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Abstract 1. Introduction

Values need to be represented differently when interact- Lan_guage and compile_r designers are well aware of the intri-
ing with certain language features. For example, an integer cacies of erased generics [12, 18, 25, 27, 29, 33, 36, 60], one
needs to take an object-like representation when intexgcti  ©f Which is requiring object-based representations fampri
with erased generics, although, for performance reasons, i itive types. To illustrate this, let us analyze theenti ty
normally uses the direct representation. In order to sigpli  Mmethod, parameterized on the argument type,

the work of programmers, languages like ML and Scala ex-[, gef identity[T](arg: T): T = arg

pose the high-level concept (the integer) and let the canpil |- val x: Int = identity[Int](5)

handle representation and conversion.

This pattern appears in multiple language features such 28,4
value classes, specialization and multi-stage progragmin
mechanisms: they all expose a unified concept which they
later refine into multiple representations. Yet, the imptam
tations are typically ad-hoc and entangle the core mecha-
nism with assumptions about the alternative representatio
and the implementation of generics, thus losing sight of the
general principle.

In this paper we present an elegant and minimalistic type-
driven generalization that subsumes and improves the state
of-the-art representation transformations. In doing se, w
make two key observations: (1) annotated types convegientl
capture the semantics of using alternative represengation|: def identity(arg: Object): Object = arg
and (2) local type inference can be used to automatically,| * </</a| "er gf ;D‘éjed! ”ébj:e'cfezt Léiﬁg;t] (5)
reliably and optimally introduce the necessary convession |, g ret_boxed: Object = identity(arg_boxed)

We validated our approach by implementing three lan- |s val x: int = unbox(ret_boxed)
guage features in the Scala compiler: value classes, $pecia
ization via miniboxing and a simplified multi-stage program
ming mechanism. An encouraging result is that we were
able to reimplement and extend value class functionality in
the Scala compiler with two man-weeks of work, without
reusing any code from the previous implementation.

The low-level compiled code fordentity needs to
ndle incoming arguments of different sizes and seman-
tics: from bytes to long integers and references to heap-
allocated objects. To implement this, compilers impose a
uniform value representation, usually based on referetaces
heap objects. This means that primitive types, when passed
to generic methods need to be represented as objects, in a
process called boxing. Since boxing slows down execution,
whenever primitive types are used outside generic environ-
ments, they use their direct unboxed representation. In the
example below, ‘x' is using the unboxed representation de-
noted as nt :

This example exposes two representations for the same
concept: the high-level integer typat can be represented
either as an unboxed primitivient or as a boxedj ect ,
which is compatible with erased generics. There are two
approaches to implementing this duality: In Java, both the
boxed and unboxed integers are accessible, thus making pro-
grammers responsible for choosing the representation and
converting when necessary. To avoid burdening the program-
mers with implementation details, the ML and Scala pro-
gramming languages expose a unified concept of integer and
automatically choose the representation inserting thesiec
sary conversions during compilation.

This mechanism of exposing a single concept with multi-
ple representations is used in other language featuredlas we

Value classeql, 5, 24] behave as classes in the object-
oriented hierarchy, but are optimized to efficient C-like
structures [55] where possible. This exposes two represen-
[Copyright notice will appear here once ‘preprint’ option is removed.] tations of the value class concept: an inline, efficientcitru
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representation and a flexible object-oriented representat of program properties, from simple nawd | -ness to full
that supports subtyping and virtual method calls. effect tracking [40, 49].

Specialization [18, 19] is an optimized translation for Our first key insight is that annotated types are a per-
generics, which compiles methods and classes to multiplefect match for the one-concept-multiple-representatams
variants, each adapted for a primitive type. An improvement proach. The semantics of annotated types can be specified
to specialization is using the miniboxed representatign [4 externally and can change during the compilation pipeline,
60], which creates a single variant for all primitive types, so we can emulate the concept by keeping annotated and
called a minibox. In this transformation, a generic type  non-annotated types compatible before introducing cenver
can be either boxed or miniboxed, in yet another instance of sions and later we can emulate the two representations by
a concept with multiple representations. making the types incompatible. Furthermore, unlike other

Multi-stage programming (referred to as “staging”)  mechanisms, annotated types allow us to selectively mark
[57] allows executing a program in multiple stages, at each the values that will use alternative representation: Famex
execution stage generating a new program that is compiledple, marking a value’s type a@&nboxed means it will use
and ran, until the final program outputs the result. In prac- the alternative unboxed representation. Contrarily,ifegit
tice, this technique is used to lift expressions to opematio unmarked will continue to use its boxed representation.
graphs and generate new, optimized code for them. This Depending on the transformation, annotations can be in-
shows a very different case of dual representations: a valuetroduced automatically by the compiler or manually by pro-
can be represented either as itself or as a lifted expressiongrammers. This provides the flexibility necessary to captur
to be evaluated in a future execution. a wide variety of transformations: some of the transforma-

The examples above seem like unrelated language feations work automatically, e.g. unboxing primitive typesian
tures and mechanisms. And, indeed, compiler designers havevalue classes, whereas others, like staging, where annota-
provided dedicated solutions for each of them. These solu-tions represent domain-specific knowledge, require manual
tions are typically designed in an ad-hoc way, addressing annotation.
just the problem at hand. For instance, the solutions em-  This flexibility of annotating values that use the alterna-
ployed by ML and Scala are aimed at satisfying the con- tive representation is in sharp contrast to state of theaarst
straints of erased generics [12, 33, 59], and hardcode thisformations for erased generics [12, 33]. These transforma-
decision into the transformation algorithm. Miniboxingegs  tions consider the unboxed representation as always desir-
a custom transformation implemented as a Scala compilerable and hardcode the semantics of erased generics into thei
plugin [4, 60]. The Lightweight Modular Staging framework transformation rules. In the following example, we show
[44] in Scala is implemented using a fork of the main com- how simple it is for the compiler to signal whether a value
piler, dubbed Scala-Virtualized [35] which is specifically should be boxed or unboxed and whether generics are erased
retrofitted to support staging. or reified and unboxed [7, 29]. This flexibility is fundamen-

Yet, all these mechanisms have two elements in common:tal to staging, but also enables a better translation indle c
(1) the use of multiple representations for the same conceptof erased generics, as the next sections will explain:
and (2) the introduction of conversions between these fepre - :

K e . . 1 // erased generics, boxed val ue:
senta}tlons. The;e two S|m|Iar_|t|e_s suggestthatth.ereuman. . val x: Int = identity[lInt](5)
derlying yet undiscovered principle that generalizesthe i |: // erased generics, unboxed val ue:
dividual transformations. We believe exposing this piitei 4 )h/'sll Xg @ngoxed Int = igent idty[ll nt](5)
will disentangle the transformations from their assumpgio |° “;‘: Ognbgigs' : Ets =Ui”dgrx]tei t;f‘éﬁboxed nt](5)
enabling researchers to reason about them and implementots
to reuse a common infrastructure. The type systemcan be used to automatically, reliably

To this end, we present an elegant and minimalistic type- and optimally introduce conversions based on the annotated
driven mechanism that uses annotations to guide the intro-types. Since the semantics of annotated types can change
duction of conversions between alternative represem&tio  during compilation, we can trigger the separation by mak-
In doing so, we make two key observations: (1) annotated ing annotated types incompatible with non-annotated type.
types conveniently capture the semantics of using an alter-Then, retypechecking the abstract syntax tree will expose
native representation and (2) the type system can be used tancompatible types, which correspond to representatia mi
automatically, reliably and optimally introduce convers matches that we need to patch by introducing conversions.
between the representations. Our second key observation is that name resolution and

Annotated typesare a mechanism that allows attaching type checking for annotated types provides what can be
additional metadata to the types in a program [3, 6]. This in seen as a forward data flow analysis [30] for representations
turn allows external plugins to verify additional propesti On the other hand, local type inference [38, 42] propagates
of the code while leveraging the existing type system. In- expected types, and thus provides a backward data flow
deed, annotations have been used to statically check a ranganalysis. Having these two analyses meet at points where
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the representation doesn't match ensures that conversionglude with an on-demand transformation, which aims at in-

are introduced only when necessary:

1 // erased generics, boxed val ue:
val x: Int = identity(box(5))

3 /| erased generics, unboxed val ue:

2

4+ val x: @nboxed Int = unbox(identity(box(5)))
s // reified unboxed generics, unboxed val ue:
s val x: @nboxed Int = identity[ @nboxed Int](5)

troduces conversions only when necessary.

In the rest of the paper we consider the integer concept
to be boxed by default and represent it oyt . The goal
of the transformations is to convert it to the unboxed inte-
ger,i nt . We follow the same convention for other primitive
types, such akong andl ong, Byt e andbyt e or Doubl e
and doubl e. Furthermore, unless otherwise specified, all

Being type-driven, our approach can be seen as a genergeneric classes are assumed to be compiled to erased ho-

alization of the work of_eroy on unboxing primitive types

in ML [33]. Yet, it is far from trivial generalization: (1) we
introduce the notion of selectively choosing values to use
the alternative data representation, which is crucial to en
abling staging and bridge methods [16] in object-oriented
hierarchies, (2) we extend the transformation to work in the
context of object-oriented languages, with the complexiti
introduced by subtyping and virtual method calls and (3)
we disentangle the transformation from the assumptioris tha
generics are erased and that the alternative represenistio
unboxed primitive types.

mogeneous low-level code. Finally, to improve readability
we place annotations in before types (e@nboxed | nt)
instead of after (e.g.nt @mnboxed), as the Scala syntax
requires.

2.1 Naive Transformations

In order to begin, let us analyze a simple code snippet,
where we take the first element of a linked list of integers
(Li st[ 1 nt])and construct a new 1-element linked list with
this element:

Domain-specificityof particular data representation trans-
formations can be expressed with custom logic that makes

1 val
2 val

x: Int List[Int](1, 2, 3).head
y: List[Int] = List[Int](x)

use of annotations and conversions obtained thl’OUgh the A naive approach to Comp”ing down this code would be

type system. For example, primitive unboxing will replace
@nboxed Int by int and give semantics tbox and
unbox, in this case creating the boxed object and access

to replace all boxed integers by their unboxed representa-
tions without performing any dataflow analysis:

ing itsval ue field respectively.
The paper makes the following contributions:

1 val
2 val

X: int List[Int] (1, 2, 3).head
y: List[Int] List[Int](x)

e We survey existing approaches to data representation
transformations (82 and 83), and show there is a need
for a novel approach that allows for additional flexibility;

e \We show a general data representation transformation
mechanism for the annotated program, which does not

The resulting code is invalid. In the first statemenis
unboxed while the right-hand side of its definition, the head
of a generic list, is boxed. In the second statement, weereat
a generic list, which expects the elements to be boxed. Yet,
x is now unboxed.

impose the semantics of the alternative representationsy 2  Eager (or Syntax-driven) Transformations

nor of the conversions (84) and make the first steps to-
wards formalizing it (85);

¢ \We validate the mechanism by implementing three lan-
guage features in Scala compiler using our transforma-
tion: value classés specialization using the miniboxing

The previous example shows that naively replacing the rep-
resentation of a value is not enough: we need to patch the
definition site and all the use sites, converting to the right

representation;

representatiohand a simple staging mechanis(86).

In the following sections we provide detailed motivation,

1 val
> val

X: int unbox(List(1, 2, 3).head)
y: List[Int] List[Int] (box(x))

elaborate on the details of the mechanism and validate our
approach.

2. General Data Representation

In this section we present several data representatios-tran
formations that deal with boxing and unboxing of primitive

In the snippet above, two conversions have been intro-
duced. In the first line, since becomes unboxed, the right-
hand side of its definition also needs to be unboxed. In the
second linex is boxed to satisfy the list constructor. This
means that by eagerly adding conversions we can keep the
program code consistent. Let us take another example:

types, highlighting their strong and weak points on small
examples. We start with a naive approach, continue with a

1
a

I nt
I nt

1 val
2 val

a:
b:

transformation that eagerly introduces conversions and co

Ihttp://github. cont m ni boxi ng/ val ue- pl ugi n

Translating this code using the eager transformation pro-
duces the following output;

2http://github. cont ni ni boxi ng/ mi ni boxi ng- pl ugi n
Shttp://github. cont ni ni boxi ng/ st age- pl ugi n

1
unbox(box(a))

i nt
i nt

1 val
> val

a:
b:
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Sincea is transformed from boxed to unboxed, all its a + b, because the type checker will know that all variables
occurrences are replaced byx( a) . The same happens for are unboxed, and hence no conversions are necessary:
b, so its definition is wrapped in amnbox call. Yet, this T a
produces suboptimal code, which boxegust to unbox it L xgl ZE : 2:
later. In the case of Scala programs, which are compiled|: val c: int
to Java Virtual Machine (JVM) bytecode, this redundancy
can be eliminated by escape analysis [54] in the just-ietim
compiler [31, 39]. Yet it typically takes 10000 executions . o
to trigger the just-in-time compiler and the optimizatipns before we get to ourfmgl unified approach. . :
which means 10000 boxed integers are created just to be Let us assume we mt_roduce a boxed unsigned integer
immediately unboxed and garbage collected later. U nt, which we u_nbox tai nt . The operators for the un- -

signed type are different, but the unboxed representasion i
2.3 Peephole Optimization For Eager Transformations ~ €Xactly the same as fdmt . In practice, these cases are
common: several value classes can have the same parame-

In order to cut down redundant conversions in code producedter types, so their unboxed representations coincide dnd al
by eager transformations, we need to perform a second passtaged expressions share the same alternative représentat
over their result using a technique called peephole opti- With this in mind, let us consider the following piece of
mization. Our optimization rewritédox( unbox(t)) and source code:
unbox( box(t)) tojustt. This simple transformation, sim- val m Ot =1
ilar to the ones in Haskell [27] and miniboxing [60], can be |, vai n: Int = -1
successfully used to eliminate the redundant conversions i |: List(if (...) melse n)
the definition ofb.

Yet, removing just the aforementioned conversions is not
enough. The following example shows this:

nonon
D ®»
+
o

This idea is a precursor to the transformation presented in
this paper, but there are still issues that need to be addtess

On the one hand, bothandn are unboxed, which means
that the corresponding expression is also unboxeditot .
On the other hand, the constructor of the linked list expects
1val c: Int =a+b ‘ a boxed argument. This suggests that tlie expression
needs to be boxed, but actually in this situation boxing is
impossible, becausent , the type of the f , can box both to
I nt andUl nt, and we can't discern between the two based
\'1 val c: int = unbox(box(a) + box(b)) ‘ on the context. The correct translation should have been:

Eager transformations will box andb and will unbox
the result of their addition, which is inefficient:

Therefore, we need an extra rule for distributing the un- | : va: m i n: 11

. . . . 2 val n: 1n -
Sg;}(gnxg(?[z))e.ranon insidainbox(t 1 +t2) = unbox(t1l) + S LiSt(if (o) box{Uint](m el se box[Int](n))

In practice we have seen many more examples that re- It may seem that transforming values one by one might
quire additional optimization rules. This suggests that al provide a way out of the conundrum. This way, only a single
though eager transformations work well for minimalistie in ~ value at a time would be in flux, which would make the
termediate languages, such as Haskell's Core, the complex-choice of boxed representation unambiguous.
ity of accompanying peephole optimizations make them im-  However, this takes us back to the square one with respect
practical for Scala. The initial implementation of minibox to (non)-optimality of the resulting code, because ini &n
ing [60] used an eager transformation, but we were forced to expression both branches to be transformed at once - either
look for alternative approaches due to the number and com-both becoming boxed or both unboxed, and that can't be

plexity of the peephole optimization rules. decided in an optimal way based on the type of just a single
branch. For example, while boxing by default is desirable in
2.4 On-Demand (or Type-driven) Transformations the example above, it would not be desirable if badndn

were signed integers, in which case it would be best to box
the entire f expression back tont instead of the individual
branches.

Clearly, a different perspective is required to make on-
demand transformations viable, and this is something that
we’ll present in subsequent sections.

As outlined above, eager transformations introduce repre-
sentation conversions at all definition and use sites of prim
itive values. This makes them straightforward, but alse sub
optimal, producing extraneous conversions that later t@ed
be cleaned up.

An alternative approach would be to introduce conver-
sions only when a representation mismatch occurs, using a
dedicated mechanism to check representation consistency3,  Object-Oriented Data Representation
For example, making the boxed/unboxed distinction explici
to the type checker allows its logic to check whether repre- The previous section presented the problems faced by data
sentations correspond and hence whether conversions neetkepresentation transformations, especially given coxriple
to be introduced. This achieves optimality in the case of termediary representations (IRs) such as the one used for
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Scala. This section identifies additional challenges intro in the presence of erasure and other representation transfo
duced by object orientation. mations. Bridge methods are introduced when the low level
signature of a method does not conform to one of the base

A typi
3 Subtyping method it overrides. Consider the following example:

In languages like Java and C#, all types have a commo

supertype, usually callethj ect , which provides universal |+ @al ue class Dival x: Int)
. . 2 class E[T] {
methods such asoString, hashCode or equal s. This . def id(t: T) = println("boo")
presents a challenge for unboxing primitive types: 2}
s class F extends E[D] {
1 val a: Int =1 /1 can be unboxed s override def id(d: D) = println("ok")
> val b: bject = a // needs to be boxed back 7}

Althougha can use the unboxed representation, it needs A naive translation of this code that doesn’t account
to be boxed back when it is assignedbiainceb is compiled  for erasure will end up withF. i d having the low-level
to an object reference in the low level code. signature(d: int): Unit, which on the JVM does not
3.2  Virtual Method Calls override the base methad i d with the low-level signa-
i ture(t: Object): Unit. This will lead to virtual calls to
Vlrtual' method calls glso create cha!lenges for data repre- ; 4 ot being dispatched @ i d. A correct translation for
sentation transformations. Boxed objects can act as the re— st introduce a bridge method that takes an instance of

ceivers of virtual calls, because they hav<_a an associated vi the value clas® as an unboxed argument. Such method will
tual methofd rt]ab'?,- :—(;owe\(/jer, url;l_boxed obje;:]t_st?nly st?re the pe correctly perceived as overridigi d by the JVM, and
contents of their fields and nothing more, which complicates o, it can dispatch to the unboxed implementation:

matters:
vval a: Int =1 /1 can be unboxed . CIoaixsesr rFi deeXtdeenfdsi dE([dl?] ({]bj ect) = id(unbox(d))
> println(a.toString) // needs special treatnent o def id(d: int) = println("ok")

There are two approaches to handling virtual calls: 1) an|’ }

unboxed callee can be boxed so it can act as a receiver of Generating this code is impossible if the data representa-
the virtual call, or 2) if the corresponding method is final, tjon transformation always unbox&s which is again only
then its implementation can be extracted into a static nelpe possible if the transformation is selective.

making the virtual method table unnecessary. Both of these The optimal data representationis not always unboxed.
techniques have been used in practice, although the secongf a value is generated in its boxed representation and is
is markedly better for performance: in the method extractio always expected in the boxed representation, there is no
process, the receiver becomes an explicit parameter and cafeason to unbox it:

be unboxed. In Scala, methods extracted from value classe

. 1 def reverse(list: List[Int]): List[Int] =
are called extension methods [5]: > var Ist: |_(i st[Int] = [| i st]) bl = A
3 var tsl: List[Int] = NI

1 def extension_toString(i: [g: String = ... 4 var elt: Int = 0 // stored in unboxed form

while (!lIst.isEnmpty) {

3.3 Necessity for Selective Transformations 6 elt = Ist.head // converting boxed to unboxed
o o 7 tsl =elt::tsl // converting unboxed to boxed
We argue that selectivity should be built into data represen |, Ist = Ist.tail
tation transformations as a first-class concern allowirgg th |¢ }
o tsl

compiler or the programmer to individually pick the values |'
that will use the alternative representation. At the moment | !
most data representation transformations make the assump- Unless the data representation transformation is seéectiv
tion that all values that can use an alternative representa-in the low-level bytecodes! t is represented as an unboxed
tion should also use it. However we identified several casesvalue. But during each iteration, assigning thead of the
where this assumption is invalid: (generic) list teel t converts a boxed integer to the unboxed
The low level target languagemay impose certain re-  representation. The subsequent statement performs the in-
strictions on the representations used. For example, i@ Sc  verse transformation, creating a new boxed integer &bt
compiler targets JVM bytecode, which does not have a no- and prepending it to the reversed list. This sequence of con-
tion of structs and only allows methods to return a single versions in the hot loop severely impacts the performance,
primitive type or a single object. This restriction forcds a making it desirable to selectively enable unboxing.
methods returning multi-parameter value classes to keepth ~ Summarizing 82 and 83, we note that an ideal data rep-
return type boxed, which is only possible if the transforma- resentation transformation should be smart about introduc
tion is selective; ing conversions, should account for object orientation and
Bridge methods[16] are introduced to maintain coherent should allow for selective conversions. The next sectidh wi
inheritance and overriding relations between genericselas

DRAFT - Please do not circulate 5 2014/3/26



present exactly that - a general, optimal, selective anglodbj  for the compiler phases before the data representatios-tran
oriented data representation transformation. formation,@nboxed | nt andl nt can be fully compatible,

i . . while afterwards they can become incompatible, guiding on-
4. Unified Representation Transformation demand transformations into introducingpconvers(:;ions. ’
This section presents our unified data representation-trans

formation mechanism. We start by explaining the key in- 4.2 Mechanism

sights of the transformation, then dive into the algorittim i
self and finally show how this transformation improves over
the state of the art.

Having seen the key insights, we can now dive deeper into
the generic transformation mechanism. It is composed of
three phasesnject, convertandcommitthat work with type-

4.1 Key Insights checked programs. Throughout the presentation we will use

In a compiler, name resolution is effectively the high-leve the following example:

equivalent of a forward data flow analysis [17], tracking |. def fact(n: Int): Int =
the reaching definitions. Coupled with a type system, name|z if (n <= 1)
resolution propagates the types of symbols in a programs 1
el se

syntax tree. On the other hand, the local type inference| n o+ fact(n - 1)
[38, 42] mechanism in a type checker acts as a backwar
data flow analysis tracking the expected type of expressions ~ The inject phasejust marks the types that are going to

The first key insight is that name resolution and local be unboxed without doing anything else. In particular, no
type inference can effectively collaborate to produce adat conversions are performed during this phase, which allows
flow analysis which can find mismatching representations Marking values, changing method signatures and redigectin

and trigger conversions between them: method calls without worrying about representation incom-
_ patibilities or introducing conversions. In the example be
1 def foo(x: String): Int = low, this is most visible in the recursive call to fact, where

2 X /] forward analysis: x refers to argunent
: /'l x of nmethod foo of type *String'
4 /'l backward analysis: the return type of
5 /'l method foo needs to be ‘Int’

11 => types do not match

the argument is not converted to a different representation

1 def fact(n: @nboxed Int): @nboxed Int =
if (n.<=(1: @nboxed Int))
(1: @nboxed Int)

el se
n.=(fact(n.-(1: @nboxed Int)))

a B ow N

Forward and backward tracking of type and thus repre-
sentation information allows the optimal transformatidn o
code, as shown in the lazy transformation description in  Unlike in previous examples, now we explicitly mark the
§2.4. Optimality comes from introducing conversions only constant literals for unboxing: the literal constanwill be
in the case of a mismatch, and therefore not introducing an unboxed value in the low level code, thus we mark it
redundant conversions (excluding situations with explici for unboxing usingl: @mnboxed. Also, the operators in
domain-specific decisions to not unbox certain values that Scala are desugared to method calls, and we made this ex-
are better off boxed, as shown in §3.3). plicit by adding the commonly accepted method notation:

Use of types to encode data representation is widely recei ver. net hod(args). Thus, instead oh <= 1 we
spread, having been employed in a humber of data repre-wroten. <=( 1) . These expansions do not impact the gener-
sentation transformations [5, 27, 33]. Yet unboxing disect  ality of the transformation but serve to clarify how the san
to the primitive type will not work unless the mapping is formation mechanism works.
reversible (§82.4). A different approach is to introduce new  This phase can have other uses as well, such as, for
synthetic types [5] for the alternative representation this example, introducing bridge methods or duplicating code
is inflexible: (1) the types are not accessible to programsmer and specializing it, in the case of miniboxing. Alternalyye
thus the programmers cannot intervene in the data represenit might not be present at all, as in the case of staging, where
tation decisions and (2) such types are typically desigoed f  the values to be lifted are annotated by the programmer.
the problem at hand and do not generalize. From a bird's eye  The convert phaseis the centerpiece of the algorithm
view, the problem with new synthetic types is that they only and is similar for all data representation transformatidns
model the unboxed representation, whereas the ideal typehas two steps: (1) it makes the annotated types incompati-
encoding would allow modelling concepts that are lateitspli ble with the un-annotated types, thus invalidating theemntrr
into different representations. abstract syntax tree and (2) it re-typechecks the tree and in

In this context, the second key insight regards tracking troduces conversions where necessary. The conversions are
representation information in the type system: annotated introduced when an annotated type is expected and the un-
types [3, 6] are a perfect fit for tracking unboxed repre- annotated type is passed and vice-versa. Since the trek has a
sentations: (1) they are accessible to programmers, (2) theready passed name resolution and typechecking before, run-
mapping from boxed to unboxed types is reversible and (3) ning the typechecking algorithm again will only make a dif-
they can change semantics during compilation. For instance ference when conversions need to be inserted.
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Additionally, note that the object-oriented aspects of the

transforming one or the other is equally simple: by not anno-

language need to be taken into account. For example, methodating the argument or the return value, one can deriverdiffe

calls on the alternative representation require boxindchwvh

ent scenarios of the transformation, all with the exact same

can later be removed by the commit phase using extensionconvert and commit transformations.

methods [5]. Supertypes are also taken into account by this

phase. Since types with alternative representations ak fin

Generality. Using the proposed transformation mecha-
nism eliminates the need for peephole optimizations (§2.3)

a class cannot have an alternative representation and be a swand drastically simplifies the overall specification: ortig t
perclass at the same time. Therefore, supertypes will not berules for the inject and commit phases need to be specified,
annotated. If an unboxed value is assigned to its supertype since the convert phase is reused from one transformation to

a boxing conversion is automatically inserted due to the an-

notation mismatch. With the conversion in place, we have a

boxed value that is indeed compatible with the supertype.
The convert phase will transform our running example to:

1 def fact(n: @nboxed Int): @nboxed Int
if (box(n).<=(1: @nboxed))
(1: @nboxed)
el se
unbox(box(n).*(fact(unbox(box(n).-(1
@nboxed)))))

2

5

In this listing, box conversions are introduced for un-
boxed method call receivers while thabox conversions
are used to convert the boxed results of thend- opera-

tors to unboxed integers. The resulting code has boxing and

unboxing semantics of the program expressed in a clear, ex
plicit form that is used by the final phase, commit.

The commit phaseis the final phase in the transforma-
tion mechanism and is meant to give semantics to the anno
tated types and to the conversions. For instance, in a primi-
tive type unboxing transformation, commit is going to trans
form @nbox | nt intoi nt, unbox into a field access that
extracts the unboxed value from a boxed integer, lamd
into an object creation. Method calls can also be redirected
extension methods (in this case underlying platform’srintr
sics), thus cutting down on object allocations. After theneo
mit phase the program is fully and optimally transformed:

1 def fact(n: int): int =
> if (intrinsic_<=(n, 1))
3 1
el se
intrinsic_x(n, fact(intrinsic_-(n, 1)))

4.3 Advantages

The previous sections have shown the motivation for the
transformation and how our mechanism works. We will now
elaborate on how our work improves upon the state of the art
in data representation transformations.

Optimality. Unlike eager transformations in use today
[27], our mechanism tracks representations in a forward and
backward data flow analysis to avoid introducing redundant

the next. In our validation section (86), we describe three
scenarios where we used the exact same convert mecha-
nism, and only needed to reimplement the inject and commit
transformations. This shows the mechanism is general and
makes transformation specification simple and elegant. Fur
thermore, the transformation mechanism is flexible in that i
can accommodate a wide range of data representation trans-
formations.

Support forobject-oriented aspectsn a language is pro-
vided by the simple boxing of method call receivers and ex-
pressions for which a supertype is expected. Furthermore,
the commit phase can reduce the boxing operations by re-
placing virtual method calls by static extension methotkcal
thus reducing the number of heap objects allocated.

The proposed mechanism provides a strong contribution
in an unexpected direction, considering its ingredieimtsal
type inference and annotated types. We have validated this
mechanism in three scenarios with very different require-
ments and representations. The next section will provide a
formal description of the convert phase.

5. Formalization

This section sets out the formal rules of the transformation
Despite presenting the rules, we do not prove operational
equivalence in this paper and leave it for future work.

The formalization for the convert transformation is based
on SystemF.. [41] with local colored type inference [38,
42]. We use the notatiodT for types synthesized from
terms and\ T for inherited (expected) types. Intuitively these
two notations correspond to the forward and backward prop-
agation in a data flow analysis.

To support annotated types, we extend the types of Sys-
tem F.. to:

T == types:
X type variable
Top maximum type
T—T type of functions
VX <T.T universal type
@lt T annotated type

conversions. This makes tedious peephole transformations
redundant and enables the data representation transforma2-1 Before the Convert Phase

tion to focus on the most important aspect: correctly trans-
forming the program in the inject and commit phases.
Selectivity. Selectivity is build into the transformation

The input for the inject phase is a typed tree, with all the
types inferred and the expansions (such as implicit parame-
ters) in place. In all the phases before the convert phase we

mechanism as a first-class concern. Indeed, in the previoushave the following two subtyping rules:

example, our choice was to transform both the input argu-
ment of thef act method and its return type. But selectively
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@lt T < T (S-ALT2)

classes [5] with just two man-weeks of work and without
reusing any pre-existing code.

These two rules ensure that annotated and non-annotated We Will begin by describing the plugin architecture in the

types are compatible, thus modelling the unified concept.
5.2 After The Convert Phase
Passing to the convert phase, the 8rA and S-AT2 sub-

typing rules are removed. We then retypecheck the program

with two additional rules for annotated types. We use the
following notation for the typing judgement:

T,k t~t' T
WhereT is the expected typé; is the typing context; is
the original term, which is rewritten # and7” is the actual
type. The two additional rules introduce conversions when
representations do not match:

/\@.lt /\T,F - t’\/?t/: VT/ \/T/ < /\T
r@lt \T,T - t~>unboxt : @lt VT’

(T-AvLT)

ATttt @lt VT VT < A

T
AT.T F t~box ¢ : VT’ (T-UNALT)

The intuition behind the first rule is that whenever the

Scala compiler and how it can be used to implement data
representation transformation, and continue by presgntin
each of the three case studies.

6.1 Scala Compiler Plugins

The Scala compiler allows extension via compiler plug-
ins. These can customize the type checker via analyzer and
macro extensions and can also add new compilation phases.
In this section we will describe the annotation checker
framework that is part of analyzer extensions and present
the custom compiler phases in data representation transfor
mations.

With the annotation checker framework, compiler plug-
ins can inject annotations during typechecking, can pevid
custom logic to calculate meets and joins of annotated types
and can apply custom transformations to trees that have an-
notated types. Moreover, in this framework it is also pdssib
to extend the vanilla subtyping logic in the Scala compiler
by providing custom and phase-dependent subtyping rules
for annotated types.

The annotation checker framework can therefore at-
tach custom semantics to annotated Scala types. Using this

expected type is annotated, but the term’s type is not, theframework,Rytzcreated a purity and effects checker [49]

rule introduces an explicitnbox operation. And vice versa,
the second rule will trigger when a term’s type is annotated
but the expected type in not, thus thex operation is intro-
duced. Thénox andunbox functions are considered built-in,
with the expected generic signatures. It is worth noting tha
the typing rules will only introduce the conversions to ter-
minal AST nodes, namely to those in which representations
happen to mismatch:

1 def fact(n: I nt
> if (..))
3 | . head
4+ else
box(n) // the expected type Int propagates
// to the then and el se branches, of

7 /1 which the el se branch needs boxi ng

@nboxed Int, |: List[Int]):

6. Validation

This section describes how we validated the unified trans-
formation mechanism by using it to implement three very
different language features: value classes, speciaizata
miniboxing and staging.

that uses annotations to track side-effecting code Rordpf
implemented a continuation-passing style (CPS) transderm
tion triggered using annotated types [45].

In the context of data representation transformations,
the annotation checkersframework is used to implement
the one-concept-multiple-representations mechanism. Be
fore the convert phase, the annotated types are compatible
with their non-annotated counterparts, therefore allgwire
transformations to rewrite the code without taking repnese
tations into account. During the convert phase, the anedtat
types and non-annotated types become incompatible, driv-
ing the insertion ofbox andunbox conversions. Finally,
after the convert phase, the types remain incompatible, so
further phases do not confuse representations:

1 def annotationsConforn{tpel: Type,

> if (phase.id < convertPhase.id)

3 true

4+ else

5 (tpel.isAnnot at ed
tpe2.isWldcard

tpe2: Type)

t pe2.i sAnnot at ed) ||

In order to transform code, compiler plugins can also in-

In our case studies we observed increased productivity troducecustom phasesat precise points in the compiler

thanks to the reuse of the common transformation mech-
anism in all three scenarios. Two decisions also provided

pipeline. A data representation transformation plugin-typ
cally creates three custom phases, corresponding to the in-

tangible benefits to the development process: (1) decawplin ject, convert and commit phases in the mechanism outlined

the decision to unbox values from the actual mechanism for
introducing conversions and (2) decoupling the altereativ
representation semantics from the conversions and aedotat
types. A highlight of the validation is the fact that we reim-

in 84.

The inject phaseis used to inject annotations that ini-
tiate the transformation process. To do so, the phase visits
all entries in the symbol table and updates their signatures

plemented and extended the Scala compiler support for valueby annotating types that need to be converted to alternative
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representations. Since this phase is dependent on the transclasses. Furthermore, values of typet er will use the
formation at hand and typically does more than just adding unboxed representation wherever possible.
annotations, it will be described in more detail in each ef th
dies 1 @al ue class Meter(val x: Double) {

case studies. . . > def +(other: Meter) = new Meter(x + other.x)

The convert phaseis the core of the transformation |: def <=(other: Meter) = x <= ot her. x
mechanism and is similar for all case studies. Since the in- r«ij . ( -
: ' i sdef report(m Meter) =
Jec_t phase changes the symbols S|gnatur_es and the annc} it (m <=(new Meter (9000))) printin(m toString)
tation checker makes_ the annotat_ed types mcqmpatlble, the, oise printin(*it’s over nine thousand")
convert phase essentially starts with an inconsistentatist |z}

syntax tree, in the sense that, in its initial shape, it dag#s n . ) :
y b Before we dive into the transformation, let us consider

typecheck. The job of the convert phase is to introduce con- basic facts about val | lating th ith
versions where necessary such that tree is consistent. againso.mt(.e asic I acts ? t(')u V? ueC;aises, dcgrrel a Igg b ?{Pt;’]\’ '
This is done by re-typechecking the tree and introducing existing implementations for [1] and Scala [5] (bo €

conversions when representation mismatches occur. official transformation shipped with Scala 2.10+, and the

Following the framework described in 84 and 85, the con- prototype we present in this paper). .
vert phase retypechecks the program, making use of the lo- Finality . I_Even t.h(.)UQh va_Iue classes_ can be percen_/eql as
cal type inference algorithm implemented in Scala in order _classes, their participation m_subclassmg hqs to beémmt_
to perform backward and forward propagation of represen- In order. to allow porrect boxw_lg and un_boxmg. Indeed, if
tation information. along withmet er it were possible to define another value

In Scala, the type checker consists in two parts: (1) the cIassKibI' onet er th"’.‘: eﬁtendds;/et er, thetn tboxmgnk\]/l/obuld ith
typing judgement procedure, which can assign types baseabe ambiguous, as IS boxed representation mignt be ertner
on the typing context and (2) the adaptation routine, which of the classes. This observation is consistent with both C#,
applies fixups to trees such that their types match expected\m:ere \I/alue classgs Tanrgjol'; b? EXtindeS’ and Scall<a, \;vhere
types. A typical use for the adaptation is inserting implici value classes are declared by Inheriting from a marker type

conversions, resolving implicit parameters and synthegiz AnyVal and are autpmatlcally mad'e. final by the compiler.
reified types [51]. By-value semanticsWhen compiling value classes down

The convert phase overrides the typing judgement with tﬁ IQV\{)IGVG:' addmonal_ care mur?t be_ takel?_ to acc_:omn;}odlate
a single extra rule: the receivers of method calls must be ;ofrIT:s ylg\(;?i%it:ra\?eangfti ?r?eojvizvﬁﬁg t% éeétl_'lg”r?:\}g a%r?i-
boxed. This, along with boxing when supertypes are ex- ¥ ' ,
pected, which is done automatically, forms our support for versal superclass callethj ect that exposes by-reference

object orientation. We also override the adaptation reytin chqatfalitylankd hasbh'lngt. E/Ioregver, beth Iang\llj\?rgles prowdi
which allows us to implement the T1& and T-UNALT S 10 lock on ObJECLS based on reterence. re we can

rules for introducing conversions. control what happens to value objects that are explicitst ca

Finally the commit phaseruns and updates the symbol FO g’] eCL' V\r']e r?St”Ct uses Olf by—refferliancia APIls. In C# th|||s d
signatures and the conversions to account for the exact se-'\f | on_? y a\r:'.nﬁ a su_pc)ierc ass o abl ve(ljufe clta_ssels, cate
mantics of the alternative representation. Thanks to the pr al uefype, Which provides reasonable detault impiemen-

vious phase, the tree is consistent and conversions act aéatlons OfEqual s andGet HashCode, whereas in Scala all

markers that the commit phase can use to transform the treeV2IU€ classes gefqual s andhashCode implementations

Again, since this phase is specific to react transformation, generated automatically. Both in C# and Scala synchroniza-

: P tion on value classes is outlawed.
we will describe it in each case study. ) X S T .
y Single-field vs multi-field. While single-field value classes

6.2 Case Study 1: Value Classes like Met er trivially unbox into their single field, devising

an unboxed representation for multi-field value classes may
pose a challenge if the underlying platform does not provide
support for structures. And indeed, in the case of Scala, the
JVM does not support structs or returning multiple values,

so we have to box multi-field value objects when returning

them from methods. Still, for fields, locals and parameters
we do unbox multi-field value objects into multiple separate

~ o

Value classes [1, 5, 24] marry the homogeneity and dynamic
dispatch of classes with the memory efficiency and speed
of C-like structures. In order to get the best of both worlds,
value classes have two different in-memory representation
Instances of value classes (referred to as value objeats) ca
be represented as fully-fledged heap objects (the boxed rep

resentation) or, when possible, use a struct-like unbosed r : - ) X .
resentation with by-value semantics. entries, providing a faithful emulation of struct behaviir

For instance, in the example below, tiveter value is worth noting t.hat thg value class implementation in Scala
class is used to model distances in a flexible and performant®™y SUPPorts single-field value classes, therefore spest
manner, providing both object-orientation (includingtval ping this issue altogether. C# doesn't have this problem,
methods and subtyping) and efficiency of representation. because the .NET CLR provides a primitive for structs.

Our implementation transforms methogs<= andr epor t
such that their arguments and return types are unboxed value
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Having seen these aspects of value classes, we can now The commit phaseuses the annotations established by
dive into the implementation of our prototype. It followsth  the inject phase and the marker conversions inserted by
standard three phases: inject, convert and commit. convert in order represent the annotated value classes by

The inject phasetransforms signatures of all fields, lo- their fields. In particular, the commit phase changes the
cals and parameters of value class types as well as returrsignatures of all fields, locals and parameters annotatid wi
types of methods that produce single-field value objects by @nboxed into their unboxed representations, duplicating
annotating them witt@inboxed: the declarations as necessary for multi-field value classes
Return types of methods are unboxed as well, but only for

1 @al ue class Meter(val x: Double) {

> def +(other: @nboxed Meter): @nboxed Meter = single-field value classes. .
new Meter (x + ot her.x) On the level of terms, the transformation centers around
+ def <=(other: @nboxed Meter) = x <= other.x the conversion markers, causibgx(e) calls to become
5} . . L . .
“def report(m @nboxed Meter) = { object mstan(tjl(?_tl_ons IIand rev(;/rltl_ngwblc_)x(e) calls to field
, if (m<=(new Meter(9000))) println(mtoString) accesses. Additionally, we devirtualipex(e) . f expres-
¢ else printIn("it’s over nine thousand") sions as much as possible, which is done by transforming
o} box(e).f field selections to references ¢oor one of its

This is a notable use-case for the first-class selectivity duPlicates and transforming non-virtuadx(e) . m(ar gs)
support provided by our mechanism. Methods that return method calls into calls to static extension methods.

multi-field value objects are not annotated wi@nboxed Finally, term transformations perform necessary book-
on the return type, since the JVM lacks the necessary Sup_keeplng to account for duplicated declarapons (arguments
port for multi-value returns. Leaving off th@inboxed an- pargmeters of value class types are duplicated as necessary
notation is all that it takes to have the result automatgicall 2SSignments to locals and fields or value class types become
boxed in the method and unboxed at the caller. multiple assignments to duplicated locals and fields, etc).

Another responsibility of the inject phase is the creation | . tjnal class Meter(val x: Double) {
of bridge methods (83.3). If a method that has value class|- def +(other: Double) = Meter.+(x, other)
parameters overrides a generic method, inject creates a cor®_def <=(other: Double) = Meter.<=(x, other)
responding bridge: zzbj ect Meter {
s def +(x: Double, other: Double) = x + other
def <=(x: Double, other: Double) = x < other
8
s>ijef report(m Double) = {

itrait Reporter[T] {

> def report(x: T): Unit

sclass Exanpl e extend Reporter[Meter] { : _
def report(x: Meter) = report(x) // bridge o 1 (Meter.<=(m 9000))

¢ override def report(x: @nboxed Meter) = ... Tl elpsrel ntln(new Meter (m.toString)
7} ’

13 printin("it’s over nine thousand")
Code emitted for these bridges is particularly elegant, i}
again thanks to the selectivity of the transformation. ih&u It is worth mentioning that even with the necessity to
out that it is enough to just have the bridge be a trivial cater for the lack of built-in struct support in the JVM, the
forwarder to the original method with its parameters being resulting transformation is remarkably simple. First, \agé
selectively boxed. This will produce a compatible signatur peen able to implement it without changing the compiler
for the JyM and the convert phase will introduce the correct jtself (in particular, without customizing the built-inasure
conversions. phase). Second, custom logic in inject, convert and commit
The convert phasefollows the pattern established in  phases spans only about 250 lines of code. This shows that
84, making@mnboxed types incompatible with their non-  our mechanism can significantly reduce the effort necessary

annotated counterparts and insertinge andunbox mark-  to implement complex data representation transformations
ers in case of representation mismatches. For our running
example, the following code will be produced: 6.3 Case Study 2: Miniboxing

1 @al ue class Meter(val x: Double) {

. “def +(other: @nboxed Meter): @nboxed Meter = The miniboxing transformation in Scala [4, 60] is the most

. unbox(new Meter(x + box(other).x)) complex transformation of the three case studies, and it is
s def <=(other: @nboxed Meter) = also the most established, being under development for al-
6} X <= box(other).x most two years. This section briefly mentions the ideas be-
Ldef report(m @nboxed Meter) = { hind mlnlboxmg aljd goesonto present hc_)w tr_]e data repre-
s if (box(m.<=(unbox(new Meter(9000)))) sentation mec_hanlsm was used in the miniboxing plugin.

o println(box(m.toString) Specialization [18] improves the performance of erased
0 else printIn("it’s over nine thousand") generics: aside from the generic class, specializaticatese

1}

adapted variants for each primitive type. The variant eass

offer specialized methods, which receive and return primi-
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tive types, therefore allowing the program to use the class
without boxing primitive types. Yet, specialization leads
bytecode duplication, with 10 classes per type param@ter:

the miniboxed variants whenever the type arguments are in-
stantiated with primitive types or are known to be miniboxed
type parameters of an enclosing class or method:

for the primitive types in Scala plus the erased genericsclas

41 identity MINT, 5) ‘

This means that specializing a tuple of 3 elements, which ha:
3 type parameters, producés’® classes.
Miniboxing was designed to reduce the bytecode explo-

Going into theconvert phasethe two methods do not
change, but the call todent i t y_Mneeds conversions:

sion in specialization. There are two key insights: (1) in
Scala, all primitive types can fit into a single tagged union ‘

. unbox(i dentity MINT, box(5))) ‘

containing a type tag and a long integer payload, thus reduc-

ing the duplication to two classes per type parameter and (2)
since Scala is strongly typed and all primitive types ard fina
all values of typ€r are statically guaranteed to have the same

The box andunbox methods serve as markers, that the
commit phase replaces byni ni box2box, or, if the tar-
get type is known, to more specific conversions such as
mi ni box2i nt (and vice-versa). During the commit phase,

tag, which means we can attach tags to code instead of val-annotated types are also converted to thumg integer,

ues — effectively hoisting the tag and obtaining a lighteig

which is the alternative representation in miniboxing:

reified types scheme [51], where a single tag is passed for
the type parameter. With miniboxing, fully specializing-a 3
element tuple creates 8 classes and an interface.

1 def identity[T](t: T): T =1t
> def identity_MT](tag: Byte,
3 m ni box2i nt (i dentity_M NT,

t: Long): Long =t
i nt 2m ni box(5)))

To explain how the miniboxing transformation works, let
us usd denti ty example again:

1 def identity[ @n ni boxed T](t: T=t

> identity(5)

T):

The @i ni boxed annotation on type parameteértrig-
gers the miniboxing transformation of the method. This
will duplicate and adapt the body ofdentity to create
i dentity_M which accepts primitives. This new method
encodes the primitive types in Scala into a long integer and
additionally receives a hoisted type tag correspondineo t
reified type ofT. The low level code will be:

1 def identity(t: Object): Object =t
def identity Mtag: byte, t: long): long =t
3 m ni box2int (identity MINT, int2m ni box(5)))

2

In getting to this low level code, thiaject phasedupli-
cates the methoddentity toi dentity Mand adds the

type tag:

1 def identity[T](t: T): T =1t

> def identity MT](tag: Byte, t: T=t

T):

In the new method, the miniboxing plugin needs to trans-
form all values of typeT to Long. Long corresponds to the
payload in the tagged union, and is capable of storing the
value of any primitive type in Scala. The initial version pre

Finally, as this code passes through the Scala compiler’s
backend, the primitive unboxing and erasure phase trans-
forms boxedLong integers into unboxetlong and erases
the type parametérto bj ect . This produces the exact re-
sult we showed earlier.

It is worth mentioning that miniboxing exploits all the
flexibility available in the data representation mechanism
the alternative representation mapping is not injectivees
all miniboxed type parameters mapLiong, the selectivity is
used to generate bridge methods for similar reasons to those
presented in §3.3 and the compatibility between annotated
and non-annotated types in the inject phase is used to easily
redirect method calls.

The miniboxing plugin [4] is now accepted in the Scala
community and several projects are experimenting with it.
This shows that the unified data representation mechanism
is not just a prototype but can reliably transform large code
bases.

6.4 Case Study 3: Staging

sented in [60] used an eager transformation coupled with aMulti stage programming [57] allows a program to execute
peephole optimization, but the number and complexity of the IN Séveral steps, at each step generating new code, cogpilin
peephole rules made this unfeasible. This motivated the de-@nd then executing it. In Scala, this technique has been used
velopment of the data representation mechanism. Using thisPY Rompfio develop the lightweight modular staging (LMS)
mechanism, the inject phase marks the values that will use arframework [44, 46], which removes the cost of abstractions

alternative representation (miniboxing us@s or age for in many high-level embedded DSLs [43]. Yet, using LMS is
the annotated types): not straightforward, as it requires a custom version of the

compiler, dubbed scala-virtualized [35], which is capable
of lifting built-in language constructs. In this sectionew
will show how this can be done as a data representation

1 def identity[T](t: T): T =1t
> def identity MT](tag: Byte,
@torage T =t

t: @torage T):

transformation.
Furthermore, the inject phase has the additional role of  One of the early examples of staging givenRgmpfis
redirecting calls from the generic versions of the method to partially evaluating a power function through staging:
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our contribution, we point the reader to the worksRafmpf

1 def pow(b: _@i fted Double, e: Int): @ifted [43, 44, 46] for more details.

) ifD?léblzez _0) 1.0 The staging prototype we implemented serves to show
else if (e %2 ==1) b » powb, e-1) that lifting is yet another case of using an alternative rep-

o else{ resentation. Although the simple example we have shown

‘;a'* X pow(b, ef2) could also be staged with the normal Scala compiler, for

, } more complex examples we argue that instead of using a

¢ val pows = function(arg => pow(arg, 5)) custom Scala compiler [35], lifting should be treated as a

o println("3.075 =" + pow5(3.0)) representation transformation, which would allow maximiz

o printin(*4.0% =" + pows(4.0)) ing infrastructure reuse and making staging more accessibl

The pow method compute®®. The baseb, is marked to developers.
as lifted, Whgreas the exponegt, is not. This means that 7. Related Work
calls topow, instead of computing a value, accumulate the
operations necessary to reproduce the result for a (pgssibl Generics. Interoperation with generics motivates many of
unknown) argument and a fixed exponentThe call to the data representation transformations in use today. The
function triggers the execution agfow for a stage-time implementation of generics is influenced by two distinct
argument4r g) and fixed value of the exponent, in this case choices: the choice of low-level code translation and the
5. This is followed by outputting the recorded operationg an  runtime type information stored.
re-compiling them into more efficient code. These recorded ~ The low-level code generated for generics can be either
operations do not includief statements, sinceis a stage- heterogeneous, meaning different copies of the code exist f
time constant and unroll the recursive calptow: different incoming argument types or homogeneous, mean-

ing a single copy of the code handles all incoming argument

1 Compiling the Tollowng code: . types. Heterogeneous translations include Scala spemiali
s(arg0: Double) => { tion [18], compile-time C++ template expansion [55] and
« val x0: Double = arg0 * arg0 load-time template instantiation [29] as done by the CLR
5 ‘\;Z: i; gﬂﬁl‘; = ;? . foxl [7]. Homogeneous translations, on the other hand, require a
. x2° Doubl e - arg uniform data representation, which may be either boxed val-
¢} ues [12, 33], fixnums [62] or tagged unions [36].
9k ko ko kR kK kR Kk kR K In order to perform tests such as checking if a value is a
ii 8:2 = %‘;OO list of integers at runtime, the type parameter must be taken
' ' into account. In homogeneous and load-time template ex-

The key to stagingowis thatthe@i f t ed argumentsare  pansions, one has to carry reified types for the type parame-
replaced by an alternative representation that accunsulate ters. While this has an associated runtime cost [51], several
expressions into an operation graph and can synthesize nevsolutions have been proposed to reduce it: in the CLR, rei-
code for them. In this case, tigect phasedoesn’t exist at fied types are computed lazily [29]. In Java several papers
all, since the user marks the arguments tq@bief t ed in the have been published explaining schemes for carrying reified
source code. types, including PolyJ [8], Pizza [37], NextGen [16] and the

The convert phase follows the usual pattern of introduc- work by Viroli et al. [61]. Finally, in ML generic code (also
ing conversions, with an additional constraint: immediate called parametrically polymorphic in functional languape
values can be converted to lifted constants, but not ther othe carries explicit type representations [25, 58].
way around. This is done so staging and compiling are only  Unboxed primitive types. In the area of unboxed prim-
triggered explicitly, through calls such &sncti on. This itive types, Leroy [33] presents a formal data representa-
restriction can be removed, but keeping it makes the perfor- tion transformation for the ML programming language based
mance predictable, as it puts the programmer in control of on typing derivations. The comparison in the introduction
staging and compilation. Seen in relation to primitive type  states that we introduce selectivity, object-orientedpsup
when staging the unboxing is cheap, but boxing can poten-and disentangle the transformation from its assumptions.
tially be expensive, so we want to trigger it explicitly. This is a somewhat shallow comparison. A deeper compar-

The commit phaseis the most interesting in the trans- ison is that inLeroys transformation the inject and commit
formation: it redirects method calls from the alternatigp-r phases are implicit and hardcoded while the two versions
resentation to a special staging object that records the op-of the transformation presented correspond to the typing al
eration graph. This operation graph is then used to gen-gorithm in the convert phase for the case of annotated and
erate optimized code. It also redirects thencti on call non-annotated expected type. Instead of expected types, th
from the identity (in case the program is not staged) to transformation knows where generic parameters occur, and
function_conpi |l e, which triggers the synthesis of the uses this information to invoke one version of the transfor-
code for the final result and compiles it. Since this part is mation or the other. Therefore our main contribution is dis-
very similar to what is done in the LMS framework and is not covering and formulating the underlying principle and suc-

DRAFT - Please do not circulate 12 2014/3/26



cessfully extending it to a more broad context, to include  Value classeshave been proposed for Java as early as
value classes, specialization and staging, which have very1999 [24, 47, 48]. The most recent description, which is
different requirements. also closest to our current approach, is the value class pro-
Shaofurther extendd.eroys work [52, 53] by present-  posal for the Scala programming language [5]. We build
ing a more efficient representation, at the expense of carry-upon the idea that a single concept should be exposed de-
ing explicit type representations [25, 58Jinamidefurther spite having multiple representations, but we step awam fro
refines the transformation and is able to prove that the im- ad-hoc encodings and fixed rules in the type system. In
proved transformation does not affect the time complexity o this way, we can capture other representations, such as the
the transformed program [34]. Tracking value represemtati tagged representation in [36]. Value classes have also been
in types has been presented and extended to continuationimplemented in the CLR [1], but to the best of our knowl-
passing style [20] byrhiemannn [59]. Two pieces of infor- edge the implementation has not been described in an aca-
mation are tracked in a lattice: whether the value corredpon demic setting. The Haskell programming language offers the
ing to the type is used at all (otherwise its representateon ¢ newt ype declaration [2] that, modulo the bottom type is
be ignored - called “Don’t care polymorphism”) and if a cer- unboxed similarly to value classes in Scala and CLR.
tain representation is required. This information is used i Specializationfor generics is a technique aimed at elimi-
type inference algorithm which can elide conversions when nating boxing deep inside generic classes. Specializatien
the parameters are discarded or when a method call is in tailbeen implemented in Scala [18, 19] and has been improved
call position, namely it doesn't need to box the result only by miniboxing [4, 60]. Specialization and macros have been
to have the caller unbox it. It should be noted that the con- combined to produce a mechanism for ad-hoc specialization
versions operate on a continuation-passing-style IR on theof code in Scala [56]. The .NET framework automatically
continuation-passing style. specializes all generics, thanks to its bytecode metadata a
A different direction in unboxing primitive types is based reified types [29].
on escape analysis [17], where the program is analyzed at A different approach to deep boxing elimination is de-
runtime and a conservative representation transformationscribed for Haskell [28] and Pyton [11]. It relies on special
is performed. When implemented in just-in-time compilers izing arrays while providing generic wrappers around them.
[54] of virtual machines such as PyPy [10] or Graal [64], This allows memory-efficient storage without the complex
and coupled with aggressive inlining, the escape analysisproblem of providing heterogeneous translations for edch o
can make a big difference, possibly more than the global the methods exposed by data structures.
data representations presented in this paper. Still, these Multi-stage programming (also called staging) [57] re-
techniques are fundamentally different — escape analgsis h quires lifting certain expressions in the program to a rdifie
alocal scope and relies heavily on inlining, while dataeepr  representation. Staging can be implemented using macros
sentation transformation can safely optimize across ntetho [15, 22] or using specialized compiler extensions [35]. One
borders as long as the transformation will consistentlyenak of the applications is removing the abstraction overhead
the same decisions in subsequent separate compilationsof high-level and embedded domain specific languages. In-
Interpreter-based techniques such as quickening [14] anddeed, staging was successfully used to optimize and rettarg
trace-based specialization [21] can improve escape dsalys domain-specific languages (DSLs) [13, 44, 46].
with dynamic profiles of the program being executed. Truf-  Annotated types[3, 6] have been introduced to trigger
fle [63] partially evaluates the interpreter for the running code transformations and to allow the extension of the type
program and makes aggressive assumptions about the dataystem into the area of program verification while reusing
representation, yielding the best results in terms of tgedp  as much infrastructure from the compiler as possible [40].
at the expense of a longer warm-up time. In the context of Java, type annotations have been used to
The Haskell programming language has two reasons toselectively add reified type argument information to erased
box primitive types in the low level code: (1) due to the generics [23]. In the context of Scala, annotated types have
non-strictness of the language, arguments to a function maybeen used to track and limit the side-effects of expressions
not have been evaluated yet and are thus represented agl9, 50], to designate macro expansions [15] and to trigger
thunks and (2) due to parametric polymorphism. Haskell continuation-passing-style transformations [45].
exposes both the boxeat representation and the unboxed Formalization. In [33], Leroy presents a full formaliza-
I nt #, but later transforms$nt values tol nt # by adding tion for the primitive unboxing for ML, including a proof of
explicit conversions on each access. It then uses a peepholeperational equivalence. The .NET generics are formalized
optimization [27, 32] to reduce all unnecessary boxing. The in [65]. In the rules we state without a proof we rely on lo-
peephole optimizations have been formalizedHeygleinin cal type inference, as described ©yglersky et al[38] and
[26]. Haskell also features calling convention optimiaat Pierce et al[42].
that make the argument laziness explicit and can unbox
primitives in certain situations [9]. References
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