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Abstract

Values need to be represented differently when interact-
ing with certain language features. For example, an integer
needs to take an object-like representation when interacting
with erased generics, although, for performance reasons, it
normally uses the direct representation. In order to simplify
the work of programmers, languages like ML and Scala ex-
pose the high-level concept (the integer) and let the compiler
handle representation and conversion.

This pattern appears in multiple language features such as
value classes, specialization and multi-stage programming
mechanisms: they all expose a unified concept which they
later refine into multiple representations. Yet, the implemen-
tations are typically ad-hoc and entangle the core mecha-
nism with assumptions about the alternative representation
and the implementation of generics, thus losing sight of the
general principle.

In this paper we present an elegant and minimalistic type-
driven generalization that subsumes and improves the state-
of-the-art representation transformations. In doing so, we
make two key observations: (1) annotated types conveniently
capture the semantics of using alternative representations
and (2) local type inference can be used to automatically,
reliably and optimally introduce the necessary conversions.

We validated our approach by implementing three lan-
guage features in the Scala compiler: value classes, special-
ization via miniboxing and a simplified multi-stage program-
ming mechanism. An encouraging result is that we were
able to reimplement and extend value class functionality in
the Scala compiler with two man-weeks of work, without
reusing any code from the previous implementation.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Language and compiler designers are well aware of the intri-
cacies of erased generics [12, 18, 25, 27, 29, 33, 36, 60], one
of which is requiring object-based representations for prim-
itive types. To illustrate this, let us analyze theidentity
method, parameterized on the argument type,T:

1 def identity[T](arg: T): T = arg
2 val x: Int = identity[Int](5)

The low-level compiled code foridentity needs to
handle incoming arguments of different sizes and seman-
tics: from bytes to long integers and references to heap-
allocated objects. To implement this, compilers impose a
uniform value representation, usually based on referencesto
heap objects. This means that primitive types, when passed
to generic methods need to be represented as objects, in a
process called boxing. Since boxing slows down execution,
whenever primitive types are used outside generic environ-
ments, they use their direct unboxed representation. In the
example below, ‘x‘ is using the unboxed representation de-
noted asint:

1 def identity(arg: Object): Object = arg
2 // val five: Int = identity[Int](5)
3 val arg_boxed: Object = box(5)
4 val ret_boxed: Object = identity(arg_boxed)
5 val x: int = unbox(ret_boxed)

This example exposes two representations for the same
concept: the high-level integer typeInt can be represented
either as an unboxed primitiveint or as a boxedObject,
which is compatible with erased generics. There are two
approaches to implementing this duality: In Java, both the
boxed and unboxed integers are accessible, thus making pro-
grammers responsible for choosing the representation and
converting when necessary. To avoid burdening the program-
mers with implementation details, the ML and Scala pro-
gramming languages expose a unified concept of integer and
automatically choose the representation inserting the neces-
sary conversions during compilation.

This mechanism of exposing a single concept with multi-
ple representations is used in other language features as well:

Value classes[1, 5, 24] behave as classes in the object-
oriented hierarchy, but are optimized to efficient C-like
structures [55] where possible. This exposes two represen-
tations of the value class concept: an inline, efficient struct

DRAFT - Please do not circulate 1 2014/3/26



representation and a flexible object-oriented representation
that supports subtyping and virtual method calls.

Specialization [18, 19] is an optimized translation for
generics, which compiles methods and classes to multiple
variants, each adapted for a primitive type. An improvement
to specialization is using the miniboxed representation [4,
60], which creates a single variant for all primitive types,
called a minibox. In this transformation, a generic typeT
can be either boxed or miniboxed, in yet another instance of
a concept with multiple representations.

Multi-stage programming (referred to as “staging”)
[57] allows executing a program in multiple stages, at each
execution stage generating a new program that is compiled
and ran, until the final program outputs the result. In prac-
tice, this technique is used to lift expressions to operation
graphs and generate new, optimized code for them. This
shows a very different case of dual representations: a value
can be represented either as itself or as a lifted expression,
to be evaluated in a future execution.

The examples above seem like unrelated language fea-
tures and mechanisms. And, indeed, compiler designers have
provided dedicated solutions for each of them. These solu-
tions are typically designed in an ad-hoc way, addressing
just the problem at hand. For instance, the solutions em-
ployed by ML and Scala are aimed at satisfying the con-
straints of erased generics [12, 33, 59], and hardcode this
decision into the transformation algorithm. Miniboxing uses
a custom transformation implemented as a Scala compiler
plugin [4, 60]. The Lightweight Modular Staging framework
[44] in Scala is implemented using a fork of the main com-
piler, dubbed Scala-Virtualized [35] which is specifically
retrofitted to support staging.

Yet, all these mechanisms have two elements in common:
(1) the use of multiple representations for the same concept
and (2) the introduction of conversions between these repre-
sentations. These two similarities suggest that there is anun-
derlying yet undiscovered principle that generalizes the in-
dividual transformations. We believe exposing this principle
will disentangle the transformations from their assumptions,
enabling researchers to reason about them and implementors
to reuse a common infrastructure.

To this end, we present an elegant and minimalistic type-
driven mechanism that uses annotations to guide the intro-
duction of conversions between alternative representations.
In doing so, we make two key observations: (1) annotated
types conveniently capture the semantics of using an alter-
native representation and (2) the type system can be used to
automatically, reliably and optimally introduce conversions
between the representations.

Annotated typesare a mechanism that allows attaching
additional metadata to the types in a program [3, 6]. This in
turn allows external plugins to verify additional properties
of the code while leveraging the existing type system. In-
deed, annotations have been used to statically check a range

of program properties, from simple non-null-ness to full
effect tracking [40, 49].

Our first key insight is that annotated types are a per-
fect match for the one-concept-multiple-representationsap-
proach. The semantics of annotated types can be specified
externally and can change during the compilation pipeline,
so we can emulate the concept by keeping annotated and
non-annotated types compatible before introducing conver-
sions and later we can emulate the two representations by
making the types incompatible. Furthermore, unlike other
mechanisms, annotated types allow us to selectively mark
the values that will use alternative representation: For exam-
ple, marking a value’s type as@unboxed means it will use
the alternative unboxed representation. Contrarily, leaving it
unmarked will continue to use its boxed representation.

Depending on the transformation, annotations can be in-
troduced automatically by the compiler or manually by pro-
grammers. This provides the flexibility necessary to capture
a wide variety of transformations: some of the transforma-
tions work automatically, e.g. unboxing primitive types and
value classes, whereas others, like staging, where annota-
tions represent domain-specific knowledge, require manual
annotation.

This flexibility of annotating values that use the alterna-
tive representation is in sharp contrast to state of the art trans-
formations for erased generics [12, 33]. These transforma-
tions consider the unboxed representation as always desir-
able and hardcode the semantics of erased generics into their
transformation rules. In the following example, we show
how simple it is for the compiler to signal whether a value
should be boxed or unboxed and whether generics are erased
or reified and unboxed [7, 29]. This flexibility is fundamen-
tal to staging, but also enables a better translation in the case
of erased generics, as the next sections will explain:

1 // erased generics, boxed value:
2 val x: Int = identity[Int](5)
3 // erased generics, unboxed value:
4 val x: @unboxed Int = identity[Int](5)
5 // unboxed generics, unboxed value:
6 val x: @unboxed Int = identity[@unboxed Int](5)

The type systemcan be used to automatically, reliably
and optimally introduce conversions based on the annotated
types. Since the semantics of annotated types can change
during compilation, we can trigger the separation by mak-
ing annotated types incompatible with non-annotated type.
Then, retypechecking the abstract syntax tree will expose
incompatible types, which correspond to representation mis-
matches that we need to patch by introducing conversions.

Our second key observation is that name resolution and
type checking for annotated types provides what can be
seen as a forward data flow analysis [30] for representations.
On the other hand, local type inference [38, 42] propagates
expected types, and thus provides a backward data flow
analysis. Having these two analyses meet at points where
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the representation doesn’t match ensures that conversions
are introduced only when necessary:

1 // erased generics, boxed value:
2 val x: Int = identity(box(5))
3 // erased generics, unboxed value:
4 val x: @unboxed Int = unbox(identity(box(5)))
5 // reified unboxed generics, unboxed value:
6 val x: @unboxed Int = identity[@unboxed Int](5)

Being type-driven, our approach can be seen as a gener-
alization of the work ofLeroy on unboxing primitive types
in ML [33]. Yet, it is far from trivial generalization: (1) we
introduce the notion of selectively choosing values to use
the alternative data representation, which is crucial to en-
abling staging and bridge methods [16] in object-oriented
hierarchies, (2) we extend the transformation to work in the
context of object-oriented languages, with the complexities
introduced by subtyping and virtual method calls and (3)
we disentangle the transformation from the assumptions that
generics are erased and that the alternative representation is
unboxed primitive types.

Domain-specificityof particular data representation trans-
formations can be expressed with custom logic that makes
use of annotations and conversions obtained through the
type system. For example, primitive unboxing will replace
@unboxed Int by int and give semantics tobox and
unbox, in this case creating the boxed object and access-
ing itsvalue field respectively.

The paper makes the following contributions:

• We survey existing approaches to data representation
transformations (§2 and §3), and show there is a need
for a novel approach that allows for additional flexibility;

• We show a general data representation transformation
mechanism for the annotated program, which does not
impose the semantics of the alternative representations
nor of the conversions (§4) and make the first steps to-
wards formalizing it (§5);

• We validate the mechanism by implementing three lan-
guage features in Scala compiler using our transforma-
tion: value classes1, specialization using the miniboxing
representation2 and a simple staging mechanism3 (§6).

In the following sections we provide detailed motivation,
elaborate on the details of the mechanism and validate our
approach.

2. General Data Representation
In this section we present several data representation trans-
formations that deal with boxing and unboxing of primitive
types, highlighting their strong and weak points on small
examples. We start with a naive approach, continue with a
transformation that eagerly introduces conversions and con-

1http://github.com/miniboxing/value-plugin
2http://github.com/miniboxing/miniboxing-plugin
3http://github.com/miniboxing/stage-plugin

clude with an on-demand transformation, which aims at in-
troduces conversions only when necessary.

In the rest of the paper we consider the integer concept
to be boxed by default and represent it byInt. The goal
of the transformations is to convert it to the unboxed inte-
ger,int. We follow the same convention for other primitive
types, such asLong andlong, Byte andbyte or Double
and double. Furthermore, unless otherwise specified, all
generic classes are assumed to be compiled to erased ho-
mogeneous low-level code. Finally, to improve readability,
we place annotations in before types (e.g.@unboxed Int)
instead of after (e.g.Int @unboxed), as the Scala syntax
requires.

2.1 Naive Transformations

In order to begin, let us analyze a simple code snippet,
where we take the first element of a linked list of integers
(List[Int]) and construct a new 1-element linked list with
this element:

1 val x: Int = List[Int](1, 2, 3).head
2 val y: List[Int] = List[Int](x)

A naive approach to compiling down this code would be
to replace all boxed integers by their unboxed representa-
tions without performing any dataflow analysis:

1 val x: int = List[Int](1, 2, 3).head
2 val y: List[Int] = List[Int](x)

The resulting code is invalid. In the first statement,x is
unboxed while the right-hand side of its definition, the head
of a generic list, is boxed. In the second statement, we create
a generic list, which expects the elements to be boxed. Yet,
x is now unboxed.

2.2 Eager (or Syntax-driven) Transformations

The previous example shows that naively replacing the rep-
resentation of a value is not enough: we need to patch the
definition site and all the use sites, converting to the right
representation:

1 val x: int = unbox(List(1, 2, 3).head)
2 val y: List[Int] = List[Int](box(x))

In the snippet above, two conversions have been intro-
duced. In the first line, sincex becomes unboxed, the right-
hand side of its definition also needs to be unboxed. In the
second line,x is boxed to satisfy the list constructor. This
means that by eagerly adding conversions we can keep the
program code consistent. Let us take another example:

1 val a: Int = 1
2 val b: Int = a

Translating this code using the eager transformation pro-
duces the following output:

1 val a: int = 1
2 val b: int = unbox(box(a))
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Sincea is transformed from boxed to unboxed, all its
occurrences are replaced bybox(a). The same happens for
b, so its definition is wrapped in anunbox call. Yet, this
produces suboptimal code, which boxesa just to unbox it
later. In the case of Scala programs, which are compiled
to Java Virtual Machine (JVM) bytecode, this redundancy
can be eliminated by escape analysis [54] in the just-in-time
compiler [31, 39]. Yet it typically takes 10000 executions
to trigger the just-in-time compiler and the optimizations,
which means 10000 boxed integers are created just to be
immediately unboxed and garbage collected later.

2.3 Peephole Optimization For Eager Transformations

In order to cut down redundant conversions in code produced
by eager transformations, we need to perform a second pass
over their result using a technique called peephole opti-
mization. Our optimization rewritebox(unbox(t)) and
unbox(box(t)) to justt. This simple transformation, sim-
ilar to the ones in Haskell [27] and miniboxing [60], can be
successfully used to eliminate the redundant conversions in
the definition ofb.

Yet, removing just the aforementioned conversions is not
enough. The following example shows this:

1 val c: Int = a + b

Eager transformations will boxa andb and will unbox
the result of their addition, which is inefficient:

1 val c: int = unbox(box(a) + box(b))

Therefore, we need an extra rule for distributing the un-
boxing operation inside:unbox(t1 + t2)⇒ unbox(t1) +
unbox(t2).

In practice we have seen many more examples that re-
quire additional optimization rules. This suggests that al-
though eager transformations work well for minimalistic in-
termediate languages, such as Haskell’s Core, the complex-
ity of accompanying peephole optimizations make them im-
practical for Scala. The initial implementation of minibox-
ing [60] used an eager transformation, but we were forced to
look for alternative approaches due to the number and com-
plexity of the peephole optimization rules.

2.4 On-Demand (or Type-driven) Transformations

As outlined above, eager transformations introduce repre-
sentation conversions at all definition and use sites of prim-
itive values. This makes them straightforward, but also sub-
optimal, producing extraneous conversions that later needto
be cleaned up.

An alternative approach would be to introduce conver-
sions only when a representation mismatch occurs, using a
dedicated mechanism to check representation consistency.
For example, making the boxed/unboxed distinction explicit
to the type checker allows its logic to check whether repre-
sentations correspond and hence whether conversions need
to be introduced. This achieves optimality in the case of

a + b, because the type checker will know that all variables
are unboxed, and hence no conversions are necessary:

1 val a: int = 1
2 val b: int = a
3 val c: int = a + b

This idea is a precursor to the transformation presented in
this paper, but there are still issues that need to be addressed
before we get to our final unified approach.

Let us assume we introduce a boxed unsigned integer
UInt, which we unbox toint. The operators for the un-
signed type are different, but the unboxed representation is
exactly the same as forInt. In practice, these cases are
common: several value classes can have the same parame-
ter types, so their unboxed representations coincide and all
staged expressions share the same alternative representation.
With this in mind, let us consider the following piece of
source code:

1 val m: UInt = 1
2 val n: Int = -1
3 List(if (...) m else n)

On the one hand, bothm andn are unboxed, which means
that the correspondingif expression is also unboxed toint.
On the other hand, the constructor of the linked list expects
a boxed argument. This suggests that theif expression
needs to be boxed, but actually in this situation boxing is
impossible, becauseint, the type of theif, can box both to
Int andUInt, and we can’t discern between the two based
on the context. The correct translation should have been:

1 val m: int = 1
2 val n: int = -1
3 List(if (...) box[UInt](m) else box[Int](n))

It may seem that transforming values one by one might
provide a way out of the conundrum. This way, only a single
value at a time would be in flux, which would make the
choice of boxed representation unambiguous.

However, this takes us back to the square one with respect
to (non)-optimality of the resulting code, because in anif
expression both branches to be transformed at once - either
both becoming boxed or both unboxed, and that can’t be
decided in an optimal way based on the type of just a single
branch. For example, while boxing by default is desirable in
the example above, it would not be desirable if bothm andn
were signed integers, in which case it would be best to box
the entireif expression back toInt instead of the individual
branches.

Clearly, a different perspective is required to make on-
demand transformations viable, and this is something that
we’ll present in subsequent sections.

3. Object-Oriented Data Representation

The previous section presented the problems faced by data
representation transformations, especially given complex in-
termediary representations (IRs) such as the one used for
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Scala. This section identifies additional challenges intro-
duced by object orientation.

3.1 Subtyping

In languages like Java and C#, all types have a common
supertype, usually calledObject, which provides universal
methods such astoString, hashCode or equals. This
presents a challenge for unboxing primitive types:

1 val a: Int = 1 // can be unboxed
2 val b: Object = a // needs to be boxed back

Althougha can use the unboxed representation, it needs
to be boxed back when it is assigned tob, sinceb is compiled
to an object reference in the low level code.

3.2 Virtual Method Calls

Virtual method calls also create challenges for data repre-
sentation transformations. Boxed objects can act as the re-
ceivers of virtual calls, because they have an associated vir-
tual method table. However, unboxed objects only store the
contents of their fields and nothing more, which complicates
matters:

1 val a: Int = 1 // can be unboxed
2 println(a.toString) // needs special treatment

There are two approaches to handling virtual calls: 1) an
unboxed callee can be boxed so it can act as a receiver of
the virtual call, or 2) if the corresponding method is final,
then its implementation can be extracted into a static helper,
making the virtual method table unnecessary. Both of these
techniques have been used in practice, although the second
is markedly better for performance: in the method extraction
process, the receiver becomes an explicit parameter and can
be unboxed. In Scala, methods extracted from value classes
are called extension methods [5]:

1 def extension_toString(i: int): String = ...

3.3 Necessity for Selective Transformations

We argue that selectivity should be built into data represen-
tation transformations as a first-class concern allowing the
compiler or the programmer to individually pick the values
that will use the alternative representation. At the moment,
most data representation transformations make the assump-
tion that all values that can use an alternative representa-
tion should also use it. However we identified several cases
where this assumption is invalid:

The low level target languagemay impose certain re-
strictions on the representations used. For example, the Scala
compiler targets JVM bytecode, which does not have a no-
tion of structs and only allows methods to return a single
primitive type or a single object. This restriction forces all
methods returning multi-parameter value classes to keep the
return type boxed, which is only possible if the transforma-
tion is selective;

Bridge methods[16] are introduced to maintain coherent
inheritance and overriding relations between generic classes

in the presence of erasure and other representation transfor-
mations. Bridge methods are introduced when the low level
signature of a method does not conform to one of the base
method it overrides. Consider the following example:

1 @value class D(val x: Int)
2 class E[T] {
3 def id(t: T) = println("boo")
4 }
5 class F extends E[D] {
6 override def id(d: D) = println("ok")
7 }

A naive translation of this code that doesn’t account
for erasure will end up withF.id having the low-level
signature(d: int): Unit, which on the JVM does not
override the base methodE.id with the low-level signa-
ture(t: Object): Unit. This will lead to virtual calls to
E.id not being dispatched toF.id. A correct translation for
F must introduce a bridge method that takes an instance of
the value classD as an unboxed argument. Such method will
be correctly perceived as overridingE.id by the JVM, and
then it can dispatch to the unboxed implementation:

1 class F extends E[D] {
2 override def id(d: Object) = id(unbox(d))
3 def id(d: int) = println("ok")
4 }

Generating this code is impossible if the data representa-
tion transformation always unboxesD, which is again only
possible if the transformation is selective.

The optimal data representationis not always unboxed.
If a value is generated in its boxed representation and is
always expected in the boxed representation, there is no
reason to unbox it:

1 def reverse(list: List[Int]): List[Int] = {
2 var lst: List[Int] = list
3 var tsl: List[Int] = Nil
4 var elt: Int = 0 // stored in unboxed form
5 while (!lst.isEmpty) {
6 elt = lst.head // converting boxed to unboxed
7 tsl = elt::tsl // converting unboxed to boxed
8 lst = lst.tail
9 }

10 tsl
11 }

Unless the data representation transformation is selective,
in the low-level bytecode,elt is represented as an unboxed
value. But during each iteration, assigning thehead of the
(generic) list toelt converts a boxed integer to the unboxed
representation. The subsequent statement performs the in-
verse transformation, creating a new boxed integer fromelt
and prepending it to the reversed list. This sequence of con-
versions in the hot loop severely impacts the performance,
making it desirable to selectively enable unboxing.

Summarizing §2 and §3, we note that an ideal data rep-
resentation transformation should be smart about introduc-
ing conversions, should account for object orientation and
should allow for selective conversions. The next section will
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present exactly that - a general, optimal, selective and object-
oriented data representation transformation.

4. Unified Representation Transformation
This section presents our unified data representation trans-
formation mechanism. We start by explaining the key in-
sights of the transformation, then dive into the algorithm it-
self and finally show how this transformation improves over
the state of the art.

4.1 Key Insights

In a compiler, name resolution is effectively the high-level
equivalent of a forward data flow analysis [17], tracking
the reaching definitions. Coupled with a type system, name
resolution propagates the types of symbols in a program’s
syntax tree. On the other hand, the local type inference
[38, 42] mechanism in a type checker acts as a backward
data flow analysis tracking the expected type of expressions.

The first key insight is that name resolution and local
type inference can effectively collaborate to produce a data
flow analysis which can find mismatching representations
and trigger conversions between them:

1 def foo(x: String): Int =
2 x // forward analysis: x refers to argument
3 // x of method foo of type ‘String‘
4 // backward analysis: the return type of
5 // method foo needs to be ‘Int‘
6 // => types do not match

Forward and backward tracking of type and thus repre-
sentation information allows the optimal transformation of
code, as shown in the lazy transformation description in
§2.4. Optimality comes from introducing conversions only
in the case of a mismatch, and therefore not introducing
redundant conversions (excluding situations with explicit
domain-specific decisions to not unbox certain values that
are better off boxed, as shown in §3.3).

Use of types to encode data representation is widely
spread, having been employed in a number of data repre-
sentation transformations [5, 27, 33]. Yet unboxing directly
to the primitive type will not work unless the mapping is
reversible (§2.4). A different approach is to introduce new
synthetic types [5] for the alternative representation, but this
is inflexible: (1) the types are not accessible to programmers,
thus the programmers cannot intervene in the data represen-
tation decisions and (2) such types are typically designed for
the problem at hand and do not generalize. From a bird’s eye
view, the problem with new synthetic types is that they only
model the unboxed representation, whereas the ideal type
encoding would allow modelling concepts that are later split
into different representations.

In this context, the second key insight regards tracking
representation information in the type system: annotated
types [3, 6] are a perfect fit for tracking unboxed repre-
sentations: (1) they are accessible to programmers, (2) the
mapping from boxed to unboxed types is reversible and (3)
they can change semantics during compilation. For instance,

for the compiler phases before the data representation trans-
formation,@unboxed Int andInt can be fully compatible,
while afterwards they can become incompatible, guiding on-
demand transformations into introducing conversions.

4.2 Mechanism

Having seen the key insights, we can now dive deeper into
the generic transformation mechanism. It is composed of
three phases:inject, convertandcommitthat work with type-
checked programs. Throughout the presentation we will use
the following example:

1 def fact(n: Int): Int =
2 if (n <= 1)
3 1
4 else
5 n * fact(n - 1)

The inject phasejust marks the types that are going to
be unboxed without doing anything else. In particular, no
conversions are performed during this phase, which allows
marking values, changing method signatures and redirecting
method calls without worrying about representation incom-
patibilities or introducing conversions. In the example be-
low, this is most visible in the recursive call to fact, where
the argument is not converted to a different representation:

1 def fact(n: @unboxed Int): @unboxed Int =
2 if (n.<=(1: @unboxed Int))
3 (1: @unboxed Int)
4 else
5 n.*(fact(n.-(1: @unboxed Int)))

Unlike in previous examples, now we explicitly mark the
constant literals for unboxing: the literal constant1 will be
an unboxed value in the low level code, thus we mark it
for unboxing using1: @unboxed. Also, the operators in
Scala are desugared to method calls, and we made this ex-
plicit by adding the commonly accepted method notation:
receiver.method(args). Thus, instead ofn <= 1 we
wroten.<=(1). These expansions do not impact the gener-
ality of the transformation but serve to clarify how the trans-
formation mechanism works.

This phase can have other uses as well, such as, for
example, introducing bridge methods or duplicating code
and specializing it, in the case of miniboxing. Alternatively,
it might not be present at all, as in the case of staging, where
the values to be lifted are annotated by the programmer.

The convert phaseis the centerpiece of the algorithm
and is similar for all data representation transformations. It
has two steps: (1) it makes the annotated types incompati-
ble with the un-annotated types, thus invalidating the current
abstract syntax tree and (2) it re-typechecks the tree and in-
troduces conversions where necessary. The conversions are
introduced when an annotated type is expected and the un-
annotated type is passed and vice-versa. Since the tree has al-
ready passed name resolution and typechecking before, run-
ning the typechecking algorithm again will only make a dif-
ference when conversions need to be inserted.
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Additionally, note that the object-oriented aspects of the
language need to be taken into account. For example, method
calls on the alternative representation require boxing, which
can later be removed by the commit phase using extension
methods [5]. Supertypes are also taken into account by this
phase. Since types with alternative representations are final,
a class cannot have an alternative representation and be a su-
perclass at the same time. Therefore, supertypes will not be
annotated. If an unboxed value is assigned to its supertype,
a boxing conversion is automatically inserted due to the an-
notation mismatch. With the conversion in place, we have a
boxed value that is indeed compatible with the supertype.

The convert phase will transform our running example to:

1 def fact(n: @unboxed Int): @unboxed Int =
2 if (box(n).<=(1: @unboxed))
3 (1: @unboxed)
4 else
5 unbox(box(n).*(fact(unbox(box(n).-(1:

@unboxed)))))

In this listing, box conversions are introduced for un-
boxed method call receivers while theunbox conversions
are used to convert the boxed results of the* and- opera-
tors to unboxed integers. The resulting code has boxing and
unboxing semantics of the program expressed in a clear, ex-
plicit form that is used by the final phase, commit.

The commit phaseis the final phase in the transforma-
tion mechanism and is meant to give semantics to the anno-
tated types and to the conversions. For instance, in a primi-
tive type unboxing transformation, commit is going to trans-
form @unbox Int into int, unbox into a field access that
extracts the unboxed value from a boxed integer, andbox
into an object creation. Method calls can also be redirectedto
extension methods (in this case underlying platform’s intrin-
sics), thus cutting down on object allocations. After the com-
mit phase the program is fully and optimally transformed:

1 def fact(n: int): int =
2 if (intrinsic_<=(n, 1))
3 1
4 else
5 intrinsic_*(n, fact(intrinsic_-(n, 1)))

4.3 Advantages

The previous sections have shown the motivation for the
transformation and how our mechanism works. We will now
elaborate on how our work improves upon the state of the art
in data representation transformations.

Optimality. Unlike eager transformations in use today
[27], our mechanism tracks representations in a forward and
backward data flow analysis to avoid introducing redundant
conversions. This makes tedious peephole transformations
redundant and enables the data representation transforma-
tion to focus on the most important aspect: correctly trans-
forming the program in the inject and commit phases.

Selectivity. Selectivity is build into the transformation
mechanism as a first-class concern. Indeed, in the previous
example, our choice was to transform both the input argu-
ment of thefact method and its return type. But selectively

transforming one or the other is equally simple: by not anno-
tating the argument or the return value, one can derive differ-
ent scenarios of the transformation, all with the exact same
convert and commit transformations.

Generality. Using the proposed transformation mecha-
nism eliminates the need for peephole optimizations (§2.3)
and drastically simplifies the overall specification: only the
rules for the inject and commit phases need to be specified,
since the convert phase is reused from one transformation to
the next. In our validation section (§6), we describe three
scenarios where we used the exact same convert mecha-
nism, and only needed to reimplement the inject and commit
transformations. This shows the mechanism is general and
makes transformation specification simple and elegant. Fur-
thermore, the transformation mechanism is flexible in that it
can accommodate a wide range of data representation trans-
formations.

Support forobject-oriented aspectsin a language is pro-
vided by the simple boxing of method call receivers and ex-
pressions for which a supertype is expected. Furthermore,
the commit phase can reduce the boxing operations by re-
placing virtual method calls by static extension method calls,
thus reducing the number of heap objects allocated.

The proposed mechanism provides a strong contribution
in an unexpected direction, considering its ingredients: local
type inference and annotated types. We have validated this
mechanism in three scenarios with very different require-
ments and representations. The next section will provide a
formal description of the convert phase.
5. Formalization
This section sets out the formal rules of the transformation.
Despite presenting the rules, we do not prove operational
equivalence in this paper and leave it for future work.

The formalization for the convert transformation is based
on SystemF<: [41] with local colored type inference [38,
42]. We use the notation∨T for types synthesized from
terms and∧T for inherited (expected) types. Intuitively these
two notations correspond to the forward and backward prop-
agation in a data flow analysis.

To support annotated types, we extend the types of Sys-
temF<: to:

T ::= types:
X type variable
Top maximum type
T → T type of functions
∀X <: T. T universal type
@alt T annotated type

5.1 Before the Convert Phase

The input for the inject phase is a typed tree, with all the
types inferred and the expansions (such as implicit parame-
ters) in place. In all the phases before the convert phase we
have the following two subtyping rules:

T <: @alt T (S-ALT1)
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@alt T <: T (S-ALT2)

These two rules ensure that annotated and non-annotated
types are compatible, thus modelling the unified concept.

5.2 After The Convert Phase

Passing to the convert phase, the S-ALT1 and S-ALT2 sub-
typing rules are removed. We then retypecheck the program
with two additional rules for annotated types. We use the
following notation for the typing judgement:

T,Γ ⊢ t ❀ t′ : T ′

WhereT is the expected type,Γ is the typing context,t is
the original term, which is rewritten tot′ andT ′ is the actual
type. The two additional rules introduce conversions when
representations do not match:

∧@alt ∧T,Γ ⊢ t ❀ t′ : ∨T ′ ∨T ′ <: ∧T

∧@alt ∧T,Γ ⊢ t ❀ unbox t′ : ∧@alt ∨T ′
(T-ALT)

∧T,Γ ⊢ t ❀ t′ : @alt ∨T ′ ∨T ′ <: ∧T

∧T,Γ ⊢ t ❀ box t′ : ∨T ′
(T-UNALT)

The intuition behind the first rule is that whenever the
expected type is annotated, but the term’s type is not, the
rule introduces an explicitunbox operation. And vice versa,
the second rule will trigger when a term’s type is annotated
but the expected type in not, thus thebox operation is intro-
duced. Thebox andunbox functions are considered built-in,
with the expected generic signatures. It is worth noting that
the typing rules will only introduce the conversions to ter-
minal AST nodes, namely to those in which representations
happen to mismatch:

1 def fact(n: @unboxed Int, l: List[Int]): Int =
2 if (...)
3 l.head
4 else
5 box(n) // the expected type Int propagates
6 // to the then and else branches, of
7 // which the else branch needs boxing

6. Validation
This section describes how we validated the unified trans-
formation mechanism by using it to implement three very
different language features: value classes, specialization via
miniboxing and staging.

In our case studies we observed increased productivity
thanks to the reuse of the common transformation mech-
anism in all three scenarios. Two decisions also provided
tangible benefits to the development process: (1) decoupling
the decision to unbox values from the actual mechanism for
introducing conversions and (2) decoupling the alternative
representation semantics from the conversions and annotated
types. A highlight of the validation is the fact that we reim-
plemented and extended the Scala compiler support for value

classes [5] with just two man-weeks of work and without
reusing any pre-existing code.

We will begin by describing the plugin architecture in the
Scala compiler and how it can be used to implement data
representation transformation, and continue by presenting
each of the three case studies.

6.1 Scala Compiler Plugins

The Scala compiler allows extension via compiler plug-
ins. These can customize the type checker via analyzer and
macro extensions and can also add new compilation phases.
In this section we will describe the annotation checker
framework that is part of analyzer extensions and present
the custom compiler phases in data representation transfor-
mations.

With the annotation checker framework, compiler plug-
ins can inject annotations during typechecking, can provide
custom logic to calculate meets and joins of annotated types,
and can apply custom transformations to trees that have an-
notated types. Moreover, in this framework it is also possible
to extend the vanilla subtyping logic in the Scala compiler
by providing custom and phase-dependent subtyping rules
for annotated types.

The annotation checker framework can therefore at-
tach custom semantics to annotated Scala types. Using this
framework,Rytzcreated a purity and effects checker [49]
that uses annotations to track side-effecting code, andRompf
implemented a continuation-passing style (CPS) transforma-
tion triggered using annotated types [45].

In the context of data representation transformations,
the annotation checkersframework is used to implement
the one-concept-multiple-representations mechanism. Be-
fore the convert phase, the annotated types are compatible
with their non-annotated counterparts, therefore allowing the
transformations to rewrite the code without taking represen-
tations into account. During the convert phase, the annotated
types and non-annotated types become incompatible, driv-
ing the insertion ofbox and unbox conversions. Finally,
after the convert phase, the types remain incompatible, so
further phases do not confuse representations:

1 def annotationsConform(tpe1: Type, tpe2: Type) =
2 if (phase.id < convertPhase.id)
3 true
4 else
5 (tpe1.isAnnotated == tpe2.isAnnotated) ||

tpe2.isWildcard

In order to transform code, compiler plugins can also in-
troducecustom phases, at precise points in the compiler
pipeline. A data representation transformation plugin typi-
cally creates three custom phases, corresponding to the in-
ject, convert and commit phases in the mechanism outlined
in §4.

The inject phase is used to inject annotations that ini-
tiate the transformation process. To do so, the phase visits
all entries in the symbol table and updates their signatures
by annotating types that need to be converted to alternative
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representations. Since this phase is dependent on the trans-
formation at hand and typically does more than just adding
annotations, it will be described in more detail in each of the
case studies.

The convert phase is the core of the transformation
mechanism and is similar for all case studies. Since the in-
ject phase changes the symbols’ signatures and the anno-
tation checker makes the annotated types incompatible, the
convert phase essentially starts with an inconsistent abstract
syntax tree, in the sense that, in its initial shape, it does not
typecheck. The job of the convert phase is to introduce con-
versions where necessary such that tree is consistent again.
This is done by re-typechecking the tree and introducing
conversions when representation mismatches occur.

Following the framework described in §4 and §5, the con-
vert phase retypechecks the program, making use of the lo-
cal type inference algorithm implemented in Scala in order
to perform backward and forward propagation of represen-
tation information.

In Scala, the type checker consists in two parts: (1) the
typing judgement procedure, which can assign types based
on the typing context and (2) the adaptation routine, which
applies fixups to trees such that their types match expected
types. A typical use for the adaptation is inserting implicit
conversions, resolving implicit parameters and synthesizing
reified types [51].

The convert phase overrides the typing judgement with
a single extra rule: the receivers of method calls must be
boxed. This, along with boxing when supertypes are ex-
pected, which is done automatically, forms our support for
object orientation. We also override the adaptation routine,
which allows us to implement the T-ALT and T-UNALT

rules for introducing conversions.
Finally the commit phaseruns and updates the symbol

signatures and the conversions to account for the exact se-
mantics of the alternative representation. Thanks to the pre-
vious phase, the tree is consistent and conversions act as
markers that the commit phase can use to transform the tree.
Again, since this phase is specific to react transformation,
we will describe it in each case study.

6.2 Case Study 1: Value Classes

Value classes [1, 5, 24] marry the homogeneity and dynamic
dispatch of classes with the memory efficiency and speed
of C-like structures. In order to get the best of both worlds,
value classes have two different in-memory representations.
Instances of value classes (referred to as value objects) can
be represented as fully-fledged heap objects (the boxed rep-
resentation) or, when possible, use a struct-like unboxed rep-
resentation with by-value semantics.

For instance, in the example below, theMeter value
class is used to model distances in a flexible and performant
manner, providing both object-orientation (including virtual
methods and subtyping) and efficiency of representation.
Our implementation transforms methods+, <= andreport
such that their arguments and return types are unboxed value

classes. Furthermore, values of typeMeter will use the
unboxed representation wherever possible.

1 @value class Meter(val x: Double) {
2 def +(other: Meter) = new Meter(x + other.x)
3 def <=(other: Meter) = x <= other.x
4 }
5 def report(m: Meter) = {
6 if (m.<=(new Meter(9000))) println(m.toString)
7 else println("it’s over nine thousand")
8 }

Before we dive into the transformation, let us consider
some basic facts about value classes, correlating them with
existing implementations for C# [1] and Scala [5] (both the
official transformation shipped with Scala 2.10+, and the
prototype we present in this paper).

Finality . Even though value classes can be perceived as
classes, their participation in subclassing has to be limited
in order to allow correct boxing and unboxing. Indeed, if
along withMeter it were possible to define another value
classKilometer that extendsMeter, then boxingm would
be ambiguous, as its boxed representation might be either
of the classes. This observation is consistent with both C#,
where value classes cannot be extended, and Scala, where
value classes are declared by inheriting from a marker type
AnyVal and are automatically made final by the compiler.

By-value semantics. When compiling value classes down
to low level, additional care must be taken to accommodate
their by-value semantics on otherwise object-oriented plat-
forms. For instance, both the JVM and the CLR have a uni-
versal superclass calledObject that exposes by-reference
equality and hashing. Moreover, both languages provide
APIs to lock on objects based on reference. While we can’t
control what happens to value objects that are explicitly cast
to Object, we restrict uses of by-reference APIs. In C# this
is done by having a superclass of all value classes, called
ValueType, which provides reasonable default implemen-
tations ofEquals andGetHashCode, whereas in Scala all
value classes getequals andhashCode implementations
generated automatically. Both in C# and Scala synchroniza-
tion on value classes is outlawed.

Single-field vs multi-field. While single-field value classes
like Meter trivially unbox into their single field, devising
an unboxed representation for multi-field value classes may
pose a challenge if the underlying platform does not provide
support for structures. And indeed, in the case of Scala, the
JVM does not support structs or returning multiple values,
so we have to box multi-field value objects when returning
them from methods. Still, for fields, locals and parameters
we do unbox multi-field value objects into multiple separate
entries, providing a faithful emulation of struct behavior. It
is worth noting that the value class implementation in Scala
only supports single-field value classes, therefore sidestep-
ping this issue altogether. C# doesn’t have this problem,
because the .NET CLR provides a primitive for structs.
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Having seen these aspects of value classes, we can now
dive into the implementation of our prototype. It follows the
standard three phases: inject, convert and commit.

The inject phasetransforms signatures of all fields, lo-
cals and parameters of value class types as well as return
types of methods that produce single-field value objects by
annotating them with@unboxed:

1 @value class Meter(val x: Double) {
2 def +(other: @unboxed Meter): @unboxed Meter =
3 new Meter(x + other.x)
4 def <=(other: @unboxed Meter) = x <= other.x
5 }
6 def report(m: @unboxed Meter) = {
7 if (m.<=(new Meter(9000))) println(m.toString)
8 else println("it’s over nine thousand")
9 }

This is a notable use-case for the first-class selectivity
support provided by our mechanism. Methods that return
multi-field value objects are not annotated with@unboxed
on the return type, since the JVM lacks the necessary sup-
port for multi-value returns. Leaving off the@unboxed an-
notation is all that it takes to have the result automatically
boxed in the method and unboxed at the caller.

Another responsibility of the inject phase is the creation
of bridge methods (§3.3). If a method that has value class
parameters overrides a generic method, inject creates a cor-
responding bridge:

1 trait Reporter[T] {
2 def report(x: T): Unit
3 }
4 class Example extend Reporter[Meter] {
5 def report(x: Meter) = report(x) // bridge
6 override def report(x: @unboxed Meter) = ...
7 }

Code emitted for these bridges is particularly elegant,
again thanks to the selectivity of the transformation. It turns
out that it is enough to just have the bridge be a trivial
forwarder to the original method with its parameters being
selectively boxed. This will produce a compatible signature
for the JVM and the convert phase will introduce the correct
conversions.

The convert phasefollows the pattern established in
§4, making@unboxed types incompatible with their non-
annotated counterparts and insertingbox andunbox mark-
ers in case of representation mismatches. For our running
example, the following code will be produced:

1 @value class Meter(val x: Double) {
2 def +(other: @unboxed Meter): @unboxed Meter =
3 unbox(new Meter(x + box(other).x))
4 def <=(other: @unboxed Meter) =
5 x <= box(other).x
6 }
7 def report(m: @unboxed Meter) = {
8 if (box(m).<=(unbox(new Meter(9000))))
9 println(box(m).toString)

10 else println("it’s over nine thousand")
11 }

The commit phaseuses the annotations established by
the inject phase and the marker conversions inserted by
convert in order represent the annotated value classes by
their fields. In particular, the commit phase changes the
signatures of all fields, locals and parameters annotated with
@unboxed into their unboxed representations, duplicating
the declarations as necessary for multi-field value classes.
Return types of methods are unboxed as well, but only for
single-field value classes.

On the level of terms, the transformation centers around
the conversion markers, causingbox(e) calls to become
object instantiations and rewritingunbox(e) calls to field
accesses. Additionally, we devirtualizebox(e).f expres-
sions as much as possible, which is done by transforming
box(e).f field selections to references toe or one of its
duplicates and transforming non-virtualbox(e).m(args)
method calls into calls to static extension methods.

Finally, term transformations perform necessary book-
keeping to account for duplicated declarations (argumentsto
parameters of value class types are duplicated as necessary,
assignments to locals and fields or value class types become
multiple assignments to duplicated locals and fields, etc).

1 final class Meter(val x: Double) {
2 def +(other: Double) = Meter.+(x, other)
3 def <=(other: Double) = Meter.<=(x, other)
4 }
5 object Meter {
6 def +(x: Double, other: Double) = x + other
7 def <=(x: Double, other: Double) = x < other
8 }
9 def report(m: Double) = {

10 if (Meter.<=(m, 9000))
11 println(new Meter(m).toString)
12 else
13 println("it’s over nine thousand")
14 }

It is worth mentioning that even with the necessity to
cater for the lack of built-in struct support in the JVM, the
resulting transformation is remarkably simple. First, we have
been able to implement it without changing the compiler
itself (in particular, without customizing the built-in erasure
phase). Second, custom logic in inject, convert and commit
phases spans only about 250 lines of code. This shows that
our mechanism can significantly reduce the effort necessary
to implement complex data representation transformations.

6.3 Case Study 2: Miniboxing

The miniboxing transformation in Scala [4, 60] is the most
complex transformation of the three case studies, and it is
also the most established, being under development for al-
most two years. This section briefly mentions the ideas be-
hind miniboxing and goes on to present how the data repre-
sentation mechanism was used in the miniboxing plugin.

Specialization [18] improves the performance of erased
generics: aside from the generic class, specialization creates
adapted variants for each primitive type. The variant classes
offer specialized methods, which receive and return primi-
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tive types, therefore allowing the program to use the class
without boxing primitive types. Yet, specialization leadsto
bytecode duplication, with 10 classes per type parameter:9

for the primitive types in Scala plus the erased generic class.
This means that specializing a tuple of 3 elements, which has
3 type parameters, produces103 classes.

Miniboxing was designed to reduce the bytecode explo-
sion in specialization. There are two key insights: (1) in
Scala, all primitive types can fit into a single tagged union
containing a type tag and a long integer payload, thus reduc-
ing the duplication to two classes per type parameter and (2)
since Scala is strongly typed and all primitive types are final,
all values of typeT are statically guaranteed to have the same
tag, which means we can attach tags to code instead of val-
ues – effectively hoisting the tag and obtaining a lightweight
reified types scheme [51], where a single tag is passed for
the type parameter. With miniboxing, fully specializing a 3-
element tuple creates 8 classes and an interface.

To explain how the miniboxing transformation works, let
us useidentity example again:

1 def identity[@miniboxed T](t: T): T = t
2 identity(5)

The @miniboxed annotation on type parameterT trig-
gers the miniboxing transformation of the method. This
will duplicate and adapt the body ofidentity to create
identity_M, which accepts primitives. This new method
encodes the primitive types in Scala into a long integer and
additionally receives a hoisted type tag corresponding to the
reified type ofT. The low level code will be:

1 def identity(t: Object): Object = t
2 def identity_M(tag: byte, t: long): long = t
3 minibox2int(identity_M(INT, int2minibox(5)))

In getting to this low level code, theinject phasedupli-
cates the methodidentity to identity_M and adds the
type tag:

1 def identity[T](t: T): T = t
2 def identity_M[T](tag: Byte, t: T): T = t

In the new method, the miniboxing plugin needs to trans-
form all values of typeT to Long. Long corresponds to the
payload in the tagged union, and is capable of storing the
value of any primitive type in Scala. The initial version pre-
sented in [60] used an eager transformation coupled with a
peephole optimization, but the number and complexity of the
peephole rules made this unfeasible. This motivated the de-
velopment of the data representation mechanism. Using this
mechanism, the inject phase marks the values that will use an
alternative representation (miniboxing uses@storage for
the annotated types):

1 def identity[T](t: T): T = t
2 def identity_M[T](tag: Byte, t: @storage T):

@storage T = t

Furthermore, the inject phase has the additional role of
redirecting calls from the generic versions of the method to

the miniboxed variants whenever the type arguments are in-
stantiated with primitive types or are known to be miniboxed
type parameters of an enclosing class or method:

1 identity_M(INT, 5)

Going into theconvert phasethe two methods do not
change, but the call toidentity_M needs conversions:

1 unbox(identity_M(INT, box(5)))

The box andunbox methods serve as markers, that the
commit phase replaces byminibox2box, or, if the tar-
get type is known, to more specific conversions such as
minibox2int (and vice-versa). During the commit phase,
annotated types are also converted to theLong integer,
which is the alternative representation in miniboxing:

1 def identity[T](t: T): T = t
2 def identity_M[T](tag: Byte, t: Long): Long = t
3 minibox2int(identity_M(INT, int2minibox(5)))

Finally, as this code passes through the Scala compiler’s
backend, the primitive unboxing and erasure phase trans-
forms boxedLong integers into unboxedlong and erases
the type parameterT to Object. This produces the exact re-
sult we showed earlier.

It is worth mentioning that miniboxing exploits all the
flexibility available in the data representation mechanism:
the alternative representation mapping is not injective, since
all miniboxed type parameters map toLong, the selectivity is
used to generate bridge methods for similar reasons to those
presented in §3.3 and the compatibility between annotated
and non-annotated types in the inject phase is used to easily
redirect method calls.

The miniboxing plugin [4] is now accepted in the Scala
community and several projects are experimenting with it.
This shows that the unified data representation mechanism
is not just a prototype but can reliably transform large code
bases.

6.4 Case Study 3: Staging

Multi stage programming [57] allows a program to execute
in several steps, at each step generating new code, compiling
and then executing it. In Scala, this technique has been used
by Rompfto develop the lightweight modular staging (LMS)
framework [44, 46], which removes the cost of abstractions
in many high-level embedded DSLs [43]. Yet, using LMS is
not straightforward, as it requires a custom version of the
compiler, dubbed scala-virtualized [35], which is capable
of lifting built-in language constructs. In this section, we
will show how this can be done as a data representation
transformation.

One of the early examples of staging given byRompfis
partially evaluating a power function through staging:
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1 def pow(b: @lifted Double, e: Int): @lifted
Double =

2 if (e == 0) 1.0
3 else if (e % 2 == 1) b * pow(b, e-1)
4 else {
5 val x = pow(b, e/2)
6 x * x
7 }
8 val pow5 = function(arg => pow(arg, 5))
9 println("3.0^5 = " + pow5(3.0))

10 println("4.0^5 = " + pow5(4.0))

The pow method computesbe. The base,b, is marked
as lifted, whereas the exponent,e, is not. This means that
calls topow, instead of computing a value, accumulate the
operations necessary to reproduce the result for a (possibly
unknown) argument and a fixed exponente. The call to
function triggers the execution ofpow for a stage-time
argument (arg) and fixed value of the exponent, in this case
5. This is followed by outputting the recorded operations and
re-compiling them into more efficient code. These recorded
operations do not includeif statements, sincee is a stage-
time constant and unroll the recursive call topow:

1 Compiling the following code:
2 *********************************
3 (arg0: Double) => {
4 val x0: Double = arg0 * arg0
5 val x1: Double = x0 * x0
6 val x2: Double = arg0 * x1
7 x2: Double
8 }
9 *********************************

10 3.0^5 = 243.0
11 4.0^5 = 1024.0

The key to stagingpow is that the@lifted arguments are
replaced by an alternative representation that accumulates
expressions into an operation graph and can synthesize new
code for them. In this case, theinject phasedoesn’t exist at
all, since the user marks the arguments to be@lifted in the
source code.

Theconvert phase follows the usual pattern of introduc-
ing conversions, with an additional constraint: immediate
values can be converted to lifted constants, but not the other
way around. This is done so staging and compiling are only
triggered explicitly, through calls such asfunction. This
restriction can be removed, but keeping it makes the perfor-
mance predictable, as it puts the programmer in control of
staging and compilation. Seen in relation to primitive types,
when staging the unboxing is cheap, but boxing can poten-
tially be expensive, so we want to trigger it explicitly.

The commit phase is the most interesting in the trans-
formation: it redirects method calls from the alternative rep-
resentation to a special staging object that records the op-
eration graph. This operation graph is then used to gen-
erate optimized code. It also redirects thefunction call
from the identity (in case the program is not staged) to
function_compile, which triggers the synthesis of the
code for the final result and compiles it. Since this part is
very similar to what is done in the LMS framework and is not

our contribution, we point the reader to the works ofRompf
[43, 44, 46] for more details.

The staging prototype we implemented serves to show
that lifting is yet another case of using an alternative rep-
resentation. Although the simple example we have shown
could also be staged with the normal Scala compiler, for
more complex examples we argue that instead of using a
custom Scala compiler [35], lifting should be treated as a
representation transformation, which would allow maximiz-
ing infrastructure reuse and making staging more accessible
to developers.

7. Related Work
Generics. Interoperation with generics motivates many of
the data representation transformations in use today. The
implementation of generics is influenced by two distinct
choices: the choice of low-level code translation and the
runtime type information stored.

The low-level code generated for generics can be either
heterogeneous, meaning different copies of the code exist for
different incoming argument types or homogeneous, mean-
ing a single copy of the code handles all incoming argument
types. Heterogeneous translations include Scala specializa-
tion [18], compile-time C++ template expansion [55] and
load-time template instantiation [29] as done by the CLR
[7]. Homogeneous translations, on the other hand, require a
uniform data representation, which may be either boxed val-
ues [12, 33], fixnums [62] or tagged unions [36].

In order to perform tests such as checking if a value is a
list of integers at runtime, the type parameter must be taken
into account. In homogeneous and load-time template ex-
pansions, one has to carry reified types for the type parame-
ters. While this has an associated runtime cost [51], several
solutions have been proposed to reduce it: in the CLR, rei-
fied types are computed lazily [29]. In Java several papers
have been published explaining schemes for carrying reified
types, including PolyJ [8], Pizza [37], NextGen [16] and the
work by Viroli et al. [61]. Finally, in ML generic code (also
called parametrically polymorphic in functional languages)
carries explicit type representations [25, 58].

Unboxed primitive types. In the area of unboxed prim-
itive types,Leroy [33] presents a formal data representa-
tion transformation for the ML programming language based
on typing derivations. The comparison in the introduction
states that we introduce selectivity, object-oriented support
and disentangle the transformation from its assumptions.
This is a somewhat shallow comparison. A deeper compar-
ison is that inLeroy’s transformation the inject and commit
phases are implicit and hardcoded while the two versions
of the transformation presented correspond to the typing al-
gorithm in the convert phase for the case of annotated and
non-annotated expected type. Instead of expected types, the
transformation knows where generic parameters occur, and
uses this information to invoke one version of the transfor-
mation or the other. Therefore our main contribution is dis-
covering and formulating the underlying principle and suc-
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cessfully extending it to a more broad context, to include
value classes, specialization and staging, which have very
different requirements.

Shaofurther extendsLeroy’s work [52, 53] by present-
ing a more efficient representation, at the expense of carry-
ing explicit type representations [25, 58].Minamidefurther
refines the transformation and is able to prove that the im-
proved transformation does not affect the time complexity of
the transformed program [34]. Tracking value representation
in types has been presented and extended to continuation-
passing style [20] byThiemannin [59]. Two pieces of infor-
mation are tracked in a lattice: whether the value correspond-
ing to the type is used at all (otherwise its representation can
be ignored - called “Don’t care polymorphism”) and if a cer-
tain representation is required. This information is used in a
type inference algorithm which can elide conversions when
the parameters are discarded or when a method call is in tail
call position, namely it doesn’t need to box the result only
to have the caller unbox it. It should be noted that the con-
versions operate on a continuation-passing-style IR on the
continuation-passing style.

A different direction in unboxing primitive types is based
on escape analysis [17], where the program is analyzed at
runtime and a conservative representation transformation
is performed. When implemented in just-in-time compilers
[54] of virtual machines such as PyPy [10] or Graal [64],
and coupled with aggressive inlining, the escape analysis
can make a big difference, possibly more than the global
data representations presented in this paper. Still, thesetwo
techniques are fundamentally different – escape analysis has
a local scope and relies heavily on inlining, while data repre-
sentation transformation can safely optimize across method
borders as long as the transformation will consistently make
the same decisions in subsequent separate compilations.
Interpreter-based techniques such as quickening [14] and
trace-based specialization [21] can improve escape analysis
with dynamic profiles of the program being executed. Truf-
fle [63] partially evaluates the interpreter for the running
program and makes aggressive assumptions about the data
representation, yielding the best results in terms of top speed
at the expense of a longer warm-up time.

The Haskell programming language has two reasons to
box primitive types in the low level code: (1) due to the
non-strictness of the language, arguments to a function may
not have been evaluated yet and are thus represented as
thunks and (2) due to parametric polymorphism. Haskell
exposes both the boxedInt representation and the unboxed
Int#, but later transformsInt values toInt# by adding
explicit conversions on each access. It then uses a peephole
optimization [27, 32] to reduce all unnecessary boxing. The
peephole optimizations have been formalized byHengleinin
[26]. Haskell also features calling convention optimizations
that make the argument laziness explicit and can unbox
primitives in certain situations [9].

Value classeshave been proposed for Java as early as
1999 [24, 47, 48]. The most recent description, which is
also closest to our current approach, is the value class pro-
posal for the Scala programming language [5]. We build
upon the idea that a single concept should be exposed de-
spite having multiple representations, but we step away from
ad-hoc encodings and fixed rules in the type system. In
this way, we can capture other representations, such as the
tagged representation in [36]. Value classes have also been
implemented in the CLR [1], but to the best of our knowl-
edge the implementation has not been described in an aca-
demic setting. The Haskell programming language offers the
newtype declaration [2] that, modulo the bottom type⊥, is
unboxed similarly to value classes in Scala and CLR.

Specializationfor generics is a technique aimed at elimi-
nating boxing deep inside generic classes. Specializationhas
been implemented in Scala [18, 19] and has been improved
by miniboxing [4, 60]. Specialization and macros have been
combined to produce a mechanism for ad-hoc specialization
of code in Scala [56]. The .NET framework automatically
specializes all generics, thanks to its bytecode metadata and
reified types [29].

A different approach to deep boxing elimination is de-
scribed for Haskell [28] and Pyton [11]. It relies on special-
izing arrays while providing generic wrappers around them.
This allows memory-efficient storage without the complex
problem of providing heterogeneous translations for each of
the methods exposed by data structures.

Multi-stage programming (also called staging) [57] re-
quires lifting certain expressions in the program to a reified
representation. Staging can be implemented using macros
[15, 22] or using specialized compiler extensions [35]. One
of the applications is removing the abstraction overhead
of high-level and embedded domain specific languages. In-
deed, staging was successfully used to optimize and re-target
domain-specific languages (DSLs) [13, 44, 46].

Annotated types [3, 6] have been introduced to trigger
code transformations and to allow the extension of the type
system into the area of program verification while reusing
as much infrastructure from the compiler as possible [40].
In the context of Java, type annotations have been used to
selectively add reified type argument information to erased
generics [23]. In the context of Scala, annotated types have
been used to track and limit the side-effects of expressions
[49, 50], to designate macro expansions [15] and to trigger
continuation-passing-style transformations [45].

Formalization. In [33], Leroy presents a full formaliza-
tion for the primitive unboxing for ML, including a proof of
operational equivalence. The .NET generics are formalized
in [65]. In the rules we state without a proof we rely on lo-
cal type inference, as described byOdersky et al.[38] and
Pierce et al.[42].
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