Late Data Layout: Unifying Data Representation Transformations

Vlad Ureche

Abstract

Values need to be represented differently when interact-
ing with certain language features. For example, an integer
has to take an object-based representation when interacting
with erased generics, although, for performance reasons, the
stack-based value representation is better. To abstract over
these implementation details, some programming languages
choose to expose a unified high-level concept (the integer)
and let the compiler choose its exact representation and in-
sert coercions where necessary.

This pattern appears in multiple language features such as
value classes, specialization and multi-stage programming:
they all expose a unified concept which they later refine
into multiple representations. Yet, the underlying compiler
implementations typically entangle the core mechanism with
assumptions about the alternative representations and their
interaction with other language features.

In this paper we present the Late Data Layout mecha-
nism, a simple but versatile type-driven generalization that
subsumes and improves the state-of-the-art representation
transformations. In doing so, we make two key observations:
(1) annotated types conveniently capture the semantics of us-
ing multiple representations and (2) local type inference can
be used to consistently and optimally introduce coercions.

We validated our approach by implementing three lan-
guage features as Scala compiler extensions: value classes,
specialization (using the miniboxing representation) and a
simplified multi-stage programming mechanism.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism; E.2 [Object rep-
resentation)

Keywords Data Representation; Object-oriented; Anno-
tated Types; Type Systems; Local Type Inference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

OOPSLA 14, October 19-21 2014, Portland, OR, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2585-1/14/10. .. $15.00.
http://dx.doi.org/10.1145/2660193.2660197

Eugene Burmako

EPFL, Switzerland
{first.last}@epfl.ch

Martin Odersky

1. Introduction

Language and compiler designers are well aware of the intri-
cacies of erased generics [15, 21, 30, 32, 35, 42, 46, 75], one
of which is requiring object-based representations for prim-
itive types. To illustrate this, let us analyze the identity
method, parameterized on the argument type, T:

I def identity[T] (arg: T): T = arg
> val x: Int = identity[Int] (5)

The low-level compiled code for ident ity needs to han-
dle incoming arguments of different sizes and semantics:
booleans, bytes, characters, integers, floating point numbers
and references to heap-allocated objects. To implement this,
some compilers impose a uniform representation, usually
based on references to heap objects. This means that primi-
tive types, such as integers, have to be represented as objects
when passed to generic methods. The process of represent-
ing primitive types as objects is called boxing. Since boxing
slows down execution, whenever primitive types are used
outside generic environments, they use their stack-based
(unboxed) representation. Thus, in the low-level compiled
code, x is using the unboxed representation, denoted as int:

I def identity(arg: Object): Object = arg
2 // val x: Int identity[Int] (5):
3 val arg_boxed: Object = box(5)

4+ val ret_boxed: Object = identity(arg_boxed)
5 val x: int = unbox (ret_boxed)

The low-level code shows the two representations of the
high-level Int concept: the unboxed primitive int and the
boxed Object, which is compatible with erased generics.
There are two approaches to exposing this duality in pro-
gramming languages: In Java, both representations are ac-
cessible to programmers, making them responsible for the
choice and exposing the language feature interactions. On
the other hand, in order to avoid burdening programmers
with implementation details, languages such as ML, Haskell
and Scala expose a unified concept, regardless of its repre-
sentation. Then, during compilation, the representation is au-
tomatically chosen based on the interaction with the other
language features and the necessary coercions between rep-
resentations, such as box and unbox, are added to the code.

This strategy of exposing a unified high-level concept
with multiple representations is used in other language fea-
tures as well:

Value classes [2, 7, 29] behave as classes in the object-
oriented hierarchy, but are optimized to efficient C-like
structures [66] where possible. This exposes two represen-
tations of the value class concept: an inline, efficient struct
representation and a flexible object-oriented representation
that supports subtyping and virtual method calls.

Specialization [21, 22, 28] is an optimized translation for
generics, which compiles methods and classes to multiple
variants, each adapted for a primitive type. An improvement
to specialization is using the miniboxed representation [5,
75], which creates a single variant for all primitive types,
called a minibox. In this transformation, a generic type T
can be either boxed or miniboxed, in yet another instance of
a concept with multiple representations.

Multi-stage programming (also referred to as “staging’)
[70] allows executing a program in multiple stages, at each
execution stage generating a new program that is compiled
and run, until the final program outputs the result. In prac-
tice, this technique is used to lift expressions to operation
graphs and to generate new, optimized code for them. This
shows a very different case of dual representations: a value
can be represented either as itself or as a lifted expression, to
be evaluated in a future execution stage.

The examples above seem like unrelated language fea-
tures. And, indeed, compiler implementers have provided
dedicated solutions for each of them, entangling the core
transformation mechanism with assumptions about the lan-
guage and platform. For instance, the solutions employed
by ML and Scala are aimed at satisfying the constraints of
erased generics [15, 42, 72], and hardcode this decision into
their rewriting algorithm. Miniboxing uses a custom trans-
formation implemented as a Scala compiler plugin [5, 75],
aimed at only the miniboxed representation. Finally, the
Lightweight Modular Staging framework [55] in Scala re-
lies on a custom fork of the main compiler, dubbed Scala-
Virtualized [45], which is specifically retrofitted to support
lifting language constructs.

Yet, these transformations share two common traits:

(1) the use of multiple representations for the same concept
and (2) the automatic introduction of coercions between
these representations during program compilation. These
similarities suggest there is an underlying principle that gen-
eralizes the individual algorithms. We believe exposing this
principle can disentangle the transformations from their as-
sumptions, providing a framework that researchers can for-
mally reason about and that implementors can reuse when
developing new transformations.

To this end, we present an elegant and minimalistic type-
driven mechanism that uses annotations to guide the in-
troduction of coercions between alternative representations,
which we call the Late Data Layout (LDL) mechanism. In
doing so, we make the following contributions:

® We survey the existing approaches to data representation
transformation, show their limitations and explore the
additional features required (§2 and §3);

e We show the Late Data Layout (LDL) representation
transformation mechanism, which does not impose the
semantics of alternative representations and coercions
(§4) and reason intuitively about its properties (§5);

e We validate the mechanism by implementing three lan-
guage features as Scala compiler extensions using the
LDL transformation: value classes!, specialization us-
ing the miniboxing representation’ and a simple staging
mechanism® (§6). For each of these use cases, we de-
scribe the implementation in detail, we compare it to the
existing transformations in terms of code size and com-
plexity, we evaluate the resulting programs in terms of
performance and finally show the specific extensions we
added to the LDL mechanism to support each use case.

The Late Data Layout mechanism relies on two key insights:
(1) annotated types conveniently capture the semantics of us-
ing multiple representations and (2) local type inference can
be used to consistently and optimally introduce coercions
between these representations. The following paragraphs de-
scribe the insights and how they influence the mechanism.

Key Insights

Through annotations, additional metadata can be attached to
the types in a program [4, 8]. This, in turn, allows external
plugins to verify more properties of the code while leverag-
ing the existing type system infrastructure. Annotated types
have been used to statically check a wide range of program
properties, from simple non-nul1-ness to effect tracking and
purity analysis [51, 60].

Our first key insight is that annotated types are a perfect
match for encoding the multiple representations of a high-
level concept. For example, changing a value’s type from
Int to @unboxed Int marks it for later unboxing. This
provides generality, selectivity and automation.

Generality. The annotations can be introduced either au-
tomatically, by the compiler, based on the interactions of dif-
ferent language features, or manually, by programmers. This
provides the flexibility necessary to capture a wide variety
of transformations: some of them work automatically, like
unboxing primitive types and value classes, whereas oth-
ers, like staging, require manual annotation, corresponding
to domain-specific knowledge.

Selectivity. Annotated types allow selectively marking
values with their alternative representation. For example,
marking a value’s type as @unboxed means it will use the
alternative unboxed representation. Contrarily, leaving it un-
marked will continue to use the default, boxed, representa-
tion. In the following example, we show how simple it is
for the compiler to signal whether a value should be boxed
or unboxed and whether generics are erased, as in Java, or
specialized, as in the NET CLR [9, 35]:

! http://github.com/miniboxing/value-plugin
2http: //github.com/miniboxing/miniboxing-plugin
3 http://github.com/miniboxing/stage-plugin

sed generics, boxed value:
Int = identity[Int] (5)
€ unboxed val

identity[Int] (5)

>rased 1Cs,
@Qu
51 S ~T1

nboxed Int

ized generics, unboxed va

@unboxed Int = identity[@unboxed Int] (5)

This flexibility of annotating individual values with their
alternative representation is in sharp contrast to state of the
art data representation transformations [15, 42]. These trans-
formations consider the unboxed representation as always
desirable and hardcode the semantics of erased generics into
their transformation rules. Section §3.3 shows that being
able to selectively annotate the values that use a different
representation is crucial to implementing transformations in
object-oriented languages. This flexibility is also fundamen-
tal to multi-stage programming, where the choice of execu-
tion stage has to be done for each individual value.

Automation. The semantics of annotated types can be
specified externally and can change as the compilation
pipeline advances: keeping annotated and non-annotated
types compatible emulates the unified concept, allowing
seamless inter-operation regardless of the representation.
Later, making annotated types incompatible emulates the
difference between representations, automatically triggering
the introduction of coercions.

Our second key insight is that local type inference [48,
52] can be used to consistently and optimally introduce co-
ercions based on the annotated types. Once the unified con-
cept has been refined into several representations by making
annotated types incompatible, type-checking the program’s
abstract syntax tree (AST) again reveals the representation
inconsistencies, where coercions are required.

Optimality. Name resolution and type propagation can be
seen as a forward data flow analysis [36] that, through anno-
tated types, propagates the data representation. On the other
hand, local type inference [48, 52] propagates expected types
from the outer expressions, providing a backward data flow
analysis. Having these two analyses meet at points where
the representation doesn’t match ensures that coercions are
introduced only when necessary, in an optimal way:

cnerics, boxed value:
identity (box (5))
i unboxed value:

unbéx(idenﬁity(box(5)))

sed generics
sed generics,

@unboxed Int

specialized generics, unboxed value:

¢ val x: @unboxed Int = identity[@unboxed Int] (5)

the coercions, box and unbox, their semantics: in this case
creating the boxed object and reading the unboxed integer
from the object representation. This allows the rest of the
transformation to work regardless of the actual alternative
representations, thus isolating the general mechanism from
the representation semantics.

Being type-driven, our approach can be seen as a gener-
alization of the work of Leroy on unboxing primitive types
in ML [42]. Yet, it is far from a trivial generalization: (1) we
introduce the notion of selectively picking the representation
for each value, which is crucial to enabling staging, special-
ization and creating bridge methods [19], (2) we extend the
transformation to work in the context of object-oriented lan-
guages, with the complexities introduced by subtyping and
virtual method calls and (3) we disentangle the transforma-
tion from the assumptions that generics are erased and that
the alternative representation is always desirable.

In the following sections we explain the motivation for
the Late Data Layout mechanism, present it in detail and
validate our approach.

2. Data Representation Transformations

In this section we present several approaches to transforming
the data representation, highlighting their strong and weak
points on small examples. We start with a naive approach,
continue with a syntax-based transformation that eagerly in-
troduces coercions and conclude with a type-driven trans-
formation, which only introduces coercions when necessary.
To facilitate the presentation, the examples refer to unbox-
ing primitive types, but the explanations can be generalized
to all the three use cases described in the validation section:
value classes, miniboxing and staging.

In the rest of the paper we consider the integer concept to
be boxed by default and represent it by Int. The goal of the
transformations is to use the unboxed integer, int, whenever
possible. Unless otherwise specified, all generic classes are
assumed to be compiled to erased homogeneous low-level
code. Finally, to improve readability, we place annotations
in front types (e.g. @unboxed Int) instead of after (e.g.
Int @unboxed), as the Scala syntax requires.

2.1 Naive Transformations

To begin, let us analyze a simple code snippet, where we take
the first element of a linked list of integers (List [Int]) and
construct a new linked list with this one element:

Consistency. Type checking a program means proving
its correctness with respect to the theory introduced by the
types. Therefore, making representation information avail-
able to the type system allows it to prove correctness with
respect to the representations in use and the coercions intro-
duced between them, thus proving consistency.

Generality again. The last step of the transformation
gives the annotated types their final semantics, by making
the alternative representations explicit. For example, prim-
itive unboxing replaces @unboxed Int by int and gives

1 val x: Int = List[Int] (1, 2, 3).head
> val y: List[Int] = List[Int] (x)

A naive approach to compiling down this code would be
to replace all boxed integers by their unboxed representa-
tions without performing any data-flow analysis:

1 val x: int = List[Int] (1, 2, 3).head
> val y: List[Int] = List[Int] (x)

The resulting code is invalid. In the first statement, x
is unboxed while the right-hand side of its definition, the
head of the generic list, is boxed. In the second statement,

we create a generic list, which expects the elements to be
boxed. Yet, x is now unboxed. This example motivates a
more elaborate transformation for unboxing integers.

2.2 Eager (Syntax-driven) Transformations

The previous example shows that naively replacing the rep-
resentation of a value is not enough: we need to patch the
definition site and all the use sites, coercing to the right rep-
resentation:

Eager transformations box a and b and unbox the result
of their addition, which is inefficient:

I val c: int = unbox (box(a) + box (b))

I val x: int = unbox(List[Int] (1, 2, 3).head)
> val y: List[Int] = List[Int] (box(x))

Therefore, we need an extra rule for distributing the un-
boxing operation inside: unbox (t1 + t2) = unbox (t1)
_+_unbox (t2), where _+__is the platform-provided intrin-
sic unboxed integer addition. With this extra rule, coupled
with coercion elimination, the expression is fully optimized.

Conditional optimization. The previous rule is not
enough to produce optimal code in all cases:

In the snippet above, two coercions have been introduced.
In the first line, since x becomes unboxed, the right-hand
side of its definition also needs to be unboxed. In the second
line, x is boxed to satisfy the list constructor. This means that
by eagerly adding coercions we can keep the program code
consistent. Let us take another example:

I def foo(x: Int, y: Int): Int =
if (...) x else y

In order to optimize the foo method, the compiler un-
boxes x, y and the return type of foo and introduces three
coercions: two for boxing x and y back and one for unboxing
the body of foo:

I val a: Int =
> val b: Int

a

I def foo(x: int, y: int): int =
unbox (if (...) box(x) else box(y))

Since a is transformed from boxed to unboxed, all its
occurrences are replaced by box (a):

1 val a: int = unbox(...)
> val b: Int = box(a)

In this case, we need a rule for distributing the coercion
surrounding an if node to its branches: unbox (1f (...)

When b is transformed, its right hand side is unboxed:

a else b) =+ if (...) unbox(a) else unbox (b):
I def foo(x: int, y: int): int =
if (...) unbox(box(x)) else unbox (box(y))

1 val a: int = unbox(...)
> val b: int = unbox (box(a))

The definition of b is suboptimal: it boxes a just to unbox
it immediately after. In some cases, thanks to escape analysis
[65], the Java Virtual Machine just-in-time compiler [38, 50]
can remove redundant boxing and unboxing operations. Yet
it typically takes 10000 executions to trigger the optimizing
just-in-time compiler [39], which means 10000 boxed inte-
gers are created just to be immediately unboxed and garbage
collected later. And escape analysis is a best-effort optimiza-
tion, as there are no guarantees on the patterns it will opti-
mize. It would therefore be best if the data representation
transformation would eliminate redundant coercions from
the start. This is where the peephole optimization comes in.

2.3 Peephole Optimization For Eager Transformations

A peephole optimization [32, 75] can be used to remove the
redundant coercions introduced by an eager (syntax-driven)
transformation. The name “peephole” comes from the very
limited scope of the rewriting rules, usually encompassing
a coercion and another abstract syntax tree node. For ex-
ample, the peephole optimization rewrites box (unbox (t))
and unbox (box (t)) to just t. This simple rewrite rule
eliminates the redundant coercions in the definition of b. Yet,
it is not enough.

Unboxed operations. Let us take an example operation
between two boxed values, where a and b are the values
defined in the previous section:

Which in turn is completely optimized by the first rule,
unbox (box (t)) — t.
Block optimizations. Let us take one final example:

I def bar(): Boolean = {
foo(..., ...)
true

4}

Since the type of foo was transformed, any call to it
needs to be adapted: integer arguments need to be unboxed
and the result needs to be boxed back:

I def bar(): Boolean = {
box (foo (unbox (...), unbox(...)))
true

o}

1 val c: Int = a + b

In a block with n expressions, the first n — 1 expressions
are treated as statements, so their results are ignored. There-
fore boxing the result of foo is redundant, since the boxed
value will be ignored anyway. Thus we have to introduce a
specific rule for blocks which removes coercions on state-
ments. Not only that this rule is already stateful, depend-
ing on the position in the block, but it is even not sufficient:
the last expression in a block, which acts as the block’s re-
sult, has the distribution property of if conditionals. Fur-
thermore, given multiple stateful rules, they can be mixed
together: What if a conditional is nested in a block, in state-
ment position? Should coercions be distributed or ignored?

In practice, a peephole optimization needs multiple state-
ful rewrite rules for each type of node in the intermediate
representation of the program, usually an abstract syntax
tree (AST) in the compiler. This suggests that although eager

transformations work well for minimalistic intermediate rep-
resentations, such as Haskell’s Core, the number and com-
plexity of AST nodes in the Scala compiler makes a peep-
hole transformation impractical. The initial implementation
of miniboxing [75] used an eager transformation but the te-
dium of maintaining and tweaking the peephole optimization
rules led to the development of the Late Data Layout mecha-
nism, which, itself, is based on a type-driven transformation.

2.4 Type-driven Transformations

Syntax-driven transformations are straightforward, but they
eagerly introduce coercions, which need to be optimized
later. An alternative would be to introduce coercions only
when a representation mismatch occurs, using a dedicated
mechanism to check representation consistency.

The dedicated mechanism can be the type checker. In-
deed, injecting the representation information in the type
checker allows it to automatically and reliably detect mis-
matches, which can be patched by introducing coercions, in
a mechanism similar to the implicit conversions of Scala.
This achieves optimality out of the box in the case of foo
shown before, as the type checker knows all variables are
unboxed, hence no coercions are necessary:

I val m: int = unbox_uint(...)
> val n: int = unbox_int(...)
3 List[AnyVal] (if (.) box_uint (m) else box_int (n))

It may seem that transforming values one by one might
provide a way out of this conundrum. This way, only a single
value at a time would be in flux, which would make it easy to
guess the coercion necessary to patch mismatches. However,
this takes us back to square one with respect to the subopti-
mality of the resulting code: transforming one value at a time
is equivalent to having an eager transformation, which needs
to be consistent at each step and does so by introducing too
many coercions. For example, transforming one value at a
time would break the first example, the foo method, which
would end up requiring a peephole optimization:

I def foo(x: int, y: int): Int =
if (...) box(x) else box(y)

I def foo(x: int, y: int): int =
if (...) x else y

This type-driven transformation is a precursor to the Late
Data Layout mechanism. Yet, in the current from, type-
driven transformations are still not always optimal and not
applicable in a general setting. To show why, let us assume
we introduce a boxed unsigned integer UInt, which we un-
box to int. The operators for the unsigned type are differ-
ent, but the unboxed representation is exactly the same as for
Int. In practice, this is the norm: several value classes can
have the same parameter types, so their unboxed representa-
tions coincide. Furthermore, all staged expressions share the
same alternative representation. Let us consider the follow-
ing example using the signed Int and the unsigned UInt:

Clearly, a different approach is required to make type-
driven transformations viable in a general setting. But before
going into the Late Data Layout mechanism, we dive into the
interaction between object-oriented language features and
data representation transformations.

3. Object-Oriented Data Representation

The previous section presented the problems faced by data
representation transformations, especially given complex in-
termediary representations (IRs) such as the one used in the
Scala compiler. This section identifies additional challenges
introduced by object orientation.

3.1 Subtyping

In object-oriented languages, all reference types have a com-
mon super type, usually called Object, which provides uni-
versal methods such as toString, hashCode and equals.
This challenges representation transformations:

1 val a: Int = ... /,
> val b: Object = a /

i1 val m: UInt = ...
> val n: Int = ...
3 List[AnyVal] (if (...) m else n)

Transforming the example, both m and n are unboxed to
int, so the if expression produces an int:

I val m: int = unbox_uint(...)
> val n: int = unbox_int(...)
3 List[AnyVal] (

4 if (...) m else n

A

(expected: AnyVal, found: int)

:),,

Although a can use the unboxed representation, it needs
to be boxed back when it is assigned to b, since b is compiled
to an object reference in the low level code.

This is also the case for value classes: whenever a variable
is statically known to hold a value class, it can be optimally
represented by its fields. But when the value class is used in
a context where a super type is expected, it has to be boxed:

The generic linked list constructor expects a boxed argu-
ment, but we pass in an unboxed int, triggering a mismatch.
Thus, the i £ expression needs to be boxed. But what coer-
cion should be used? Should it be box_uint or box_int?
Since the provenance of the expression has been lost, we
can’t discern between the two. A correct translation would
have introduced coercions earlier:

I trait T
> @value class X(val x: Int) extends T
3 @value class Y(val x: Int) extends T

4+ val x: X = new X(3) // can be xed
s val y: Y = new Y (31)// can be
¢ val t: T = if (...) x else y / be boxed

Even though x and Y unbox to Int, unboxing t is till not
possible, as it would lose the provenance information neces-
sary for boxing: an integer corresponding to the unboxed t
could have originated from unboxing either x or v, but, after
unboxing, it would not be known from which. Therefore, to

avoid generating incorrect programs, conformance to super
types, or up-casting, requires boxing.

3.2 Virtual Method Calls

Virtual method calls also pose challenges for data represen-
tation transformations. Boxed objects can act as the receivers
of virtual method calls, because their headers link to virtual
dispatch tables. Contrarily, unboxed values cannot handle
virtual dispatch:

Bridge methods [19] are introduced to maintain coherent
inheritance and overriding relations between generic classes
in the presence of erasure and other representation transfor-
mations. Bridge methods are introduced when the low-level
signature of a method does not conform to one of the base
method it overrides. Consider the following example:

I val a: Int =1
> println(a.toString)

There are two approaches to handling virtual calls: (1)
the unboxed receiver can be boxed so the virtual call can
be executed, or (2) if the corresponding method is final,
its implementation can be extracted into a static method,
rendering the call static instead of dynamic. Both of these
techniques have been used in practice, although the second
is markedly better for performance: in the method extraction
process, the receiver becomes an explicit parameter and can
be unboxed. In Scala, methods extracted from value classes
are called extension methods [7]:

I @value class D(val x: Int)
> class E[T] {
def id(t: T) = println("boo")
o}
5 class F extends E[D] {
6 override def id(d: D) = println("ok")
7}

A naive translation, which doesn’t account for erasure,
will output the method F.id with a low-level signature
(d: int): Unit, which, on the JVM platform, does not
override the base method E.id with the low-level signa-
ture (t: Object): Unit. This will lead to virtual calls
to E. id not being dispatched to F.id. A correct translation
for F must introduce a bridge method that takes an instance
of the value class D as an boxed argument. This method is
correctly perceived as overriding E. id by the JVM:

I def extension_toString(i: int): String = ...

For the earlier example where val ¢ = a + b, boxing
a and applying the object-oriented + operation would be
suboptimal, as it would require boxing b too and unboxing
the result of the operation:

I class F extends E[D] {
override def id(d: Object) = id(unbox(d))
def id(d: int) = println("ok")

o}

1 val c: int = unbox(box(a) + box (b))

Instead, we can use the extension method approach,
rewriting the call to use the platform-intrinsic addition oper-
ation, which we denote as _+_ in the example. The intrinsic
+ operation requires unboxed representations, so a can
act as the receiver and b as the argument. Finally, the result
is also unboxed, so no coercion is necessary:

Generating this code is impossible if the data representa-
tion transformation always unboxes D, making bridge meth-
ods another example that requires selectivity.

The optimal data representation is not always unboxed.
If a value is produced and consumed in its boxed represen-
tation, there is no reason to unbox it:

I val c: int = a _+_ b

3.3 Selectivity

We argue that selectivity should be built into data represen-
tation transformations as a first-class concern, allowing the
programmer or the compiler to individually pick the values
that will use alternative representations. Most state-of-the-
art data representation transformations make the assump-
tion that all values that can use an alternative representation
should use it. However, we identified several cases that in-
validate this assumption:

The low level target language may impose certain re-
strictions on the representations used. For example, the Scala
compiler targets Java Virtual Machine (JVM) bytecode [43],
which, at the time of writing, does not have a notion of
structs and only allows methods to return a single primitive
type or a single object. This restriction forces all methods re-
turning multi-parameter value classes to keep the return type
boxed, which is only possible if the compiler can selectively
pick the values to be unboxed;

I def reverse_list(list: List[Int]): List[Int] = {
var lst: List[Int] = list
var tsl: List[Int] Nil

4 var elt: Int = 0 // stored in unboxed for

while (!lst.isEmpty) {
6 elt = lst.head //

tsl = elt::tsl /
8 l1st = lst.tail
9 }
10 tsl

1o}

If the data representation transformation hardcodes the
fact that all primitive types should be unboxed, this code be-
comes very slow: during each iteration, assigning the head
of the (generic) list to elt coerces a boxed integer to the
unboxed representation, while the subsequent statement per-
forms the inverse transformation, creating a new boxed inte-
ger from elt. This sequence of coercions not only impacts
performance but also creates redundant heap garbage.

Summarizing §2 and §3, we note that an ideal data repre-
sentation transformation should be smart about introducing
coercions, should account for object orientation and should
allow for selective coercions. The next section presents
exactly that - a general, consistent, optimal, selective and
object-oriented data representation transformation.

4. Late Data Layout

This section presents an approach to unifying data represen-
tation transformations under a general, consistent, optimal
and selective mechanism: the Late Data Layout. We start
with an overview (§4.1) and then present the three phases of
the mechanism (§4.2-4.4), followed by their properties (§5).

4.1 Overview

The type-driven data representation transformation (§2.4)
has shown that coercions can be guided by the type system.
Still, this approach was limited by the fact that high-level
concepts have to injectively map into low-level representa-
tions, which is not always the case. Furthermore, as we will
see in this section, local type inference [48] is the key to opti-
mally introducing coercions in a type-driven transformation.

Instead of directly jumping to the target representation
(i.e. int in the examples), Late Data Layout (LDL) makes
the transition in three phases: first it uses annotated types
to mark the values that will use an alternative representa-
tion (the INJECT phase), then it adds coercions in places
where annotation mismatches occur, signaling the incom-
patible representations (the COERCE phase) and finally, in
the last step, it transforms annotated types to the target repre-
sentation (the COMMIT phase). Using annotated types allows
high-level concepts to map injectively to alternative repre-
sentations, enabling type-driven transformations.

The three LDL phases are added to the compiler pipeline.
The transformation expects a correct, type-checked program
AST as input and outputs another correct, type-checked
AST, where the high-level concept has been replaced by
its representations. During the transformation, the program
is type-checked again, so the type-checking procedure needs
to be idempotent: once a program was successfully type-
checked once, further type-checking runs should succeed
and produce the same result.

A desirable property is that, given a type system with lo-
cal type inference [48, 52], the LDL mechanism can opti-
mally insert coercions, making peephole optimizations re-
dundant. Still, to use the LDL mechanism, we need to im-
pose two restrictions on the representation coercions:

e isomorphism of the representations:
box (unbox (t)) =t and unbox (box (t)) = t;
¢ purity of the coercions: coercions between representa-
tions should not produce any side-effects.
Given these two restrictions, the coercions can “float” in the
AST and can be optimally inserted.
Throughout the section we use the following example:

I def fact(n: Int): Int =
if (n.<=(1)
1
4 else
n.*x (fact (n.-(1)))

In the desugared version, operators are transformed into
method calls, and we make this explicit by adding the com-
monly accepted method call notation: receiver. method
(args). Thus, an expression such as n <= 1 is actually ex-
pressed as a call to the <= method: n.<=(1).

The LDL mechanism consists of three phases: INJECT,
COERCE and COMMIT. The next sections present each indi-
vidual phase.

4.2 The INJECT Phase

The INJECT phase selectively marks values, such as fields
or method arguments, with the target representation. This
is done by annotating their type, for example, by adding
the Qunboxed annotation to a primitive type. The annota-
tions can be introduced either automatically, by the compiler,
based on the interactions of different language features, or
manually, by programmers. This provides the flexibility nec-
essary to capture a wide variety of transformations: some of
the transformations work automatically, like unboxing prim-
itive types and value classes, whereas others, like staging, re-
quire manual annotation, corresponding to domain-specific
knowledge. In the latter case, the INJECT phase can be omit-
ted from the compilation pipeline.
The INJECT phase transforms the running example to:

I def fact(n: @unboxed Int): Qunboxed Int =
2 if (n.<=(1: Qunboxed Int))

(1: Qunboxed Int)
4 else

n.* (fact (n.-(1: Qunboxed Int)))

I def fact(n: Int): Int =
2 if (n <= 1)

1
4 else

n » fact(n - 1)

While parsing the source code, the Scala compiler desug-
ars this program to:

The constant literals were explicitly marked for un-
boxing: the literal constant 1 can be produced either as
a boxed or unboxed value, but the unboxed representa-
tion is preferred. Therefore, constant literals are ascribed
to Qunboxed Int and, if necessary, the next phase can add
a boxing coercion.

Although the example given uses a single alternative rep-
resentation, this is not a requirement. For example, in the lat-
est version of the miniboxing plugin, we use three represen-
tations: generic, miniboxed to a long integer and miniboxed
to a double-precision floating point number. To encode this,
we use the generic annotation @storage [T]. By annotat-
ing with @storage[Long] and @storage[Double] we
can choose how the value will be represented. In this case,
we have three coercions: minibox2box, box2minibox and
minibox2minibox. Thelast coercion, minibox2minibox,
changes the underlying miniboxed representation, either
from long to double or back.

The annotations are used to carry representation informa-
tion, but their underlying semantic is controlled externally,
by an annotation checker, which is orthogonal to the lan-

guage’s type system. In a simplified view, whenever two
types T and s are involved in a subtyping check, s <: T,
two conditions are being checked: (1) that s’ <: T’ ac-
cording the the standard type system, where s’ and T’ are S
and T without any annotations and (2) that all the annotation
checkers present agree that, given the annotations in S and T,
they can be subtypes: s <: T. In reality, these two steps are
made in tandem, to account for variance in generics, which
relies on the sub-typing relation of the type arguments.

The transformation mechanism injects an annotation
checker that allows the different representations to be com-
patible during the INJECT phase. This is done on purpose
in the LDL mechanism, to allow the delayed introduction
of coercions. Should annotated types be incompatible in the
INJECT phase, the AST would become type-inconsistent,
requiring the introduction of coercions to regain consis-
tency. But there is a big win in being able to manipulate
the tree with annotations but without coercions: for mini-
boxing, methods can be redirected to “specialized” variants
without worrying about coercions, while for value classes
and primitive unboxing, bridge methods can forward to their
target without explicitly coercing the arguments.

In the next phase, the annotation checker makes represen-
tations incompatible, driving the introduction of coercions.

4.3 The COERCE Phase

The COERCE phase is the centerpiece of the LDL mechanism
and is similar for all data representation transformations. It
is responsible for introducing the necessary coercions such
that representations are used consistently in the transformed
program. Unlike the INJECT phase, which updates the sig-
natures of symbols, the COERCE phase only adapts the AST
by introducing coercions, based on the additional represen-
tation information carried by annotated types.

The COERCE phase transforms the abstract syntax tree in
two steps: (1) in the annotation checker, the different rep-
resentations become incompatible, thus invalidating the cur-
rent AST and (2) the COERCE phase type-checks the AST
and introduces coercions where necessary. The coercions are
introduced based on the representation mismatches revealed
by the local type inference (§4.3.1): when a certain repre-
sentation is required but a different one is passed, a coercion
is introduced (§4.3.2). Since the names have been resolved
and the tree has been type-checked before, type-checking the
tree again will only be responsible for inserting coercions
(given that the type checker is indeed idempotent). Finally,
object-oriented features of the language need to be taken into
account (§4.3.3).

4.3.1 Local Type Inference

Local type inference [48, 52] is used to reduce the boilerplate
in source code, by inferring certain type annotations instead
of requiring the programmer to write them by hand.

Type inference is done in two steps: (1) creating synthetic
type variables for polymorphic expressions in the AST and

(2) using bidirectional propagation to gather constraints on
the synthetic type variables, which are then solved to exact
types. We will illustrate how it works with an example:

I def identity[T](t: T):
> identity(3) // should ir

y[Int] (3)

Since the call to identity is polymorphic, the local
type inference algorithm introduces a synthetic type vari-
able, which we call 2T in the example:

I identity[?T](3)

It then type-checks the AST using bidirectional propaga-
tion. Along with propagating types from the innermost AST
nodes to the outside, local type inference also propagates
expected types from the outside nodes towards the inside.
Namely, in the example, identity[?T] expects an argu-
ment of type 2T, so the literal constant 3 is type-checked
with an expected type ?T. But the literal constant is known
to be of type Int. In this case, the condition for successfully
calling the ident ity methodis that Int <: ?T. Therefore
the only constraint on 2T is that it needs to be a super type of
Int. Solving this constraint to the most specific type yields
?T = Int, which is replaced in the original call:

I identity[Int] (3)

In the COERCE phase we only use the expected type prop-
agation feature, as the input AST is already type-checked
and all type annotations have already been inferred. The next
part describes exactly how the expected type propagation
drives the introduction of representation coercions.

4.3.2 Placing Coercions

Coercions are introduced when an AST node’s representa-
tion doesn’t match the one required by the outside node. In
the compiler, name resolution is effectively the high-level
equivalent of a forward data flow analysis [20], tracking the
reaching definitions via symbols. Coupled with the type sys-
tem, name resolution propagates the types of symbols in a
program’s syntax tree and, along with them, the representa-
tion information. On the other hand, the expected type prop-
agation in local type inference acts as a backward data flow
analysis tracking the expected representation of a node.

Therefore, name resolution and local type inference col-
laborate to produce a forward and backward data flow anal-
ysis which detects mismatching representations:

@Qunboxed Int =

"x" ref

I def foo(x: Int)

2 X/ e

AST nodes such as conditional expressions and blocks
have very interesting behaviors when it comes to expected
type propagation: an i £ conditional propagates the expected
type to its then and else expressions while a block prop-
agates the expected type only to its expression (the last ex-
pression in the block, the first n — 1 expressions are treated

as statements). On the other hand, since the statements in
a block are designed to perform side-effecting actions and
their results are ignored, they are type-checked without an
expected type, thus accepting any representation.

Propagating expected types delays the introducing the
coercions until a node with a fixed type is encountered, such
as the value x in the previous example, and the expected
type requires a different representation. This sinks coercions
as deep in the AST as possible, side-stepping the need for
a peephole optimization (§2.3) and making the coercion
insertion optimal. Optimality is further discussed in §5.3.

Implicit conversions in the Scala programming language
could also be used to introduce coercions. Both implicit con-
versions and representation coercions adapt a node to the
type expected by the outer expression. However, since im-
plicit conversions can be influenced by the program code,
we prefer to use a separate, albeit similar mechanism to in-
troduce the coercions, in order to avoid any interactions. The
fact that implicit conversions are resolved in the compiler
frontend does help: by the time LDL-based transformations
kick in, implicits have been resolved, so the transformation
only needs to add representation coercions.

4.3.3 Object-Oriented Aspects

During the transformation, which type-checks the AST
again in a DFS approach, the COERCE phase needs to take
care of the object-oriented aspects in the language. For ex-
ample, method calls with unboxed receivers require either
boxing or forwarding to an extension method [7]. Fortu-
nately, super types do not require special handling: only
types that can be unboxed are annotated, not their super
types, so expressions that conform to super types are auto-
matically boxed through annotation-driven coercions.
Forwarding to an extension method or intrinsic deserves
a more detailed explanation. In the factorial example we
use the » operator, which requires boxing the receiver and
the argument and returns a boxed result. Instead of the »
operation, the COERCE phase will use _«_, the platform-
provided intrinsic multiplication for unboxed integers. To do
so, while descending in the AST to type-check each node,
the COERCE phase intercepts method calls where the re-
ceiver is unboxed. One such method is n.* (...), where
n has type @unboxed Int. Since the = operation does have
an intrinsic equivalent, _x_, it is replaced in the tree. Fol-
lowing the replacement, the COERCE transformer descends
and type-checks the argument with the new expected type,
which requires it to be unboxed. Once the argument has been
type-checked, the COERCE transformer returns to the intrin-
sic method call, and, given the expected type for the result,
decides whether a coercion is necessary or not. The result is:

No coercions are introduced at all, but the operators are
now redirected to their intrinsic variants _<=_, _«_and _—_.

4.4 The CoMMIT Phase

The COMMIT phase is the final phase in the transforma-
tion mechanism and is meant to transform the annotated
types to the actual alternative representation. It is also tasked
with replacing coercion markers (box and unbox) by the
actual operations necessary for creating objects and ex-
tracting the unboxed values. For instance, when unboxing
primitive types, the COMMIT phase is going to transform
@unboxed Int to int, unbox into a method call that re-
turns the unboxed value, and box into the construction of
a java.lang.Integer object. If extension methods were
used (in this case the underlying platform’s intrinsics), their
signatures are automatically transformed to the native repre-
sentation (i.e. replacing @unboxed Int by int). After the
COMMIT phase the program is fully transformed:

I def fact(n: int): int =

2 if (n._<=_(1))

3 1

4 else
n._x_(fact(n._—-_(1)))

I def fact(n: @unboxed Int): Qunboxed Int =
if (n._<=_(1: Qunboxed))
(1: Qunboxed)
4 else
n._x*_(fact(n._—_(1: Qunboxed)))

The COMMIT phase is heavily dependent on the trans-
formation at hand when updating the symbol signatures
and the AST. For certain transformations, it can go be-
yond replacing coercion markers by actual operations: un-
boxing multiple-parameter value classes requires creating
multiple fields and populating them. Yet, the AST trans-
formations have local scopes and are always triggered ei-
ther by a coercion marker, an annotated type in the node
or a library method that carries special semantics for the
given transformation. For example, in the staging plugin,
the method compile[T] (expr: @staged T): T has the
special meaning that a staged expression needs to be com-
piled to optimized code and executed. It is redirected by the
staging plugin from identity (the default implementation, in
the case staging is turned off) to a special implementation
that generates the code, compiles it and invokes the result.
The Validation section of the paper (§6) describes the rules
of the COMMIT phases for each of the three extensions we
developed using the Late Data Layout mechanism.

5. Transformation Properties

This section presents the properties of the Late Data Layout
mechanism. Although a partial formal description of the
transformation is available [73], this section only provides an
intuitive reasoning about the properties of the mechanism:

e consistency in terms of value representation;
e selectivity in terms of value representation;
e optimality in terms of runtime coercions;

To the best of our knowledge, we are the first to describe a
general-purpose mechanism that has the last two properties:
selectivity and optimality.

5.1 Consistency

In the LDL mechanism, we track the representation of each
value, inside its type. During the COERCE phase, the anno-
tation checker makes the representations incompatible, lead-
ing to the introduction of coercions, so the tree type-checks
successfully. Since type-checking builds a formal proof of
the program correctness modulo the theory introduced by
types, injecting the representation information into the type
system allows it to extend the correctness proof to the con-
sistency of representations and coercions. This leads to the
property that trees transformed by the coerce phase are con-
sistent in terms of representation.

It worth observing that, depending on the transformations
in the COMMIT phase, a consistent program may become
inconsistent. This only occurs because the mechanism is
general-purpose, so it does not impose the actions performed
in the COMMIT transformation. Still, for simple transforma-
tions, where annotated types are transformed to another rep-
resentation along with their coercions, the consistency guar-
antee extends to the entire transformation. On the other hand,
for complex transformations, such as the ones necessary for
multi-parameter value classes, each individual rewriting rule
has to be proven correct. Still, it is important that coer-
cions are introduced consistently and optimally, allowing the
COMMIT transformation to build on a solid foundation and
to have a simplified proof based on the LDL invariants.

5.2 Selectivity

Selectivity results directly from the fact that individual val-
ues can have their types annotated separately. Furthermore,
the miniboxing plugin demonstrated that the LDL mecha-
nism can handle multiple representations without any issues.

5.3 Optimality

Experience with the LDL mechanism reveals an interesting
fact: Thanks to the expected type propagation in local type
inference, representation constraints are propagated deeper
in the AST and, in certain branches or expressions, the co-
ercions are elided completely, when the expected represen-
tation matches the actual one. This leads us to think that,
for any given execution trace of the input program, the LDL
mechanism minimizes the number of coercions executed.
While we do not formally prove this property, we give an in-
tuitive explanation of why it occurs. It should be noted that
the minimization is done modulo the annotations introduced
by the INJECT phase, that dictate which values are unboxed
and that can potentially be suboptimal (§3.3).

Revisiting the behavior of if nodes and blocks, de-
scribed in Section 4.3.2, we can partition the AST nodes
into opaque and transparent. Opaque AST nodes have a
fixed type, which is not influenced by the expected type of
the outer expressions. For example, a constant literal 3 is an
integer regardless of the expected type. Transparent nodes,
on the other hand, adapt to the expected type by further
constraining their children AST nodes, as the if expres-

sion does. This binary classification does not capture the
full wealth of features in Scala’s type checker, such as im-
plicit conversions, overloads and polymorphic nodes. How-
ever, these are typically resolved during the initial program
type-checking phase, in the compiler frontend, and do not
influence LDL-based transformations.

Furthermore, the relation between an AST node and its
child sub-nodes can be characterized as either oblivious
or constraining. The typical example of oblivious rela-
tion occurs between blocks and the statements they contain:
the results produced by the statements are ignored, so there is
no reason to constrain them. Contrarily, the constraining re-
lationship propagates an expected type to the subnodes. Re-
fining this further, we have propagated and fixed constraints.
For example, the condition of an if expression has a fixed
constraint that it needs to be a boolean. On the other hand,
the then and else branches, have propagated constraints:
they get the expected type from the parent node.

With these definitions, we can observe that the peephole
optimization actually implements the transport of coercions
through transparent nodes with propagated constraints and
the removal of constraints from oblivious nodes. The simi-
larity between an eager transformation with a peephole opti-
mization and the LDL mechanism is now becoming clear:
the peephole optimization is for coercions what the local
type inference is for expected types: a mechanism for trans-
porting information in the AST which sinks either coercions
or constraints deeper into the tree.

Thanks to expected type propagation, when a coercion is
introduced, it is introduced as deep in the tree as possible,
even if this requires duplication. Let us take an example:

I def baz(tl: @unboxed T, t2: Qunboxed T, t3: T,
cl: Boolean, c2: Boolean): Qunboxed T =
2 if (cl)
tl
4 else
if (c2)
6 t2
else
8 unbox (t3)

We can see that only t 3 is coerced, since the if expres-
sions are transparent. During execution, sinking coercions
in the tree means they are only executed if this is unavoid-
able, as a representation mismatch occurred at one point in
the execution trace. An interesting remark is that a minimum
number of constraints in any execution trace doesn’t trans-
late to a minimum total number of constraints introduced in
the program:

1def buz(tl: T, t2: T, c: Boolean):
if (c)
unbox (tl)
4+ else
unbox (t2)

Qunboxed T =

Since constraints are sunk to the bottom of the tree, they
may be duplicated several times for nodes such as condi-
tionals and pattern matches. Therefore, the total number of

coercions introduced in the tree is not minimum, in our ex-
ample being 2, instead of 1, which corresponds to coercing
the if expression. Still, given any execution trace in the pro-
gram, the total coercions executed is minimum, in our exam-
ple, just 1. Note that coercions may be further reduced or in-
creased by changing the output of the INJECT phase (§3.3).
Also, naively implementing the COMMIT phase can intro-
duce to redundant coercions. Unfortunately, it is impossible
to reason about the INJECT and COMMIT phases in a general
setting, as they are specific to each transformation.
Arguably, sinking coercions could potentially place them
inside hot loops. In Scala, since for loops are desugared to
method calls, the only two mechanisms for low-level looping
are while loops and tail-recursive calls. Both while loops
and method calls are opaque nodes in the AST and do not
propagate expected types. Therefore, for the Scala ASTs, we
do not expect the LDL mechanism to sink coercions inside
hot loops. Still, coercions may be introduced in hot loops
based on the annotations introduced by the INJECT phase for
loop-local values, which may require coercing (§3.3).

6. Validation and Evaluation

This section describes how we validated the Late Data Lay-
out mechanism by using it to implement three very different
language features: value classes, specialization via minibox-
ing and support for multi-stage programming.

In our case studies we observed increased productivity
thanks to the reuse of the Late Data Layout mechanism.
Two decisions in LDL also provided tangible benefits to the
development process: (1) decoupling the decision to unbox
values from the mechanism that introduces coercions and (2)
decoupling the alternative representation semantics from the
coercions and annotated types.

A highlight of the validation is the fact that we reimple-
mented and extended the Scala compiler support for value
classes [7] with just two developer-weeks of work and with-
out reusing any pre-existing code.

We begin by describing the plugin architecture in the
Scala compiler and how it can be used to implement data
representation transformations. Afterwards, we present and
evaluate each of the three case studies.

6.1 Scala Compiler Plug-ins

The Scala compiler allows extension via plugins. These can
customize the type system through annotation checkers and
can inject new compilation phases. In this section we de-
scribe the annotation checker framework and the custom
compiler phases added by the LDL mechanism.

The annotation checker framework allows compiler
plugins to inject annotations during type-checking, to pro-
vide custom logic for the joins and meets of annotated
types and to apply custom transformations to abstract syn-
tax trees (ASTs) whose type is annotated. Still, the most
important feature for the LDL transformation is allowing
plugins to extend the vanilla subtyping logic in the Scala

compiler by providing custom and phase-dependent rules
for annotated types. Using this framework, Rytz created a
purity and effects checker [60] that uses annotations to track
side-effecting code, while Rompfimplemented a type-driven
continuation-passing style (CPS) transformation [56].

LDL-based transformations use the annotation checker
framework to encode the high-level concept with its repre-
sentations in the type system. Before the COERCE phase, an-
notated types are compatible with their non-annotated coun-
terparts, exposing the unified concept. During and after the
COERCE phase, however, this compatibility is broken, em-
ulating the difference between representations. This newly
created incompatibility drives the insertion of coercions in
the program’s abstract syntax tree (AST).

I def annotationsConform(tpel: Type, tpe2: Type) =
2 if (phase.id < coercePhase.id)

true
4 else

9 (tpel.isAnnotated =
tpe2.isWildcard

tpe2.isAnnotated) ||

Custom compiler phases allow plugins to transform
both the AST and the symbol signatures at precise points
in the compilation pipeline. An LDL-based plugin typically
adds three custom phases, corresponding to INJECT, CO-
ERCE and COMMIT. However, each specific transformation
is free add more phases and can even interpose them between
the standard LDL phases.

The INJECT phase initiates the transformation process
by marking values with their alternative representations. To
do so, the phase visits all entries in the symbol table and
updates their signatures: fields, local values, method argu-
ments and returns are marked using annotated types. Since
this phase is dependent on the transformation and typically
does more than just adding annotations, it will be described
in detail in each of the case studies.

The COERCE phase is the core of the transformation
mechanism and is similar for all case studies. Since the anno-
tation checker exposes the different representations, the CO-
ERCE phase essentially starts with an inconsistent abstract
syntax tree, where the type mismatches correspond to clash-
ing representations. The COERCE phase makes the tree con-
sistent again by type-checking it while using local type in-
ference to guide the introduction of coercions.

In Scala, the type checker consists of two parts:

1. a typing judgement, which assigns a type to each AST
node and

2. an adaptation routine, which transforms AST nodes so
their type matches the expected one.

The adaptation routine is responsible for inserting im-
plicit conversions, resolving implicit parameters and syn-
thesizing reified types [62]. The next code snippet shows a
heavily simplified Scala-like type-checking algorithm:

I def typed(tree: Tree, exp: Type): (Tree, Type) =
/+ (1) +/ typing_judgement (tree, exp) match

case (treel, tpel) if

4 subtype (tpel, exp) &&

5 annotationsConform(tpel, exp) =>

6 (treel, tpel)
case (tree2, tpe2) =>

8 /+ (2) +/ adapt (tree2, tpe2, exp)

9 }

We assume the methods have the following signatures:

1 def typing_judgement (tree: Tree, exp: Type):
2 (Tree, Type) = ...
;3 def adapt (tree: Tree, tpe: Type, exp: Type):
4 (Tree, Type) = ...

In the type-checking algorithm, the adaptation routine (2)
is only triggered if the type of the current tree, as decided
by the typing judgement (1), does not conform to the ex-
pected type. As a result, only opaque nodes (§5.3) reach the
adaptation routine. For example, the typing judgement for
an if expression will propagate the expected type to the
branches, leading to each individual branch conforming or
being adapted to conform. This makes the conditional itself
conform, therefore bypassing adaptation.

The main change added by the COERCE phase to the
typing algorithm concerns the adaptation routine: whenever
a mismatch between representations is detected, a coercion
is introduced. For example, if the expected type is Int, and
the actual type is Qunboxed Int, a box coercion is added.

The COERCE phase also adds a rule to the typing judge-
ment: when a method call is encountered, the receiver ex-
pression is type-checked without an expected type, in order
not to constrain it. If the result is a boxed expression, the
method call can be performed as-is. On the other hand, if the
result uses an alternative representation, there are two op-
tions: (1) if the specific transformation does have alternative
methods for unboxed receivers (such as extension methods),
the call can be redirected to the alternative method or (2)
if such a method is not available, the receiver expression is
type-checked again expecting a boxed type, leading to the
introduction of a coercion. This allows performing method
calls regardless of the receiver’s representation.

Thanks to the annotation checker, when a node is type-
checked expecting a super type, it is automatically boxed.
This occurs because, as discussed in §3.1, super types of an
unboxed type cannot themselves be unboxed. Along with the
method call transformation, the super type boxing forms the
LDL support for the object-orientated features in the Scala
programming language.

Finally the COMMIT phase transforms the symbol sig-
natures and the tree to use the low-level alternative repre-
sentations. When the AST reaches the COMMIT phase, it is
consistent and has the all the annotations and coercions nec-
essary to guide the transformation. Again, since this phase is
specific to the representation, we describe it the each of the
case studies, along with counting the lines of code and the
number of rewrite rules.

6.2 Case Study 1: Value Classes

Value classes [2, 7, 29] marry the homogeneity and dynamic
dispatch of classes with the memory efficiency and speed
of C-like structures. In order to get the best of both worlds,
value classes have two different in-memory representations.
Instances of value classes (referred to as value objects) can
be represented as fully-fledged heap objects (the boxed rep-
resentation) or, when possible, use a struct-like unboxed rep-
resentation with by-value semantics.

For instance, in the example below, the Meter value
class is used to model distances in a flexible and performant
manner, providing both object-orientation (including virtual
methods and subtyping) and efficiency of representation.
Our implementation transforms methods +, <= and report
such that their arguments and return types are unboxed value
classes. Furthermore, values of type Meter will use the
unboxed representation wherever possible.

I @value class Meter (val x: Double) {

2 def + (other: Meter) = new Meter (x + other.x)
def <=(other: Meter) = x <= other.x

4}

5 def report (m: Meter) = {

6 if (m.<=(new Meter (9000)))
println(m.toString)
8}

Before we dive into the transformation, let us consider
some basic facts about value classes, correlating them with
existing implementations for C# [2] and Scala (both the
official transformation shipped with Scala 2.10 [7], and the
prototype we present in this paper).

Final semantics. Even though value classes can extend
traits, their participation in the class hierarchy has to be
limited in order to allow correct boxing and unboxing. In-
deed, if along with Meter it were possible to define an-
other value class Kilometer that extended Meter, then un-
boxing m would be ambiguous, as its boxed representation
might be either of the classes. This observation is consistent
with both C#, where value classes cannot be extended, and
Scala, where value classes are declared by inheriting from
the marker class Anyval and are automatically made final.

By-value semantics. When compiling value classes to
low-level bytecode, additional care must be taken to ac-
commodate their by-value semantics on otherwise object-
oriented platforms: both the JVM and the CLR have a uni-
versal superclass called Object that exposes by-reference
equality and hashing. Moreover, both platforms provide
APIs to lock on objects based on reference. While we can’t
control what happens to value objects that are explicitly cast
to Object, we can restrict uses of by-reference APIs. In C#
this is done by having a superclass of all value classes, called
ValueType, which provides reasonable default implemen-
tations of Equals and GetHashCode, whereas in Scala all
value classes get equals and hashCode implementations
generated automatically. Both in C# and Scala synchroniza-
tion on value classes is outlawed.

Single-field vs multi-field. While single-field value clas-
ses like Meter trivially unbox to a single value, devising
an unboxed representation for multi-field value classes may
pose a challenge if the underlying platform does not provide
support for structures. And indeed, in the case of Scala, the
JVM does not support structs or returning multiple values,
so we have to box multi-field value objects when returning
them from methods. Still, for fields, locals and parameters
we do unbox multi-field value objects into multiple sepa-
rate entries, providing a faithful emulation of struct behav-
ior. It is worth noting that the value class implementation in
Scala 2.10 only supports single-field value classes, therefore
sidestepping this issue altogether. C# doesn’t have this prob-
lem, because the .NET CLR provides a primitive for structs.

Having seen these aspects of value classes, we can now
dive into the implementation of our prototype. It follows the
standard three phases: INJECT, COERCE and COMMIT, all
preceded by an extension methods phase, ADDEXT:

The ADDEXT phase makes several changes to the tree: it
adds standard hashCode and equals implementations for
value classes, it transforms value class methods into exten-
sions and finally adds redirects from the value class to the
extension methods in the companion object. The extension
methods are later used by the COERCE phase, which redi-
rects method calls as described in §4.3. The result is:

This is a notable use-case for the first-class selectiv-
ity support provided by the LDL mechanism. Methods
that return multi-field value objects are not annotated with
@Qunboxed on the return type, since the JVM lacks the nec-
essary support for multi-value returns: Simply leaving off
the @unboxed annotation is all it takes to have the result au-
tomatically boxed in the method and unboxed at the caller.

Another responsibility of the INJECT phase is the creation
of bridge methods (§3.3). If a method that has value class
parameters overrides a generic method, INJECT creates a
corresponding bridge:

I trait Reporter[T] {

2 def report(x: T): Unit

)

4+ class Example extends Reporter[Meter] ({
def report (x: Meter) = report (x)

6 override def report (x: Qunboxed Meter)

}

I @value class Meter(val x: Double) {
def +(other: Meter) = Meter.+(this, other)
def <=(other: Meter) = Meter.<=(this, other)

hash

4 redirections

~A. o]
ode, equ

5}
s object Meter {

def +(self: Meter, other: Meter) =
8 new Meter(self.x + other.x)
9 def <=(self: Meter, other: Meter) =
10 self.x <= other.x

ae, equa ls extension me

13 def report (m: Meter) = ...

Code emitted for these bridges is particularly elegant,
again thanks to the selectivity of the transformation. It turns
out that it is enough to just have the bridge be a trivial
forwarder to the original method with its parameters being
selectively annotated. This produces a compatible signature
for the JVM and the COERCE phase automatically manages
representations by introducing coercions. Dziakuj LDL!

The COERCE phase follows the pattern established in
§4, making @unboxed types incompatible with their non-
annotated counterparts and inserting box and unbox mark-
ers in case of representation mismatches. The coerce phase
also redirects to extension methods where possible. For our
running example, the following code is produced:

The INJECT phase marks values to be transformed using
the Runboxed annotation. It marks all fields, locals and
parameters of value class type as well as return types of
methods that produce single-field value objects:

I @value class Meter(val x: Double) {
def +(other: @unboxed Meter) =
Meter.+ (this, other)
4 def <= (other: @unboxed Meter) =
Meter.<=(this, other)

Cod. el
Code, equ

2sh

6

}
¢ object Meter ({
9 def +(self: @unboxed Meter, other: @unboxed

Meter) = new Meter(self.x + other.x)
10 def <=(self: @unboxed Meter, other: @unboxed

Meter) = self.x <= other.x

le, equa ls extension methods

12}

13 def report (m: @Qunboxed Meter) = {
14 if (m.<=(new Meter (9000)))

15 println(m.toString)

I @value class Meter (val x: Double) {
def +(other: @unboxed Meter) =
Meter.+ (unbox (this), other)
4 Meter.<=(unbox (this), other)
5 ... // hashCode, equals redirections
6}

7 object Meter {
8 def +(self: @unboxed Meter, other: @Qunboxed
Meter) : Qunboxed Meter = unbox (new
Meter (box (self) .x + box (other) .x))

9 def <=(self: @unboxed Meter, other: @unboxed

Meter) = box(self).x <= box(other) .x
10 ... // hashCode, equals extension methods
o}
2 def report (m: @Qunboxed Meter) = {
13 if (Meter.<=(m, unbox (new Meter (9000))))
14 println (box (m) .toString)
150}

The COMMIT phase uses the annotations established by
the INJECT phase and the marker coercions to represent
the annotated value classes by their fields. In particular, the
COMMIT phase changes the signatures of all fields, locals
and parameters annotated with @unboxed into their unboxed
representations, creating as many duplicated fields as neces-
sary to store the unboxed multi-field value classes. Return
types of methods are unboxed as well, but only for single-
field value classes.

On the level of terms, the transformation centers around
the coercion markers, causing box (e) calls to become ob-
ject instantiations and rewriting unbox (e) calls to field
accesses. Additionally, we devirtualize box (e) . £ expres-
sions as much as possible, which is done by transforming
box (e) . f into a reference to the unboxed field.

Finally, term transformations perform the necessary book-
keeping to account for duplicated fields (arguments and pa-
rameters of value class types are duplicated as necessary,
assignments to locals and fields or value class types become
multiple assignments to duplicated locals and fields, etc).

The COMMIT phase transforms our example to:

In the COMMIT phase, many of the rules that expand def-
initions into multiple fields are triggered either by coercions
or by annotations, such as @unboxed on the value definition:

I val c: @unboxed Complex = ...
2> // => will be split into c_re and c_im

Runtime performance. We evaluated the runtime perfor-
mance using an FFT example from the Rosetta Code website
[6]. The speedups we observed come from transforming the
complex number case class into a value class, allowing it to
be inlined. The results we obtained using the scalameter [53]
benchmarking framework, expressed in milliseconds, were:

i final class Meter(val x: Double) {
def +(other: Double) = Meter.+(x, other)
def <= (other: Double) = Meter.<=(x, other)

ections

4

5}

s object Meter {

def +(self: Double, other: Double): Double =
self + other

8 def <=(self: Double, other: Double) = self <=
other

9 ... // h eq extensio e

0}

11 def report (m: Double) = {

12 if (Meter.<=(m, 9000))
13 println (new Meter (m) .toString)
14}

I ::Benchmark FFT.Scala Complex::

> Parameters(data size = 27~ -> 4): 11.9418295
i ::Benchmark FFT.Valium Complex::
5 Parameters(data size = 2% -> 4): 11.8187571

The speedup is only 1% because, at this point, we cannot
unbox value classes when returning them. We are currently
looking at different ways to improve the performance by
side-effectfully writing the value to a thread-local variable
on method return and reading it back in the caller.

A different benchmark we tried was adding up 2'4 com-
plex numbers:

Itis worth mentioning that even with the necessity to cater
for the lack of built-in struct support in the JVM, the result-
ing transformation is remarkably simple. First, we have been
able to implement it without changing the compiler itself
(in particular, without customizing the built-in ERASURE
phase). Second, custom logic in INJECT, COERCE and COM-
MIT phases spans only about 500 lines of code. This shows
the LDL mechanism can significantly reduce the effort nec-
essary to implement complex data representation transfor-
mations.

6.2.1 Evaluation
We evaluate the plugins on three metrics:

¢ Lines of code and complexity of the commit phase;
® Runtime performance improvements;
¢ Additional features added to the LDL mechanism.

Lines of code and complexity. The value class plugin
has 17 files Scala files with 1286 lines of code, as reported
by the cloc counter [1]. Unfortunately, it is impossible to
compare these stats to the Scala implementation, as several
transformations are merged into the ERASURE phase and
untangling them is a very difficult challenge.

The COMMIT phase for the value class plugin has 180
lines of code and 29 transformation rules:

® 6 rules for transforming coercions;

e 23 rules for different AST nodes - triggered either by
coercions or by annotations.

I ::Benchmark Ops.Scala Complex::

> Parameters(data size = 2~ -> 14): 0.1461588
4 ::Benchmark Ops.Valium Complex::
5 Parameters(data size = 2% -> 14): 0.0930053

This is where value classes really speed up the program: a
simple @value annotation produces an almost 2x speedup.

The extra feature added by the value class plugin over
the standard LDL mechanism is the ability to indicate code
patterns that should always be boxed. This is done in the
COERCE phase and it reduces the code patterns the COMMIT
phase needs to handle. This feature requires an extra 3-line
rule in the typing judgement which matches a pattern and
type-checks the expression with a boxed expected type. In
the current implementation, the pattern matches unstable
expressions (that can change the value from one access to
the next), which cannot be unboxed to multiple fields:

1 val cl: @unboxed Complex =
> val c3: Qunboxed Complex = ...
3 val c3: @Qunboxed Complex =
4 unbox (i€ (...) // if => ur
5 box (cl)
6 else

box (c2))

The COERCE phase requires the if expression to be
boxed and unboxes it before assigning the result to ¢3 (since
c3 is unboxed, we assign to the duplicated fields of c3:
c3_re and c3_im). There are three reasons for this trans-
formation: (1) to reduce the commit phase complexity, (2)
since the Scala AST representation does not allow multi-
field block returns and (3) since this pattern is easily detected
and optimized by the just-in-time compiler in the JVM.

6.3 Case Study 2: Miniboxing

The miniboxing transformation [5, 75] is the most complex
case study and also the most established, being under de-
velopment for almost two years. The miniboxing plugin ini-
tially used an eager transformation coupled with a peephole
optimization. The difficulties in maintaining and expanding
the peephole rewriting rules motivated the development of
the LDL mechanism. This section briefly mentions the ideas
behind specialization and miniboxing and then explains how
the code is transformed using the three phases of the LDL
mechanism: INJECT, COERCE and COMMIT.

Specialization [21] improves the performance of erased
generics by duplicating methods and classes and adapting
them for each primitive type. These adapted versions, also
called specialized variants, receive and return unboxed prim-
itive types, thus allowing the program to use them efficiently.
Yet, specialization leads to bytecode duplication, with 10
variants per type parameter: 9 for the primitive types in Scala
plus the erased generic. This means that specializing a tuple
of 3 elements, which has 3 type parameters, produces 103
classes, too much for practical use.

Miniboxing [75] was designed to reduce the bytecode ex-
plosion in specialization. It is based on two key insights: (1)
in Scala, any primitive type can be encoded in a long inte-
ger, thus reducing the duplication to two variants per type
parameter and (2) the encoding requires provenance infor-
mation, namely a type tag that represents the original type
of the long-encoded value. With miniboxing, fully specializ-
ing a 3-element tuple creates § classes and an interface.

To explain how the miniboxing transformation works, let
us use the ident ity example again:

miniboxed encoding. The annotation used in miniboxing is
@storage

I def identity[T](t: T): T =t
> def identity_M[T] (tag: Byte, t: @storage T):
@storage T = t

In the third step, the INJECT phase specializes method
calls. It does so by redirecting calls from miniboxed methods
to their specialized variants, based on the type arguments:

I identity_M[Int] (INT, 5)

The COERCE phase contains the standard LDL logic. In
our example, it does not change the two method definitions,
but the call to identity_M gets the argument coerced (we
assume the call is in statement position, otherwise the result
would also have to be coerced back to Int):

I identity_M[Int] (INT, marker_box2minibox(5))

The COMMIT phase converts @storage T to Long
and replaces the marker_ methods by their actual im-
plementations, either the more general minibox2box /
box2minibox, which use the type tag, or the more effi-
cient minibox2X / X2minibox when X is a primitive type.
The result after the COMMIT phase is:

I def identity[T](t: T): T =t
> def identity_M[T] (tag: Byte, t: Long): Long = t
3 identity_M[Int] (INT, int2minibox(5))

I def identity[@miniboxed T](t: T): T =t
> identity[Int] (5)

The @miniboxed annotation on the type parameter T
triggers the transformation of the the method. This will du-
plicate and adapt the body of identity, creating a new
method identity M, care acceptd primitive. This new
method encodes the primitive types into a long integer and
requires a type tag corresponding to the type parameter T.
The low level code resulting from compilation is:

I def identity(t: Object): Object = t
> def identity_M(tag: byte, t: long): long = t
3_identity_ M(INT, int2minibox(5))

Let us walk through the steps necessary to obtain this low
level code. The first step of the INJECT phase duplicates the
method identity to identity_M and adds the type tag:

I def identity[T](t: T): T =t
> def identity_MI[T] (tag: Byte, t: T): T =t

In the second step, in order to adapt identity M to
primitive types, the miniboxing plugin transforms all val-
ues of type T to Long. Doing this transformation consis-
tently and optimally requires an LDL cycle, so the INJECT
phase starts by marking values of type T that will use the

Finally, as this code passes through the Scala compiler’s
backend, the ERASURE phase unboxes the Long integers
into long and erases the type parameter T to Object. This
produces the exact result we showed in the beginning.

It is worth mentioning that miniboxing exploits all the
flexibility available in the LDL mechanism: in the last ver-
sion it features 2 alternative encodings (miniboxing to Long
or Double), the alternative representation mapping is not
injective, since all miniboxed type parameters map to ei-
ther Long or Double, the selectivity is used to generate
bridge methods for similar reasons to those presented in §3.3
and the compatibility between annotated and non-annotated
types in the INJECT phase is used to easily redirect method
calls from miniboxed methods to their specialized variants.

6.3.1 Evaluation

Lines of code and complexity. The miniboxing plugin has
17 Scala files with 2584 lines of code. The specialization
transformation currently available in the Scala compiler [21]
has 2 Scala files with 1541 lines of code. However, we are
not comparing similar things: the miniboxing plugin per-
forms a more complex transformation compared to special-
ization and bears the boilerplate necessary to build a com-
piler plugin.

The COMMIT phase for miniboxing has 260 lines of code
and 12 transformation rules:

e 3 rules for coercions (minibox2box, box2minibox,
minibox2minibox);

600

MiHiboxe& E—
Generic

500

400

200

Total execution time (ms) - lower is better

100

10 11 12 13 14 15 16 17 18 19
Data set size (1M elements)

Figure 1. Least squares method using linked lists

® 4 rules for redirecting methods inherited from Any, such
as toString - triggered by coercions;

¢ 4 rules for optimizing arrays - triggered by array opera-
tions (a. {apply, update, length} and new T[]);

e | extra rule for optimizing the function representation.

In the miniboxing plugin, universal methods inherited
from Object are redirected to library-provided extension
methods, and, since they do not require a different repre-
sentation, the redirection is done in the COMMIT phase in-
stead of the COERCE phase. These rewritings could have
been done in the COERCE phase equally well.

We can compare the miniboxing plugin before and just
after the LDL mechanism was added:

e Before (29th of October 2014): 2285 LOC (out of which
approximately 500 LOC in the peephole optimization)

o After (14th of February 2014): 2246 LOC (out of which
approximately 200 LOC in the commit phase + 250 LOC
for the general and reusable LDL mechanism)

Runtime performance. Since the miniboxing plugin has
been around for some time, its runtime performance has
been thoroughly benchmarked [75]. The most recent result is
a benchmark on a slice of the Scala collections library [26]
centered around the linked list collection. The benchmark
consists of running the least squares method for fitting data
points on several input sizes. The results, summarized in Fig-
ure 1, show a 45% speedup produced by using the minibox-
ing transformation. It should be noted that Scala collections
are notoriously hard to transform, since they use many ad-
vanced features of the language, such as type classes, higher-
kinded types and anonymous and nested classes. Indeed, we
also tried to run the benchmark with the current specializa-
tion transformation in the Scala compiler [21], but the results
were disappointing: due to technical difficulties, the special-
ized linked list was slower than the generic one.

The miniboxing plugin [5] has also transformed larger
projects, with spire [49] being the largest at 31KLoC, and
produced reliable results. This shows the LDL mechanism is
not just a toy but can correctly transform large code bases.

Two extra features are added by the miniboxing plugin
over the standard LDL mechanism:

¢ using multiple alternative representations, Long and
Double in the current version. To implement this, the
@storage annotation was parameterized with a type,
allowing the INJECT phase to include the target represen-
tation in the annotation: @storage [Long] — Long and
@storage [Double] — Double. This lead to a third
coercion marker, marker_minibox2minibox;

¢ a second LDL cycle is used to change the object-oriented
representation of functions to a miniboxing-friendly rep-
resentation.

These additions are described on the miniboxing website [S5].

6.4 Case Study 3: Staging

Multi stage programming [70] allows a program to execute
in several steps, at each step generating new code, compiling
and then executing it. In Scala, this technique has been used
by Rompfto develop the lightweight modular staging (LMS)
framework [55, 57], which removes the cost of abstraction
in many high-level embedded DSLs [10, 37, 54, 68, 74].

Using the LMS framework requires the ability to lift
built-in language constructs, such as method calls, if ex-
pressions and variable accesses. This is done by transform-
ing these constructs into calls to methods provided by the
programmer or by the LMS framework. Currently, lifting is
done using a custom version of the compiler, dubbed scala-
virtualized [45] or using Yin-Yang [34], a macro-based fron-
tend that allows selectively lifting parts of a program.

In this section, we show that lifting can be modelled
as a data representation transformation, allowing LDL-
transformed programs to be optimized by an LMS-like
framework. One of the early examples of staging given by
Rompfis eliminating the recursion from a power function:

I def pow(b: @staged Double, e: Int): @staged

Double =
2 if (e == 0) 1.0
else if (e $ 2 == 1) b * pow(b, e-1)

4 else {
val x = pow(b, e/2)

6 X % X
7}

¢ val pow5 = function(arg => pow(arg, 5))
9 println("3.0"5 = " + pow5(3.0)

0 println("4.075 = " + powb(4.0)

The pow method computes b®. The base, b, and the return
type are marked as @staged, whereas the exponent, e, is
not. This means that calls to pow, instead of computing a
value, accumulate the operations necessary to produce b*®
for a variable base b and a fixed exponent e.

Indeed, the call to function in line 8 first triggers the
execution of pow for the variable base b=arg and the fixed
exponent e=5. The operation graph recorded corresponds
to arg® and is used by the function call to generate
optimized code, compile it, and to expose it as a function
from Double to Double, correspondingto arg => arg®:

1 function: compiling the following code:
2 hhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhhkkhkhkhkhkhkhrhrhkhkhkhkhkhkhkdhxx
(arg: Double) => {
4 val x0: Double = arg * arg
val x1: Double = x0 % x0
6 val x2: Double = arg x x1
x2: Double
s}
O KA A A A A A A A A A A A A A AR A A A A A A A A A A A A A A A A A KKK
0 3.0"5 = 243.0
1 4.0"5 = 1024.0

The generated code shows the if conditional and the
recursive calls were eliminated. Indeed, running pow for
the exponent 5 executes exactly three non-trivial operations
transitively involving the argument arg, all three appearing
in the generated code. This shows the operations were lifted
and recorded in the operation graph, allowing the code above
to be generated in the next stage. Let us see how the pow
code was transformed to allow lifting.

In the case of staging, there is no INJECT phase, since the
programmer manually marks the arguments to be @staged.

The COERCE phase follows the usual pattern of intro-
ducing coercions, with an additional constraint: immediate
values can be coerced to staged constants, but not the other
way around. This is done so that staging and compiling are
only triggered explicitly, through calls such as compile and
function. This restriction could easily be removed, but
keeping it makes the performance predictable, as it puts the
programmer in control of the lengthy staging and compila-
tion process. Seen in relation to primitive types, when stag-
ing, boxing is cheap, but unboxing can potentially be expen-
sive, so we want to trigger it explicitly.

The COERCE phase is also responsible for redirecting
method calls for @staged receivers, which is essentially
the lifting mechanism. Unlike the previous transformations,
where extension methods were either provided by the library
or extracted automatically, in the case of staging, they are
manually written by the programmers. These methods are
called infix methods [45] and they contain the mechanism to
build the operation graph used to generate optimized code.
Since this part is very similar to what is done in the LMS
framework and is not our contribution, we point the reader
to the works of Rompf'[54, 55, 57] for more details.

The COMMIT phase transforms @staged T to the oper-
ation graph representation used in LMS, Rep [T], and redi-
rects calls to compile and function to compile_impl
and function_impl, which trigger the synthesis and com-
pilation for the operation graph.

The staging prototype serves to show that lifting language
constructs can be modelled as an LDL-based representation
transformation.

6.4.1 Evaluation

Lines of code and complexity. The staging plugin consists
of 12 Scala files with 487 lines of code. The difference
between the standard Scala compiler and Scala-virtualized
is +2247/-578 LOC, including the library changes necessary

to support lifting language constructs. Although the staging
plugin is still far from being on-par with scala-virtualized in
terms of lifting capabilities, it is 4 times smaller, despite the
boilerplate necessary to create a Scala compiler plugin.

The COMMIT phase for the staging plugin has 110 lines
of code and 5 transformation rules:

¢ 3 rules for redirecting markers to actual coercions;
e 2 rules for the special methods compile and function.

Runtime performance. We tested the staging plugin on
the FFT example from Rosetta Code [6]. To stage the FFT
example, we lifted the operations on complex numbers but
left everything else to evaluate during staging. The separa-
tion into even and odd numbers and all the butterfly con-
nections specific to FFTs are done only once during staging.
Of course, this requires deciding on the number of elements
ahead of time, thus fixing the batch size for the FFT analysis.
With this, we get the following results:

I ::Benchmark FFT.Scala Complex::
> Parameters(data size = 2"~ -> 3): 0.966099

i ::Benchmark FFT.Stagium Complex::
5 Parameters(data size = 2% -> 3): 0.018612

The times for executing the FFT (expressed in millisec-
onds) suggest that lifting the code and removing collection-
related abstraction can bring a speedup of 53x, making stag-
ing worth it when running the FFT code multiple times.

The two extra features in the staging plugin are: (1)
using programmer-written infix methods instead of synthetic
or library extension methods and (2) the ability to restrict a
class of coercions, in this case from staged to direct values,
outputting meaningful error messages and explaining the
problem to the user.

7. Related Work

Generics. Interoperation with generics motivates many of
the data representation transformations in use today. The
implementation of generics is influenced by two distinct
choices: the choice of low-level code translation and the
runtime type information stored.

The low-level code generated for generics can be either
heterogeneous, meaning different copies of the code exist for
different incoming argument types or homogeneous, mean-
ing a single copy of the code handles all incoming argument
types. Heterogeneous translations include Scala specializa-
tion [21], compile-time C++ template expansion [66] and
load-time template instantiation [35] as done by the .NET
CLR [9]. Homogeneous translations, on the other hand, re-
quire a uniform data representation, which may be either
boxed values [15, 42], fixnums [77] or tagged unions [46].

In order to perform tests such as checking if a value is a
list of integers at runtime, the type parameter must be taken
into account. In homogeneous and load-time template ex-
pansions, one has to carry reified types for the type parame-
ters. While this has an associated runtime cost [62], several
solutions have been proposed to reduce it: in the CLR, reified

types are computed lazily [35]. In Java, several papers pre-
sented viable schemes for carrying reified types, including
PolyJ [11], Pizza [47], NextGen [19] and the work by Viroli
et al. [76]. Finally, in ML, generic code (also called para-
metrically polymorphic in functional languages) can carry
explicit type representations [30, 71].

Unboxed primitive types. In the area of unboxed prim-
itive types, Leroy [42] presents a formal data representation
transformation for the ML programming language based
on typing derivations. The comparison in the introduction
states that Late Data Layout introduces selectivity, object-
oriented support and disentangles the transformation from
its assumptions. This is a somewhat shallow comparison.
A deeper comparison is that in Leroy’s transformation the
INJECT and COMMIT phases are implicit and hard-coded
while the two versions of the transformation rules presented
by Leroy correspond to duplicating the COERCE phase for
boxed and unboxed expected types. Instead of expected
types, the ML transformation knows where generic param-
eters occur, and uses this information to invoke the correct
version of the transformation. Therefore our main contribu-
tion is discovering and formulating the underlying principle
and successfully extending it to a more broad context, to in-
clude value classes, specialization and staging, which have
very different requirements.

Shao further extends Leroy’s work [63, 64] by presenting
a more efficient representation, at the expense of carrying
explicit type representations [30, 71]. Minamide further re-
fines the transformation and is able to formally prove that the
transformed code has the same time complexity as the origi-
nal program [44]. Tracking value representation in types has
been presented and extended to continuation-passing style
[23] by Thiemann in [72]. Two pieces of information are
tracked in a lattice: whether the value corresponding to the
type is used at all (otherwise its representation can be ig-
nored - called “Don’t care polymorphism” and equivalent to
our oblivious relation between AST nodes) and whether a
certain representation is required. This information is used in
a type inference algorithm which can elide coercions when
the parameters are discarded or when a method call is in tail
position, namely it doesn’t need to box the result only to
have the caller unbox it. It should be noted that the coer-
cions operate on a continuation-passing-style intermediary
representation.

A different direction in unboxing primitive types is based
on escape analysis [20], where the program is analyzed at
runtime and a local and conservative data representation
transformation is performed. When implemented in just-in-
time compilers [65] of virtual machines such as PyPy [13],
Graal [79] or HotSpot [50], and coupled with aggressive in-
lining, the escape analysis can make an important difference,
although it is limited by not being able to optimize contain-
ers outside its local scope. Late Data Layout and escape anal-
ysis are fundamentally different — escape analysis has a local
scope and relies heavily on inlining, while LDL can safely

optimize across method boundaries as long as the transfor-
mation consistently makes the same decisions in subsequent
separate compilations. Interpreter-based techniques such as
quickening [17] and trace-based specialization [24] can fur-
ther improve escape analysis based on the dynamic execu-
tion profiles. Truffle [78] partially evaluates the interpreter
for the running program and makes aggressive assumptions
about the data representation, yielding the best results in
terms of top speed at the expense of a longer warm-up time.

The Haskell programming language has two reasons to
box primitive types in the low level code: (1) due to the non-
strictness of the language, arguments to a function may not
have been evaluated yet and are thus represented as thunks
and (2) due to erased parametric polymorphism. Haskell ex-
poses both the boxed Int representation and the unboxed
Int#, although the compiler does transform Int values
to Int# where possible. To do so, the Glasgow Haskell
Compiler uses a syntax-based transformation coupled with
a peephole optimization [32, 40]. In general, peephole opti-
mizations have been formalized by Henglein in [31]. Haskell
also features calling convention optimizations that make the
argument laziness explicit and can unbox primitives in cer-
tain situations [12].

Value classes have been proposed for Java as early as
1999 [29, 58, 59]. The most recent description, which is
also closest to our current approach, is the value class pro-
posal for the Scala programming language [7]. We build
upon the idea that a single concept should be exposed de-
spite having multiple representations, but we step away from
ad-hoc encodings and fixed rules in the type system. In
this way, we can capture other representations, such as the
tagged representation in [46]. Value classes have also been
implemented in the CLR [2], but to the best of our knowl-
edge the implementation has not been described in an aca-
demic setting. The Haskell programming language offers the
newtype declaration [3] that, modulo the bottom type L, is
unboxed similarly to value classes.

Specialization for generics is a technique aimed at elimi-
nating boxing deep inside generic classes. Specialization has
been implemented in Scala [21, 22] and has been improved
by miniboxing [5, 75]. Specialization and macros have been
combined to produce a mechanism for ad-hoc specialization
of code in Scala [67]. The .NET CLR automatically special-
izes all generics, thanks to its bytecode metadata and reified
types [35].

A different approach to deep boxing elimination is de-
scribed for Haskell [33] and Python [14]. It relies on special-
izing arrays while providing generic wrappers around them.
This allows memory-efficient storage without the complex
problem of providing heterogeneous translations for each of
the methods exposed by data structures.

Multi-stage programming (also called staging) [70] re-
quires lifting certain expressions in the program to a reified
representation. Staging can be implemented using macros
[18, 25, 34], or using specialized compiler extensions [45].

One of the applications is removing the abstraction overhead
of high-level and embedded domain specific languages. In-
deed, staging was successfully used to optimize and re-target
domain-specific languages (DSLs) [16, 37, 54, 55, 57, 74].

Annotated types [4, 8] have been introduced to trigger
code transformations and to allow the extension of the type
system into the area of program verification while reusing
as much infrastructure from the compiler as possible [51].
In the context of Java, type annotations have been used to
selectively add reified type argument information to erased
generics [27]. In the context of Scala, annotated types have
been used to track and limit the side-effects of expressions
[60, 61], to designate macro expansions [18] and to trigger
continuation-passing-style transformations [56].

Formalization. In [42], Leroy presents a full formaliza-
tion for the primitive unboxing for ML, including a proof of
operational equivalence. The .NET generics are formalized
in [80]. An effort to formalize LDL is currently on-going
[73] and it relies on local type inference, as described by
Odersky et al. [48] and Pierce et al. [52].

In the area of formal descriptions, two papers on type-
directed coercion insertion stand out as very closely related
to this paper [41, 69]. The work of Swami et al. [69] focuses
on automatically composing several coercions together in
order to bridge the gap between different types. The high-
light of the paper are the powerful composition rules and the
proofs that, despite their generality, always produce syntac-
tically unique, non-ambiguous rewritings. This work resem-
bles the mechanisms used to introduce implicit conversions
in Scala, although the rules provide more flexibility and are
proven not to diverge. On the other hand, Leather et al. [41]
describe a coercion insertion mechanism which deliberately
produces ambiguous rewritings from which heuristics can
pick the best. More importantly, the formalism presented
in [41] is also capable of consistently changing types in
the rewrite rules, making the transformation very versatile.
Unfortunately, the two formalisms do not handle backward
propagation, object orientation and subtyping, all of which
are crucial to performing optimal data representation trans-
formations in Scala. Furthermore, they do not provide the
ability to selectively transform the data representation, mak-
ing them unusable for the three use cases we presented. By
comparison, an important limitation of our work is that the
box and unbox coercions we introduce are un-ambiguous
and not composible by design, as we aim for a one-step con-
version between different representations.

8. Acknowledgements

We would like to thank Aymeric Genét, who developed the
least squares benchmark for the miniboxing plugin [26].
We are grateful to the Scala teams at EPFL and Typesafe
for providing precious feedback and helping shape the repre-
sentation mechanism we have today. In particular, we would
like to thank Manohar Jonnalagedda, Dmitry Petrashko, Tu-
lian Dragos, Miguel Garcia and Lukas Rytz for the dis-

cussions we had, which always led to interesting develop-
ments. We are thankful to the Scala community, for trying
the project, reporting bugs and providing cool new ideas. We
would like to thank our paper and artifact reviewers in the
OOPSLA conference for providing clear and concise feed-
back, which guided us in improving the paper.

Last but not least, Vlad is grateful to his wife Ana Lucia
and his family who supported him through very difficult
times when this paper was written.

9. Conclusion

In this paper we presented a general mechanism that allows
refining a high-level concept into multiple representations.
This is done in a selective way, by annotating values in
the program with their desired representation. The coercions
necessary for maintaining program consistency with regards
to representations are introduced automatically, consistently
and optimally thanks to local type inference.

We validated the algorithm for three cases: multi-param-
eter value classes, specialization through miniboxing and
a simple multi-stage programming mechanism. The results
were encouraging: we were able to reuse much of the infras-
tructure (which has been developed as part of the miniboxing
plugin) for the other plugins and the development time was
in the order of developer-weeks.

Finally, the key insights of the paper are that annotated
types are a perfect vehicle for carrying representation infor-
mation and introducing coercions can be done consistently
and optimally using the expected type mechanism in local
type inference.

References

[1] Count lines of code. URL http://cloc.sourceforge.net/.

[2] Value Types in the Common Type System, Microsoft Developer Network.
URL http://msdn.microsoft.com/en-us/library/34yytbws.
aspx.

Haskell 98 Language and Libraries: Section 4.2.3. URL http://www.
haskell.org/onlinereport/decls.html#sectd.2.3.

[4] JSR 308: Annotations on Java Types. URL https://jcp.org/en/jsr/
detail?id=308.

[5] The Miniboxing plugin website. URL http://scala-miniboxing.org.
[6
[7

3

Rosetta Code Website. URL http://rosettacode.org.

Scala SIP-15: Value Classes. URL http://docs.scala-lang.org/
sips/completed/value-classes.html.

[8] SIP-5 - Internals of Scala Annotations. URL http://docs.scala-lang.
org/sips/completed/internals-of-scala-annotations.
html.

[9] ECMA International, Standard ECMA-335: Common Language Infrastructure,
June 2006.

[10] S. Ackermann, V. Jovanovic, T. Rompf, and M. Odersky. Jet: An embedded DSL
for high performance big data processing. In Big Data, 2012.

[11] J. A. Bank, A. C. Myers, and B. Liskov. Parameterized Types for Java. In PoPL.
ACM, 1997.

[12] M. C. Bolingbroke and S. L. Peyton Jones. Types Are Calling Conventions. In
Haskell. ACM, 2009.

[13] C.E Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-level: PyPy’s
Tracing JIT Compiler. In ICOOLPS. ACM, 2009.

[14] C. FE. Bolz, L. Diekmann, and L. Tratt. Storage Strategies for Collections in
Dynamically Typed Languages. In OOPSLA. ACM, 2013.

[15] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding Genericity to the Java Programming Language. In OOPSLA.
ACM, 1998.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific lan-
guages. In PACT. IEEE Computer Society, 2011.

S. Brunthaler. Efficient Interpretation Using Quickening. In DLS. ACM, 2010. .

E. Burmako. Scala Macros: Let Our Powers Combine!: On How Rich Syntax
and Static Types Work with Metaprogramming. In SCALA. ACM, 2013.

R. Cartwright and G. L. Steele, Jr. Compatible Genericity with Run-time Types
for the Java Programming Language. In OOPSLA. ACM, 1998.

A. Deutsch. On Determining Lifetime and Aliasing of Dynamically Allocated
Data in Higher-order Functional Specifications. In POPL. ACM, 1990. .

L. Dragos. Compiling Scala for Performance. PhD thesis, Ecole Polytechnique
Fédérale de Lausanne, 2010.

I. Dragos and M. Odersky. Compiling Generics Through User-Directed Type
Specialization. In ICOOOLPS, Genova, Italy, 2009.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of Compiling
with Continuations. In PLDI. ACM, 1993.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based Just-in-time
Type Specialization for Dynamic Languages. In PLDI. ACM, 2009.

S. E. Ganz, A. Sabry, and W. Taha. Macros As Multi-stage Computations: Type-
safe, Generative, Binding Macros in MacroML. In ICFP. ACM, 2001.

A. Genét, V. Ureche, and M. Odersky. Improving the Performance of Scala
Collections with Miniboxing (EPFL-REPORT-200245). Technical report, EPFL,
2014. URL http://scala-miniboxing.org/.

P. Gerakios, A. Biboudis, and Y. Smaragdakis. Reified Type Parameters Using
Java Annotations. In GPCE. ACM, 2013.

B. Goetz. The State of Speclaization, 2014. URL http://web.archive.
org/web/20140718191952/http://cr.openjdk. java.net/
~briangoetz/valhalla/specialization.html.

J. Gosling. The Evolution of Numerical Computing in Java - preliminary
discussion on value classes. URL http://web.archive.org/web/
19990202050412/http://java.sun.com/people/jag/FP.
html#classes.

R. Harper and G. Morrisett. Compiling Polymorphism Using Intensional Type
Analysis. In PoPL. ACM, 1995.

F. Henglein and J. Jgrgensen. Formally Optimal Boxing. In PoPL. ACM, 1994.
S. L. P. Jones and J. Launchbury. Unboxed Values as First Class Citizens in a

Non-Strict Functional Language. In Functional Programming Languages and
Computer Architecture. Springer, 1991.

S. L. P. Jones, R. Leshchinskiy, G. Keller, and M. M. Chakravarty. Harnessing
the Multicores: Nested Data Parallelism in Haskell. In FSTTCS, volume 2, pages
383-414, 2008.

V. Jovanovic, A. Shaikhha, S. Stucki, V. Nikolaev, C. Koch, and M. Odersky.
Yin-Yang: Concealing the Deep Embedding of DSLs. 2014.

A. Kennedy and D. Syme. Design and Implementation of Generics for the NET
Common Language Runtime. In PLDI, 2001.

G. A. Kildall. A unified approach to global program optimization. In PoPL.
ACM, 1973.

G. Kossakowski, N. Amin, T. Rompf, and M. Odersky.
Embedded DSL. In ECOOP. Springer, 2012.

T. Kotzmann, C. Wimmer, H. Mdssenbock, T. Rodriguez, K. Russell, and D. Cox.
Design of the Java HotSpot Client Compiler for Java 6. ACM Transactions on
Architecture and Code Optimization (TACO), 5(1), 2008.

P. A. Kulkarni. JIT Compilation Policy for Modern Machines. In OOPSLA.
ACM, 2011.

J. Launchbury and R. Paterson.
types. In ESOP. Springer, 1996.

S. Leather, J. Jeuring, A. Loh, and B. Schuur. Type-changing Rewriting and
Semantics-preserving Transformation. In PEPM ’14. ACM, 2014.

X. Leroy. Unboxed Objects and Polymorphic Typing. In PoPL. ACM, 1992.

T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., 1999.

JavaScript As an

Parametricity and unboxing with unpointed

Y. Minamide and J. Garriguc. On the Runtime Complexity of Type-Directed
Unboxing. In ICFP, 1998.

A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-Virtualized. In PEPM.
ACM, 2012.

R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An Ad Hoc Approach
to the Implementation of Polymorphism. ACM TOPLAS, 1991.

M. Odersky, E. Runne, and P. Wadler. Two Ways to Bake Your Pizza-Translating
Parameterised Types into Java. Springer, 2000.

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75

[76]

[77]

[78]

[79]

[80]

M. Odersky, M. Zenger, and C. Zenger. Colored Local Type Inference. In PoPL.
ACM, 2001.

E. Osheim. Generic Numeric Programming Through Specialized Type Classes.
ScalaDays, 2012.

M. Paleczny, C. Vick, and C. Click. The Java HotSpot Server Compiler. In
Proceedings of the 2001 Symposium on Java Virtual Machine Research and
Technology Symposium-Volume 1. USENIX Association, 2001.

M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D. Ernst. Practical
Pluggable Types for Java. In ISSTA. ACM, 2008.

B. C. Pierce and D. N. Turner. Local Type Inference. ACM TOPLAS, 2000.

A. Prokopec. ScalaMeter. URL http://axel22.github.com/

scalameter/.

T. Rompf. Lightweight Modular Staging and Embedded Compilers: Abstraction
Without Regret for High-Level High-Performance Programming. PhD thesis,
Ecole Polytechnique Fédérale de Lausanne, 2012.

T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs. In GPCE, 2010. .

T. Rompf, I. Maier, and M. Odersky. Implementing First-class Polymorphic
Delimited Continuations by a Type-directed Selective CPS-transform. In ICFP.
ACM, 2009.

T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky, and
K. Olukotun. Building-Blocks for Performance Oriented DSLs. In DSL, 2011.
J. Rose. Value Types and Struct Tearing , . URL https://web.
archive.org/web/20140320141639/https://blogs.oracle.
com/jrose/entry/value_types_and_struct_tearing.

J. Rose. Value Types in the VM, . URL http://web.archive.org/web/
20131229122932/https://blogs.oracle.com/jrose/entry/
value_types_in_the_vm.

L. Rytz. A Practical Effect System for Scala. PhD thesis, Ecole Polytechnique
Fédérale de Lausanne, 2014.

L. Rytz, M. Odersky, and P. Haller.
ECOOP. Springer, 2012.

M. Schinz. Compiling Scala for the Java Virtual Machine. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne, 2005.

Z. Shao. Flexible Representation Analysis. In ICFP. ACM, 1997.

Z. Shao and A. W. Appel. A Type-Based Compiler for Standard ML. In PLDI,
1995.

L. Stadler, T. Wiirthinger, and H. Mossenbock. Partial Escape Analysis and
Scalar Replacement for Java. In CGO. ACM, 2014.

B. Stroustrup. The C++ Programming Language, Third Edition.
Wesley Longman Publishing Co., Inc., Boston, MA, 3rd edition, 1997.

N. Stucki and V. Ureche. Bridging islands of specialized code using macros and
reified types. In SCALA. ACM, 2013.

S. Stucki, N. Amin, M. Jonnalagedda, and T. Rompf. What Are the Odds?:
Probabilistic Programming in Scala. In SCALA. ACM, 2013.

N. Swamy, M. Hicks, and G. M. Bierman. A Theory of Typed Coercions and Its
Applications. In ICFP ’09. ACM, 2009.

W. Taha. A Gentle Introduction to Multi-stage Programming. In Domain-Specific
Program Generation, pages 30-50. Springer, 2004.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A Type-
Directed Optimizing Compiler for ML. In PLDI. ACM, 1996.

Lightweight Polymorphic Effects. In

Addison-

P. J. Thiemann. Unboxed Values and Polymorphic Typing Revisited. In Func-
tional Programming Languages and Computer Architecture. ACM, 1995.

V. Ureche. Additional Material for "Unifying Data Representation Transforma-
tions (EPFL-REPORT-200246)". Technical report, EPFL, 2014.

V. Ureche, T. Rompf, A. Sujeeth, H. Chafi, and M. Odersky. StagedSAC: A Case
Study in Performance-oriented DSL Development. In PEPM. ACM, 2012.

V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the Speed to Code
Size Tradeoff in Parametric Polymorphism Translations. In OOPSLA, 2013.

M. Viroli and A. Natali. Parametric Polymorphism in Java: An Approach to
Translation Based on Reflective Features. In OOPSLA. ACM, 2000.

S. Wholey and S. E. Fahlman. The Design of an Instruction Set for Common
Lisp. In LFP, 1984.

T. Wiirthinger, A. W68, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-
Optimizing AST interpreters. In DLS. ACM, 2012.

T. Wiirthinger, C. Wimmer, A. W68, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to Rule Them All. In Onward!
ACM, 2013.

D. Yu, A. Kennedy, and D. Syme. Formalization of Generics for the .NET
Common Language Runtime. In POPL, POPL *04. ACM.

