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SUMMARY 
It is shown that a pole problem may arise from the use of a reduced Gaussian grid in the spectral transform 

method on the sphere. The problem is related to an asymptotic property of the associated Legendre functions 
and can be solved by slightly increasing the number of points close to the pole. 

It is also shown that the reduced grid controls aliasing arising from quadratic terms only as an asymptotic 
property. Nevertheless, a small increase in the number of points (everywhere) is enough to reduce the aliasing 
to a negligible level. 

1. INTRODUC~ION 
Hortal and Simmons (1991) have succeeded in using a reduced Gaussian grid in a 

shallow-water model and in the primitive-equation model of the European Centre for 
Medium-range Weather Forecasts (ECMWF). Tests were carried out with Eulerian and 
semi-Lagrangian advection schemes which demonstrated the ability of the reduced grid 
to give forecasts that were very similar to those with the full grid, but with a substantial 
saving in cost. 

In the course of the validation which preceded the introduction of the current 
operational model at ECMWF (‘I213 spectral truncation), Hortal (1991) and Simmons 
(1991) noted the presence of noise close to the pole which could be largely removed by 
using the ‘fully reduced grid’ instead of the ‘fully reduced model’ (Hortal and Simmons 
(1991) terminology). The ‘fully reduced grid’ and the ‘fully reduced model’ have the 
same collocation grid. However, if NLNk is the number of points at a given latitude row 
of co-latitude t?k, and if NLON is the number of points at the equator, then in the fully 
reduced model f(NLNk - 1) Fourier wave numbers are kept, whereas min{)(NLON - l ) ,  
(*NLNk - 1)) are kept in the fully reduced grid version. This, however, is not enough, 
and the number of points of the three latitude rows closest to the pole have been increased 
from 6, 12 and 18 to 12, 16 and 20. Furthermore, in the Eulerian version of the model 
the noise accompanied the (u, o) formulation of the model and not the vorticity- 
divergence formulation. 

Figure 1 shows the 300 hPa vorticity field of the noisy 72-hour forecast referred to 
by Simmons (1991) and Hortal(l991) using the fully reduced model. At both the northern 
and southern poles, the field is noisy. The difference with the noise-free forecast obtained 
using the fully reduced grid and with an increased number of points close to the pole is 
depicted in Fig. 2. 

Hortal and Simmons (1991) determined the number of points Nk of a given latitude 
row of co-latitude 8, by requiring the distance between two adjacent points on this row 
of latitude to be the largest possible, fulfilling the constraints imposed by the fast Fourier 
transform (FIT), but smaller than the distance apart of two adjacent points at the 
equator. We have thus NLNk 2 NLON sin 6,. In the following we shall call the grid 
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Figure 1. 300 Ma vorticity field of a 72-hour forecast obtained using the fully reduced model (T213 L31, semi- 
Lagrandan). Initial date: 15 January 1991, 12 UTC. Top: northern pole area. Bottom: southern pole area; 

isoline: 1 x 10-%-l. (Courtesy of Adrian Simmons.) 
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Figure 2. Same as Fig. 1 but for the difference: rully reduced model - fully reduced grid; isoline: 1 x lo-%-'. 
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which has NLONsin 6, points the ‘geometric reduced grid’. Note that the term ‘geo- 
metric-reduced grid’ is only a theoretical concept and, in particular, that it has a non- 
integer number of points. On a given latitude row Hortal and Simmons (1991) then used 
a number of points which was the first number larger than the geometric-reduced grid 
and which fulfilled the constraints arising from the FFTs. 

Jarraud and Simmons (1983) simulated the effect of a reduced grid by resetting to 
zero those values of the associated Legendre function which were below a given threshold, 
E. They did this in a model using a full grid, but this is equivalent to neglecting, in the 
Gaussian quadrature, the wavenumber rn greater than a certain value depending on the 
latitude row. This did not exactly mimic a reduced grid in that no aliasing errors may be 
introduced in the east-west direction in the Fourier transforms, nevertheless it was 
considered successful as a feasibility study. 

These two approaches rely on different intuitive ideas: in the first, one seeks a quasi- 
homogeneous grid (the argument is geometric), whereas in the second, one neglects 
small contributions (it relies on spherical harmonic properties). We shall refer to the E- 

reduced grid as that reduced grid which is obtained using the following procedure. For 
a given row of latitude, we first identify the associated Legendre functions whose absolute 
value is greater than E, and consider mmax the maximum value of rn thus obtained. The 
number of points of the &-reduced grid is then, in the case of the linear grid, the lesser 
of (2rn,, + 1) and the number of points of the full grid, and in the case of the alias-free 
grid is the lesser of (3mm, + 1) and the number of points of the full grid (Bourke 1972). 

The purpose of this paper is first to suggest a possible reason why Hortal(l991) and 
Simmons (1991) had to use more points close to the pole, highlighting a weakness of the 
geometric-reduced grid close to the pole, and secondly to establish the convergence of 
the &-reduced grid to the geometric-reduced grid at a given latitude and for large total 
wavenumbers, n. 

2. THE PROBLEM CLOSE TO THE POLE 

In Fig. 3 is shown the maximum, over a total wavenumber n, of the orthogonality 
error of the associated Legendre functions of given zonal wavenumber rn where the 
Gaussian quadrature is performed neglecting those latitude rows closer to the pole than 
a given latitude row (ordinate). This orthogonality is computed within a T106 truncation 
and for a Gaussian quadrature of 80 points in a hemisphere, which is the number usually 
used for a T106 model. The scale is logarithmic which means that the -4  isoline 
corresponds to an error of 

We are thus introducing another concept which we shall call an d-reduced grid. If 
we introduce the term rn,(O,) as the smallest wavenumber that is discarded for a given 
latitude row of co-latitude ek, and the term O,(rn) as the co-latitude of the closest latitude 
row from the equator which is discarded for a given zonal wavenumber (because the 
associated Legendre functions ~ ( C O S  6 )  decrease towards zero approaching the pole 
there is clearly a one-to-one relationship between mS(&) and O,(m)), then the &-reduced 
grid and the &’-reduced grid differ in the choice of criteria. In the &-reduced grid the 
reliance is on the value of the Legendre polynomial, whereas in the d-reduced grid it is 
on their orthogonality. 

&-reduced grid: 

For a given wavenumber rn we have 
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Figure 3. Logarithm of the error of the orthogonality within a T106 truncation of the associated Legendre 
functions of a given zonal wavenumber rn (abscissa) and of the total wavenumber varying from rn to 106 when 
the Gaussian quadrature is performed neglecting the latitude rows closer to the pole than a given latitude row 
(ordinate). The bottom left insert is an enlargement of the pole area. See text for the solid and dashed curve. 

d-reduced grid: 

maxl C ~ ( C O S  e,)e(cos e,)w(e,) I c E' (2) 
n,n' eks%s  

where w( 0,) denotes the Gaussian weight. 
The spectral technique is a Galerkin method (Dautray and Lions 1985) in which the 

basic functions are orthogonal. It is possible to implement a Galerkin method with non- 
orthogonal basic functions (like finite elements) but then it is essential to account for the 
mass matrix which consists of the scalar product of the basic functions. This is the reason 
for using the d-reduced grid for practical purposes, since the mass matrix differs from 
the unit matrix by values of, at most, E' .  There is some arbitrariness concerning the 
maximum of the orthogonality error (which is associated with an L" norm) and one might 
have considered an L2 norm where the sum of the square of the error is considered 
instead of the maximum. However, we preferred the L" norm since it is more sensitive 
to outliers than the Lz norm. Furthermore, in grid-point space the pole problem is 
concentrated in a localized geographical arec, as it is to some extent in spectral space, 
as we shall see later. In Appendix 1, we show that E' should vary as n-l so as to keep 
the error introduced in the Galerkin formulation below a given threshold, 

A theoretical analysis of the &'-reduced grid is, however, difficult since it involves 
integrals computed using discrete sums, whereas the &-reduced grid involves only associ- 
ated Legendre function values. A notable and easy particular case is when only the first 
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latitude row is discarded in the &‘-reduced grid. Results of convergence or non-con- 
vergence of the &-reduced grid do not imply that they are valid for the &’-reduced grid. 
Nevertheless, we shall see that, in the range 21 to 213, the behaviour of the &’-reduced 
grid is similar in practice to the theoretical results obtained for the &-reduced grid. 

The thick line of Fig. 3 corresponds to the number of points NLNk proposed by 
Hortal and Simmons (1991) with the previously mentioned increase close to the pole. 
One immediately notices that there is a problem close to the pole (from latitude row 1 
to 13). The maximum error reaches which is confirmed by looking at the error 
obtained for meteorological fields, going from spectral space to the reduced grid and 
then back again to spectral space (as we shall discuss in the conclusion). The change 
made by Hortal (1991) and Simmons (1991), namely, going from 6, 12, 18 to 12, 16,20 
at rows 1, 2 and 3, had the effect of going from an error of lo-’ to one of 

It is easy to generate the grid which will preserve an orthogonality within lo-”, by 
increasing when necessary the number of points to more than NLN,, while fulfilling the 
FFT constraints. This corresponds to the dotted line in Fig. 3. One may notice that, after 
wavenumber 50, the error is far above the -12 isoline. This arises from the fact that the 
grid used by Simmons (1991) and Hortal (1991) is constrained by an alias-free property. 
Bearing this in mind, we therefore do not propose to decrease the number of points after 
wavenumber 50; the issue here is to increase the grid so as to have the mass matrix 
differing from unity by less than E. A threshold of lo-’’ is chosen since it corresponds to 
the order of magnitude of the error, when using the full grid, due to the roundoff errors 
in the computation of the Legendre transforms done on a 64-bit arithmetic machine. In 
Table 1 we present the number of points obtained which should be compared with the 
values originally proposed by Simmons (1991) and Hortal (1991). 

TABLE 1. NUMBER OF POINTS CLOSE TO THE POLE OF THE REDUCED GRID OF A “106 MODEL 
~~ 

Number of points necessary for Number of points proposed by 
Latitude row an orthogonality of Hortal (1991) and Simmons (1991) 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 

18 
25 
36 
40 
45 
54 
60 
64 
72 
72 
75 
81 
90 
90 

12 
16 
20 
24 
30 
36 
45 
50 
60 
64 
72 
75 
80 
90 

Figures 4 and 5 are the same as Fig. 3 but for a ‘I213 and a T42 truncation, 
respectively. It is worth noticing that the amplitude of the pole problem is very similar 
in each case and for almost the same number of rows of latitude (which are obviously at 
a different geographical latitude): 13 at truncation 42 and 106, 16 at truncation 213. 

Such a weak dependency on truncation suggests that the effect may be related to an 
asymptotic property of the associated Legendre functions close to the pole singularity. 
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Figure 4. Same as Fig. 2 but for a T213 truncation. 
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Figure 5. Same as Fig. 1 but for II T42 truncation. 
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In Appendix 2, the following asymptotic result is demonstrated. For a given k (row 
of latitude index of the Gaussian grid, k = 1 is the closest to the pole) and for a given 
zonal wavenumber, m, 

where 
~ ( C O S  e,) = (2n)@{~,,,(x,) + ~ ( n - l ) }  (3) 

I,,, is the Bessel function of the first kind and 6, is the co-latitude of the kth latitude row 
of the Gaussian grid. It tends towards the northern pole as n tends toward infinity. (Only 
the northern pole is considered; the behaviour at the southern pole follows from the 
symmetry properties of the associated Legendre functions). Here we are considering the 
Gaussian grid of a T,, model which has a number N of latitude rows large enough to 
prevent the aliasing errors arising from the quadratic terms (Bourke 1972). 

n = I n t ( 7 )  2N-  1 

where ‘Int’ stands for ‘the integer part of. 
For the first latitude row (k = 1) of the T,, grid we have 

~ ( C O S  el)  = (2n)W,,,(xl) 
with x1 = 1.6. 

As J,,,(1.6) decreases by an order of magnitude as m varies from 8 to 9, and as (2n)G 
increases only slowly (9 at T42, 14.6 at T106 and 20 at “213), the number of points 
necessary on the first row of latitude remains the same for these three truncations in an 
€-grid (with E = say). This is compatible with what is obtained for the &’-grid, as 
can be seen in Figs. 3, 4 and 5 where the wavenumber m for the first latitude row has 
the values 8, 8 and 9, respectively (for truncation 106, 213 and 42), which corresponds 
to 18,18 and 20 points. Another interesting feature is that the number of points necessary 
on the first row of latitude for the &-grid will increase toward infinity as n tends to infinity. 
For any given m, there exists some n such that e(cos 6,) is greater than any given 
positive real number. However, the increase of m (and thus of the number 2m + 1 of 
points necessary to keep e(cos 0,) below a given threshold, e.g. depends on the 
variation of Jm(el) as a function of m. In the vicinity of m = 8 ,Jm decreases by one order 
of magnitude for each increase of m by 1 unit; as a consequence, m would then 
increase as 4 loglo n. In contrast, the number of points of the geometric reduced grid is 
asymptotically constant and equal to 2xk (3.2 at the first latitude row). 

We have shown that the number of points necessary on the first row of latitude of 
the &-grid was increasing slowly. One should notice that we have established a necessary 
condition only for the &-grid: it must have more than the number of points discussed 
above. That is not a sufficient condition since we have not shown that, for all m larger 
than, say 8, the associated Legendre functions are smaller than E. 

Let us apply the asymptotic result to the first latitude row of the &’-reduced grid. 
Combining (2) and (3) we get the maximum orthogonality error for n = n’ which behaves 
as n{J,,,(xl)}2w(e1). The Gaussian weights, w(&), are given by 

where N = 1.5n for a Gaussian grid. Differentiating formula (A.2.2) from Appendix 2 
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and combining with the above expression for w(Ok), we find, for small values of k, that 

w(ek)  == {1.5nJ&~~)}~' 
1 

The maximum orthogonality error then becomes 

and decreases as n-'. As a consequence of the decrease of the error, the number of 
points of the d-reduced grid decreases slowly. If we change the criteria with n, as 
suggested in Appendix 1, the decrease as n-l is what is necessary to keep below a 
threshold the errors introduced by the assumption that the mass matrix is equal to its 
inverse. The number of points of this grid then becomes constant asymptotically. 

In the graph presented for the d-reduced grid, one does not see a variation in 
since it is hidden by the large variation of J,(1.6) with rn (one order of magnitude for a 
change in rn of 1). It is worth noticing that the value rn = 8, numerically found at 
truncation 106, is compatible with the above asymptotic formula, since, for rn = 7, the 
formula predicts an error of 1.9 x lo-", and for rn = 8 it predicts 1.9 X The chosen 
threshold is in between. 

3. THE SIMPLE CONVERGENCE OF THE &-REDUCED GRID TO THE GEOMETRIC-REDUCED 
GRID 

In this section we show that, for a given co-latitude 8, the number of points of the 
&-reduced grid converges toward the number of points of the geometric-reduced grid. 
This result is suggested by the behaviour shown in Figs. 3, 4, 5: at T42, T106, T213 the 
latitude rows 4, 10, 25 are at approximately the same co-latitude, 8, and the lo-'* 
isoline is crossed at rn = 18.5, 34, 39, respectively, which increase more slowly than the 
truncation. The corresponding maximum values of rn for the geometric grid are rn = 12, 
31, 62, so it is clear that additional resolution is required by the d-reduced grid at T42 
and marginally still at T106, but not at T213. 

The number of points of the geometric-reduced grid is N L O N  sin 8. Let us denote 
by N L ,  the number of points of the &-reduced grid. By convergence of the &-reduced grid 
towards the geometric-reduced grid, we mean that 

N L ,  lim 
NLON-u N L O N  sin 8 = '* 

As N L ,  and N L O N  sin 8 are related to the maximum wavenumber retained by the same 
proportionality factor, the convergence property may be expressed in terms of maximum 
wavenumber considered for a given co-latitude 8: M, for the &-reduced grid and M sin 8 
for the geometric grid (M being the value at the equator). Furthermore, N L O N  is 
proportional to the truncation n if we consider a Gaussian grid (either linear or alias- 
free for the quadratic terms). The convergence criterion becomes 

ME lim-=l. 
n - w  M sin 8 

If we define @, by M, = M sin Ge, we then have to show that 

lim @, = 8. 
n+ DO 
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In Appendix 3 we show that 
lim C(cos8)=0 forall@>8. 

Furthermore, we show that there is uniform convergence in any interval [tp, n/2] if ly > 8. 
This may be expressed in the following way: For all E greater than zero and all ly greater 
than 8 there exists some q, such that for all n greater than q, and all @ greater than ly, 
m = n sin 8 and I C(cos 8) I < E. For a given E, let us apply this result to the case tp = 
8 + E. Then there exists some q, such that for all n greater than q, and all @ greater than 
t), 1 e(cos 8) I < E. This means that @e is necessarily smaller than 8 + E; the convergence 
has thus been demonstrated. 

n+ - 
m=nsin# 

4. NON-LINEAR ALIASING ON THE REDUCED GRID 

The result of the previous sections can be used to study the properties of a grid 
which has 3m + 1 points on each latitudz row, so as to avoid aliasing errors due to the 
quadratic tenns in the equations (Bourke 1972). Figure 6 is the same as Fig. 3, but the 
orthogonality is computed for a T106 truncation with respect to a T212 truncation. The 
thick curve, as in Fig. 3, corresponds to the grid used by Hortal (1991) and Simmons 
(1991). The wavenumber associated with NLN points in an alias-free Fourier transform 
is f(NLN-1) which corresponds to the fully reduced grid. One should note that these 
authors are proposing the fully reduced model in which the number of waves retained is 
min{i(NLN-l), i(NL0N-1)). This means that when i(NLN-1) < f(NL0N-1) they are 

Wave number M 
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incurring more aliasing in the E-W direction in the Fourier transform with less aliasing 
in the N-S direction in the Legendre transform. They have gone from one extreme to 
the other; intermediate solutions might have been better, but this would have required 
a bidimensional analysis. The solid line lies between the - 1 and the -2 isolines most of 
the time, which shows that the aliasing errors reach lo-'. The reduced grid 
compatible with the FITS corresponds to the dotted line. The number of points of this 
grid is 37576, to be compared with the 33766 points corresponding to the thick line. 
This represents an increase of 11%. In Appendix 3, we see that the associated Legendre 
functions converge toward zero exponentially, which implies that the surface in between 
the -12 and the -1 isolines is halved when the resolution is doubled (which is what we 
find in practice). As a consequence, the number of extra points increases linearly with 
n, which shows that the extra cost at T213 is half of what it is at T106. 

as a threshold; this is based on experimentation performed 
at MCtCo-France with an aqua-planet model (El Khatib, personal communication). A 

criterion would be a waste of resources since aliasing from cubic or higher-order 
terms is present anyway. It is likely that a less conservative threshold, such as would 
be a better compromise--cost versus performance. 

Here we proposed 

5.  CONCLUSION 

In Fig. 7 is shown the difference between a vorticity field and what is obtained after 
going 300 times from spectral to grid-point space and back again to spectral space. The 
number 300 has been selected since it is the number of time-steps associated with the 72- 
hour forecast mentioned in the introduction. The original vorticity field corresponds to 
the noise-free field that has been produced by Simmons (1991). The number of points 
in use close to the pole corresponds to the geometric grid: 6, 12 and 18 on the first three 
latitude rows. Some noise is clearly noticeable, which is in agreement with the theoretical 
analysis of section 2. Its magnitude is 2 X lo-%-', which corresponds to a few percent 
of the vorticity field. This, however, is smaller than in Fig. 2 by two orders of magnitude. 
Amplification by means of the dynamics or aliasing errors is thus a necessary aid to get 
from Fig. 7 to Fig. 2. In Fig. 8, as in Fig. 7, is shown what is obtained from using 12, 16 
and 20 points on the first three latitude rows, as proposed by Simmons (1991) and Hortal 
(1991). A noise pattern is still present, which moves equatorwards in agreement with the 
thick line in Fig. 3, where the maximum error is no longer at the first latitude row, but 
at the fourth. The maximum is 3.5 X lO'*s-' and is reduced by two orders of magnitude 
compared to Fig. 7. 

We have checked that the problem is cumulative: the noise obtained going 300 times 
from spectral to grid-point and back again is almost equal to 300 times the noise produced 
going only once from spectral to grid-point and back. In the course of a model integration, 
this acts as a permanent noise generator. 

The increase in the number of points close to the pole, found necessary by Hortal 
(1991) and Simmons (1991), is most likely due to the asymptotic property of the associated 
Legendre functions, the consequence of which is that the &-reduced grid does not converge 
uniformly to the geometric-reduced grid. In addition, we have shown that there is 
convergence (for a given latitude) of the &-reduced grid to the geometric-reduced grid. 
Furthermore, the use of the geometric grid leads to aliasing errors of order of magnitude 
lo-'. The difference in behaviour of the u--u formulation and the vorticity-divergence 
formulation is thus likely to be related to differences of aliasing of the pressure gradient 
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Figure 7. Impact on the vorticity field of going 300 times from spectral to grid point and back again. 6, 12 
and 18 points are used on the first three latitude rows. Isoline: 2 X lO-’s-’. Top: northern pole area; bottom: 

southern pole area. 





1402 P. COURTIER and M. NAUGHTON 

term, exacerbated in one case and not in the other. One should notice that, in a 
shallow-water model, the u-u and the vorticity-divergence formulation are algebraically 
equivalent, as Ritchie (1988) has shown. In a three-dimensional model, where higher- 
order terms are present, they are not equivalent, as was shown by Rochas and Courtier 
(1992). 

The increase in the number of points close to the pole, which is necessary so as to 
have a grid, is marginal. The increase in points for having aliasing smaller than 

is significant at T106 (ll%), but twice as small at T213. The corresponding increase 
for aliasing smaller than at "213 is 3%. 

ACKNOWLEDGEMENTS 

We thank Adrian Simmons for his comments on the first version of the manuscript, 
and Ryad El Khatib (Mbteo-France) for checking that the aliasing lo-'' is a good 
cornpromis-st versus accuracy. The careful typing of the manuscript is due to Carole 
Edis. 

APPENDIX 1 

In a Galerkin method, one has to solve linear systems of the form 

M X = y  

where M is the mass matrix. The mass-matrix elements are the inner product of two 
basic functions. When the basic functions are orthonormal, M = I and solving the linear 
systems is trivial. Let us now assume that M = (I + EA) + O ( 2 )  where A is of order 
unity. Then solving the linear system by putting x = y introduces an error equal to CAY. 
If we assume the values of y to be of order unity, then the error is of order nE where n 
is the order of the matrix A (and the size of the vectors x and y). In order for the error 
nE to remain constant (and hopefully below some chosen threshold), E has to decrease 
as n-l. 

APPENDIX 2 
Asymptotic formulae for the associated Legendre finctions where the order n and the 
co-latitude 6 tend, respectiuely, toward infinity and zero, while x = (2n + 1) sin(6/2) 

and the zonal wauenumber m are kept constant 
Modifying formulae 58 (p. 248, Robin 1958) so as to account for the normalization 

of the associated Legendre functions used in meteorology, and considering only integer 
values for n, we have 

where the co-latitude 8 and the total wavenumber n tend together, respectively, to 0 and 
to +CQ, such that x = (2n + 1) sin(6/2) remains constant. In this appendix m is constant; 
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Jm is a Bessel function of the first kind. The following asymptotic properties hold: 

(T) 2 n + 1  = n-( 1 + - rn + O(n-2)] 
2n 

n . . . (n - rn + I)}-@ 

rn 
2n 

= .--I 1 - - + O(n-2) 

We then have 

Let us now consider ek, the kth zero of the Legendre polynomial of degree N. An 
asymptotic formula which is used to initiate the Newton loop of the computation of 
Gaussian latitudes (Rochas and Courtier 1992; Abramowitz and Stegun 1964, formula 
22.16.6) is 

4k- 1 1 4 k - 1  
4 N + 2  8v 4 N + 2  = - n+-cot- n + 0“-3). 

Consider the value of k fixed (x is to first order constant), then 

] + O(N-2). 
4k- 1 

“1l + (4k - 1)W 4N 
8, = - 

Consider now an example which numerically validates the asymptotic formula. For the 
wavenumber 106 of the first latitude row of a T106 grid, we have a= 1.5, n = 106 and 
k = 1. Then 

eM(cos el) = i4.um(i.6). 

From Abramowitz and Stegun (1964), Table 9.2, we find 

J8(1.6) = 3.8 x Jg(1.6) = 3.4 x lo-’ 

so 

P&(COS el) = 5.6 x 10-~ P&(COS el) = 5.0 x 

This verifies the good accuracy of the asymptotic approximation since the values computed 
with double precision, using the stable Belousov formula (Rochas and Courtier 1992), 
lead to the result 

eM(cos 0,) = 5.496 x lo-’ and em(cos 8,) = 4.891 x 
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APPENDIX 3 

Convergence of ~ ( C O S  0 )  towards zero as n 00 while n and m are linked by the 
relationship rn = n sin + 

The proof resolves into three cases, namely 
n-m=O(n) ,  n - m e n  a n d n = m .  

We make use of Formula 78k p. 261 of Robin (1958) which describes the asymptotic 
behaviour of ~ ( C O S  0 )  when n tends toward +00 together with m. Denoting by sin + the 
ratio rn/n (m = n sin +) and introducing the formula M = n(sin2 + - sin2 O)*, we have 

fi 1 (ncose+M)“+@(rncose-M)m nm(n - m)mM%inmO (e<+<z). I(n + m) n!2 !(n - m) ! I (x)* 

Using Stirling’s formula n! = ( 2 4 ) ’  e-”n”+@, we have 

~ ( ~ 0 s  e)  = 

I”. I(n + rn)!(n - m)! I” = Icos*+l HI+  sin +)m 

n!2 (1 - sin #)m 

Furthermore, the following equations apply: 

(ncos 8+ M)“ + @ = n” + *{cos 8+ (sin2+- sin%)*P + @ 

(m cos 8 - M ) ~  = nm(sin + cos 8 - (sin2 + - sin2 e)@y 
M”= n”(sin2$- sin%)@ 

(n - rnlm = nm(l - sin +)m 

so 

with 

cos e + (sin2 cft - sin2 e)” sin ,p cos e - (sin2 + - sin ) sin@ 
fl+) = cos $ { cos @sin 8 2 , v r )  . 

We are reminded that 8 (the latitude under consideration) is constant. + is also constant 
and determines the ratio m/n as rn and n tend toward infinity. It then remains to 
prove thatfl+) < 1 for 8 < + < Inso as to establish the convergence of ~ ( C O S  0 )  towards 
zero. After a few manipulations and using the formulae 

(sin2 + - sin2 e)@ = (cos2e - cos2 +I@ = {sin(d + +) sin(+ - e p ,  

{(COS 8 + cos cftp + (COS e - cos #)@}2 

2 cos cft 

we obtain 

f(cft) = I&@ 2 sin 8 cos + 
[{sin*(@ + $1 + (sin*(+ - e>}2  

so we have f(+) > 0 and f (  8 )  = 1. Let us show that f is a decreasing function of cft in the 
interval [8, In] or, equivalently, that logfis decreasing. Once this is established, we shall 
have proved that f(+) < 1. 

iogf(+) = 2 iog{(cos e + cos +)* + (COS e - cos +)@} - log 2 - log cos + + 
+ sin + log@ sin e) + sin + log cos + - 2 sin + log{sin*( 8 + $) + sin*(+ - e)} 

and 
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sin $ 
cos $ 

+- + cos $ log (2 sin 0 )  + 
sin' 
cos $ 

+ cos $ log cos r j ~  - - - 2 cos 9 log{(sin*( 8 + $) + sin*($ - e)} - 
cos( 8 + $) sin-*( 0 + $) + COS( $ - 8 )  sin-*( $ - e) 

sin*( e + $) + sin*( Q - e)  - sin $ 

which can be transformed as 

2sin Ocos $ 
{sin*(e + $) + sin*(@ - e)}* = cos $ log + dlogft$) 

d 4  
v i 

A 

1 - sin $ 
cos $ 

+ {sin(e + 9) sin(+ - e)}u2 
- cos( e + $)sin*( $ - e) + cos( - +in'( e + $) 

sinf(6 + $) + sin*($ - e )  
B 

L 
Y 

Consider first A( $). We have A( 0 )  = 1. A is a decreasing function of $; the numerator and 
the denominator are both positive with the numerator decreasing and the denominator 
increasing with $. Therefore A($) < 1 and cos $ log(A($)) d 0. 

B can be transformed further: 

cos 8 - {sin(e + $) sin($ - e)}v2 1 - sin $ + (sin(8 + $1 sin($ - e)}@ + cos $ cos $ B($) = 

sin $ sin $ + - {sin(e + $1 sin($ - e)p2 - - 
cos $ sin 0 

and 

cos 8 sin $ sin 20 - sin 2$ B($) = - - - - 
cos 9 sin e - 2 sin ecos 4 

B is therefore always negative. 
f i s  a decreasing function of @, sof< 1 for $ > 8. c ( c o s  0 )  converges towards zero 

exponentially. 
In any interval such that 8<  vl< &<in, A(V) is bounded and 

(f(@))" d (filll))" since f is a decreasing function. There is then uniform convergence 
toward zero for the first case, i.e. n - m = O(n). It remains to extend the uniform 
convergence all the way to $ = tn, i.e. to include the case n - m 4 n. 

In the vicinity of In, introducing h = in - $J, and considering the dominant tern 
in h,  we have the asymptotic formula (valid for n - m large) leading to 
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~ ( C O S  0 )  - (2/nh)@sinmB. From this formula it is clear that uniform convergence can 
be extended further towards $I = In than was stated in the previous paragraph by allowing 
h 2 Kn-* for some positive constant K. However the cases where n = m and n - m = 
0(1) still need to be considered separately. For n = m, a direct examination of 
~ ( C O S  0 )  shows that 

\ n l  
For large n, the behaviour is dominated by sin"8 which ensures convergence towards 
zero. 

The asymptotic behaviour for n large with n - m < n is obtained by introducing p = 
n - m into the formula (78 K, p. 261 of Robin 1958). First, using Stirling's formula, we 
have 

2~#(1- p/2n)P-* 

Next write 

so that 

(n cos e + MI"+ = (2n cos ey+ f i [  1 - p t  
2n cos2 8 

Substituting these expressions and gathering terms gives 

This expression is clearly dominated by the term sinm 8 for p = O(1); If p = O(n) this is 
no longer true since the terms np would then dominate. However it suffices that the term 
sinm 0 still dominates for p = O(n@) since the uniform convergence was seen, above, to 
extend that far. The uniform convergence thus holds for any interval [&, In], with > 8. 

Note that substituting p = 0 into this formula gives 

which agrees to a high degree with the direct formula obtained for n = m; however, it 



REDUCED GAUSSIAN GRID 1407 

was necessary to treat the case n = m separately since the formula 78 k on p. 261 of 
Robin (1958) was established only for m C n. 
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