dual
this._root = root
this.next = this
this.prev = this
}
var dproto = DelaunayTriangulation.prototype
dproto.dual = function(v) {
var d = this._dual[v]
var r = []
for(var i=0; i<d.length; ++i) {
r.push(d[i].vertices)
}
return r
}
function removeFromDual(triangulation, simplex) {
for(var i=0; i<simplex.vertices.length; ++i) {
var d = triangulation._dual[simplex.vertices[i]]
for(var j=0; j<d.length; ++j) {
if(d[j] === simplex) {
d[j] = d[d.length-1]
d.pop()
break
}
}
}
}
dproto.insert = function(p) {
var v = this.points.length
this.points.push(p)
this._dual.push([])
this._root.insert(v)
//Fix up delaunay condition
var to_visit = this._dual[v].slice()
while(to_visit.length > 0) {
var c = to_visit[to_visit.length-1]
to_visit.pop()
if(c.children) {
continue
}
//Get opposite simplex
var points = new Array(c.vertices.length+1)
var v_sum = 0
for(var i=0; i<c.vertices.length; ++i) {
points[i] = this.points[c.vertices[i]]
v_sum ^= c.vertices[i]
}
//Walk over simplex vertices
var i = c.vertices.indexOf(v)
var d = this._dual[c.vertices[(i+1)%c.vertices.length]]
var opposite
var opposite_index
search_opposite:
for(var j=0; j<d.length; ++j) {
opposite = d[j]
if(opposite === c) {
continue
}
opposite_index = v_sum ^ v
for(var k=0; k<opposite.vertices.length; ++k) {
opposite_index ^= opposite.vertices[k]
if(c.vertices[k] !== v && opposite.vertices.indexOf(c.vertices[k]) < 0) {
continue search_opposite
}
}
//Check if legal
points[c.vertices.length] = this.points[opposite_index]
var s = inSphere.apply(undefined, points)
if(s > 0) {
//TODO: Test if flip is valid
//Unlink cells
removeFromDual(this, c)
c.children = []
c.next.prev = c.prev
c.prev.next = c.next
c.next = c.prev = null
removeFromDual(this, opposite)
opposite.children = []
opposite.next.prev = opposite.prev
opposite.prev.next = opposite.next
opposite.next = opposite.prev = null
for(var k=0; k<c.vertices.length; ++k) {
if(c.vertices[k] === v) {
continue
}
var nv = c.vertices.slice()
nv[k] = opposite_index
//Create and link cell
var nchild = new Simplex(this, nv, null, this.next, this)
this.next.prev = nchild
this.next = nchild
for(var l=0; l<nv.length; ++l) {
this._dual[nv[l]].push(nchild)
}
//Add to child pointers
c.children.push(nchild)
opposite.children.push(nchild)
//Mark to visit
to_visit.push(nchild)
}
}
}
}
}
dproto.locate = function(p) {
var c = this._root
while(c.children) {
for(var i=0; i<c.children.length; ++i) {
if(c.children[i].contains(p)) {
c = c.children[i]
break
}
}
}
return c.vertices
}
Object.defineProperty(dproto, "cells", {
get: function() {
var r = []
for(var cur=this.next; cur !== this; cur = cur.next) {
r.push(cur.vertices)
}
return r
}
})
function createBoundingSimplex(dimension) {
var result = new Array(dimension+1)
for(var i=0; i<=dimension; ++i) {
result[i] = new Array(dimension)
}
for(var i=1; i<=dimension; ++i) {
result[i][i-1] = 10
for(var j=0; j<i-1; ++j) {
result[i][j] = 0.0
}
for(var j=0; j<i; ++j) {
result[j][i-1] = -10
}
}
return result
}
function createDelaunayTriangulation(dimension, points) {
var bounds = createBoundingSimplex(dimension)
var root = new Simplex(null, iota(dimension+1), null, null, null)
var dual = new Array(dimension+1)
for(var i=0; i<dual.length; ++i) {
dual[i] = [root]
}
var triangulation = new DelaunayTriangulation(bounds, dual, root)
root.triangulation = triangulation
root.next = root.prev = triangulation
triangulation.next = triangulation.prev = root
if(points) {
for(var i=0; i<points.length; ++i) {
triangulation.insert(points[i])
}
}
return triangulation
}