Skip to content
杭电 MIL 机器学习暑期研讨班
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
Week_1
Week_2
Week_3
Week_4
Week_6
Week_7
Week_8
.gitignore
2017-09-22.md
2017.9.7_目标跟踪报告_已更新.pptx
Deep_Learning_Papers.pdf
IQA_PQA_BQA_applications_FeiGao.pdf
README.md
kuang_3D_Shape_Representation.pdf

README.md

MIL 机器学习暑期研讨班(2017)

研讨班技术报告总安排

  • 内容
    • 8月23日(周三):罗宇矗,强化学习入门 [intro]

    • 8月28日(周一):罗宇矗,深度强化学习简介 [intro]

    • 8月29日(周二):高飞,图像质量评价及应用 [slides]

    • 8月30日(周三):谭敏,基于点击数据的图像识别

    • 8月31日(周四):余宙,现代 CNN 网络结构演化 [slides]

    • 9月05日(周二):余宙,视觉内容自动问答 VQA

    • 9月06日(周三):匡振中,三维形状表达及其应用 [slides]

    • 9月07日(周四):朱素果,视觉跟踪方法研究 [slides]

  • 地点:东区会议室
  • 时间:9:00-11:30
  • 安排:(45min 讲解 + 讨论 + 5min 休息) * 3
  • 部分报告内容因涉及一些未发表和计划中的工作没有公开,感兴趣的同学可以与相关老师邮件联系(邮箱地址在老师个人主页),参与实验室相关科研项目。(加入 CAMA-LAB

整体内容安排

机器学习

第一周:热身 (7 月 17 日 - 7 月 22 日)

  • Python 编程基础
  • 图像表示:
    • 矩阵、颜色空间
    • 图像特征:像素值、颜色直方图、梯度直方图、LBP
    • 作业:图像读写、特征提取
  • 回归:
    • 算法:线性回归,线性回归+正则项(L1, L2)
    • 优化:梯度下降法
    • 测度:欧式距离、街区距离、范数、Loss
    • 作业:波士顿房价预测

第二周:分类 (7 月 24 日 - 7 月 29 日)

  • 算法:k-NN, Logistic Regression, 决策树
  • 作业:
    • MNIST 手写数字识别、CIFAR-10 图像分类
    • 采用第一周的特征 + 第二周的方法(多种组合,对比结果)
    • 井字棋胜负判断 (需动手实现 ID3 决策树算法)

第三周:经典算法 (8 月 1 日 - 8 月 5 日)

  • 支撑向量机
    • 推荐博文:SVM《理解SVM的三层境界》
  • 图像特征:SIFT, Visual BoW
  • 作业:井字棋胜负判断 (允许使用 scikit-learn 等 Package)

第四周:无监督学习(Unsupervised Feature Learning, Manifold Learning) (8 月 7 日 - 8 月 12 日)

  • Andrew Ng 论文
  • 聚类:K-means, K-means++
  • 降维:PCA, ICA, ZCA, LLE, AE
  • 作业:客户聚类
  • 推荐阅读:pluskid 博客

扩展:

  • 经典方法:谱聚类、朴素贝叶斯、EM算法、稀疏编码 Sparse Coding
  • 集成学习:Adaboost, Random Forest, gdbt (XGBoost)
  • 结构化学习 Structured Learning
  • 排序学习 Learning to Rank
  • 强化学习 Reinforcement Learning
  • 模仿学习 Imitation Learning

深度学习

第六周:神经网络 DNN&CNN (8 月 21 日 - 8 月 26 日)

  • 概念:卷积, Pooling, Stride, Padding, Data Augmentation, Learning Rate, Momentum, Softmax, ReLU, BP, SGD, Cross-Entropy Loss
  • 网络:LeNet, AlexNet, VGGnet, GoogLeNet, ResNet
  • 框架:Keras
  • 作业:mnist 数字序列识别

第七周:神经网络提升 (8 月 28 日 - 9 月 2 日)

第八周:递归神经网络(9 月 4 日 - 9 月 8 日)

  • 网络:RNN, LSTM
  • 作业:Image Captioning,使用框架实现

扩展:

毕业名单

  • Exceptional Performance
    • 研究生:方振影、李敬、周剑
    • 本科15:罗同桉、章天浩、连以宁、杨炳彦
  • Outstanding Performance
    • 研究生:宋怡君、张鑫、王贵军、朱静洁、徐兴歆、宫晓伟、黄菲
    • 本科15:叶家豪、于俊泽、方楠、唐柳、王鹏潇、沈亦韬、盛雷
    • 本科16:曹骁威
  • Good Performance
    • 本科15:胡启韬、侯自愿、王子奇、王振哲、荆星阳
    • 本科16:朱捷咏、赵文波、石平河

主要人员

教师 - - - - -
俞俊 高飞 谭敏 余宙 朱素果 匡振中
助教
罗宇矗 钱哲琦 朱朝阳 项晨钞 施圣洁 张海超
孟宣彤 郑光剑 吴炜晨

介绍

  • 面向对象:准研一学生 + 大一、大二本科生
  • 场地:杭电东校区
  • 时间:7月17号-9月15号 (工作日:8:00-17:30)
  • 内容
    • 机器学习/深度学习 + 计算机视觉应用
    • 课题/项目:选择部分学生,参与老师的研究课题/项目
  • 形式
    • 每周
      • 老师指定学习内容,并进行部分讲解
      • 学生自学为主,鼓励自由讨论
      • 定期开会讨论
      • 提交技术报告(算法思想、编程实现、实验结果及分析)
    • 暑期结束
      • 提交大报告、项目总结
      • 选择部分学生,在 2017-18 学年持续参与老师课题
  • 讨论方式
    • 线下:东区和老师、研究生学长交流
    • 线上:Twist 为主,QQ 群为辅
  • 高强度、严要求、安全第一
  • 关于作业
    • 每周一会对上周的作业进行讲解
      • 讲解幻灯片和相关资料会上传到 Github
    • 每周三会发布一份上周作业的标准答案
      • 标准答案会发布到 Twist 上
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.