
Ramon Fontes
Christian Rothenberg

1st edition
2019

with
Wireless Network Emulation 

with
Wireless Network Emulation 



Ramon dos Reis Fontes
Christian Rodolfo Esteve Rothenberg

Wireless Network Emulation

with Mininet-WiFi

1st edition

Campinas
Christian Rodolfo Esteve Rothenberg

2019



Credits

Authors
Ramon dos Reis Fontes
Christian Rodolfo Esteve Rothenberg

Reviewers
Michel Daoud Yacoub

Template
Mathias Legrand (legrand.mathias@gmail.com)
modified by Vel (vel@latextemplates.com)
under license CC BY-NC-SA 3.0:
http://creativecommons.org/licenses/by-nc-sa/3.0/



About the authors
Ramon dos Reis Fontes received the degree in Information Systems from
the Faculty of Technology and Sciences (FTC), in 2009, the Master degree
in Systems and Computing from Salvador University (UNIFACS), in 2013,
and the Ph.D. degree in Electrical Engineering in the area of Computer En-
gineering from the University of Campinas (UNICAMP), in 2018. His re-
search interests includes Software-Defined Networking (SDN), wireless net-
works, distributed systems, cloud and fog computing, Network Functions
Virtualization (NFV), and security. Ramon has published several papers
on conferences and journals, and has continuously contributed to the de-
velopment of free and open source software through his Github account
(https://github.com/ramonfontes). A variety of codes and instructions
on how to reproduce his research works can be found at https://github.
com/ramonfontes/reproducible-research/.

I would like to thank the readers for their interest in this book.
Please do not hesitate to contact us if you need any help on any
subject covered in this book. I would like to thank my friends, col-
leagues and teachers who have helped me in many ways. I would
also like to thank Prof. Dr. Christian Rothenberg, counselor,
advisor and co-author of this book, for sharing his wisdom and
encouragement throughout my career at the Faculty of Electrical
Engineering and Computing at UNICAMP.

My special thanks go to my beloved wife, Suian. This book would
not be a reality without your continued support. I would also like
to thank my parents, Helio and Conceição, for their incentives
and support.

To my daughter, Pietra, I dedicate this book.

Christian Rodolfo Esteve Rothenberg is Professor at the Department of
Computer Engineering and Industrial Automation (DCA) of the Faculty of
Electrical Engineering and Computation (FEEC) at the University of Camp-
inas (UNICAMP) since 2013. He holds the Telecommunication Engineering



degree from the Technical University of Madrid (ETSIT - UPM), Spain, the
M.Sc. (Dipl. Ing.) degree in Electrical Engineering and Information Tech-
nology from Darmstadt University of Technology (TUD), Germany, 2006,
and the Ph.D. in Electrical Engineering from UNICAMP (2010). From 2010
to 2013, he worked as a senior researcher at CPqD R&D center in telecom-
munication on P&D projects in the area of IP platforms. He is the Princi-
pal Investigator of the Information & Networking Technologies Research &
Innovation Group (INTRIG – https://intrig.dca.fee.unicamp.br/),
CNPq Research Productivity Fellow level 2 (2017-2020), and CNPq Techno-
logical Development and Innovative Extension Fellow level 2 (2014-2016).
His research interests include computer network architectures, virtualiza-
tion, cloud computing, SDN, NFV, among others. He has 2 international
patents and more than 120 magazine and conference publications, accu-
mulating more than 6000 citations (h-index: 28, i10-index: 50+, https:
//scholar.google.com.br/citations?user=8PxuHPkAAAAJ&hl=en).

The completion of a book is a great opportunity to reflect and
express gratitude. Starting with our ancestors, in my case, my
parents José Luis and Ana. In my academic life, I I thank all the
teachers who influenced me with a special highlight to Professor
Mauricio, PhD advisor, academic father, and friend, a key figure
since I landed on this beloved Brazil. I am grateful for all the
opportunities I have received from this country, its people, and
institutions, including CPqD, FEEC, UNICAMP, the national
funding agencies CNPq and FAPESP, Ericsson, among others. I
thank students, from undergraduate to postgraduate, professional
colleagues, and friends of everyday life. To our INTRIG group,
and of course, to Prof. Dr. Ramon Fontes, the first PhD made
in INTRIG, an example of graduate student and human being,
father and co-author of this book that I am sure will contribute to
the formation of more professionals. Finally, the most important
vector in life, the family, my wife Marcela, my children Gabriel
and Marina, my sources of energy and happiness. Thank you!



About the Reviewers

Daniel Senna

We would like to thank Daniel Senna, an editor at Textual Asses-
soria, for providing proofreading assistance.



Acknowledgements
The success of this project and the writing of this book were only possible
thanks to the support, collaboration and trust of many people and institutions
that helped to make them come true. Therefore, we would like to record our
thanks.

We thank Katia Obraczka, professor at the University of California, Santa
Cruz, California, for his valuable input and suggestions on Mininet-WiFi
development steps. We also thank the Institut National de Recherche en
Informatique et en Automatique (INRIA), especially to Thierry Turletti
and Walid Dabbous, for receiving us at INRIA for six (6) months and for
contributing in various aspects related to the development of Mininet-WiFi.
For the financial support, we thank the Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP), process 2014/18482-4 and Conselho Na-
cional de Pesquisas (CNPq), process 310930/2016-2. The INTRIG research
group thanks Ericsson for the research funding received, without which the
group would not have achieved its results, many of them leveraged by and
contributing to Mininet-WiFi.

Thanks also to users, researchers, and/or developers who contributed to mak-
ing this book a reality, more specifically: Prof. Dr. Chih-Heng Ke, from
the National Quemoy University/Taiwan, for tips and shared experience on
how wireless networks work; Brian Linkletter, for writing a tutorial, and
helping spread Mininet-WiFi; Patrick Große, for developing a Wmediumd
extension for Mininet-WiFi; and, of course, to the Mininet-WiFi community
for all discussions that result in the development of an increasingly stable and
complete emulator in terms of features supported.



Wireless Network Emulation with Mininet-WiFi
ISBN: 978-65-900571-5-0 (E-book)

Terms & Conditions

All rights reserved.
No part of this work may be copied or reproduced in any form or by any
means, electronically, photocopying, recording, etc. without the express
written permission of the authors and copyright holders.



Table of Contents

List of Figures iii

List of Tables v

List of Acronyms viii

I Introduction

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Wireless communications 3

1.2 WiFi: IEEE 802.11-based wireless local area networks 5

1.3 Software-defined wireless networking 10

1.4 Mininet-WiFi 13

1.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



II Level: beginner

2 Beginner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Downloading and installing Mininet-WiFi 21

2.2 First steps to use Mininet-WiFi 23

2.3 Customizing topologies 30

2.4 Accessing node information 32

2.5 OVSAP versus UserAP 34

2.6 Graphical User Interface (GUI) 37
2.6.1 Visual Network Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.2 MiniEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.3 Viewing 2D and 3D graphics . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Wireless network emulation 42
2.7.1 TC (Traffic Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.2 Wmediumd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 TC versus Wmediumd in practice . . . . . . . . . . . . . . . . . . . . 44

2.8 Propagation model 47
2.8.1 Providing more realism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Distance versus received signal 50

2.10 Modifying bitrate 52

2.11 Distance versus throughput 54

2.12 Mobility models 56

III Level: intermediate

3 Intermediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Network interfaces 61
3.1.1 Setting multiple interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Binding interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.3 Bonding interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



3.2 Traffic analysis 70
3.2.1 Capturing packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Capturing beacons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.3 Spectrum analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Network telemetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Scanning methods 80
3.3.1 Active scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.2 Passive scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Wireless mesh and ad hoc 83
3.5 OpenFlow protocol 87
3.5.1 Capturing OpenFlow messages . . . . . . . . . . . . . . . . . . . . . 88
3.5.2 Creating flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.3 OpenFlow and wireless networks . . . . . . . . . . . . . . . . . . . . . 93
3.5.4 Remote controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5.5 OpenFlow and handover . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Use case scenarios 102
3.6.1 WEB server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.6.2 DHCP server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6.3 Dealing with loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.6.4 Virtual LAN (VLAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6.5 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.6.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.6.7 Quality of Service (QoS) . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.6.8 MultiPath TCP (MP-TCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IV Level: expert

4 Expert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1 Manipulating kernel modules 131
4.2 Traffic monitoring with sFlow-RT 135
4.3 Reproducing network behavior 137
4.3.1 Network attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.2 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



4.4 Socket - low-level networking interface 139
4.5 P4 140
4.5.1 Differences between P4 and OpenFlow . . . . . . . . . . . . . . 141
4.5.2 Basic WiFi scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5.3 Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.4 Dropping packets based on BSSID . . . . . . . . . . . . . . . . . . 145

4.6 Use case scenarios 147
4.6.1 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6.2 Interaction between virtual and real environments . . . . . 149
4.6.3 Decoding packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.6.4 Association control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.6.5 Forwarding by SSID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.6.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.6.7 6LoWPAN / IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.6.8 Vehicular ad hoc networks . . . . . . . . . . . . . . . . . . . . . . . . 189

FAQ

FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

References

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Preface

We are witnessing an impressive revolution in the field of Computer Networks.
Advances in wireless communications such as the imminent deployment of
5G networks worldwide, the ability to virtualize network infrastructures (e.g.
Network Slicing and Network Function Virtualization) and to program their
behavior (e.g. Software-Defined Networking) are concrete examples of this
new era.

These advances enable the design, development and deployment of innovative
mechanisms aimed at, for instance, higher resilience, performance, energy ef-
ficiency, and security of the network and service ecosystem. A key element to
explore these new opportunities is the use of tools that enable prototyping and
testing novel ideas at an early stage, without the constraints and complexities
associated with employing a real infrastructure. This is precisely the role occu-
pied by Mininet-WiFi, an environment that allows one to create, explore and
experiment with software-defined wireless networks from a personal computer.

As an instructor of the Undergraduate and Graduate Networking courses at
INF-UFRGS, I often assign students to develop new mechanisms on software-
defined network infrastructures. It was a pleasant surprise when, in 2016, I
began using Mininet-WiFi. This environment has dramatically expanded the
scope of possible work we could do, enabling us to design a whole new set
of proposals, such as routing algorithms for efficient mobile video stream-
ing, handoff strategies with traffic fluctuation awareness and load balancing
mechanisms. This type of work was challenging, if not impossible, to carry
out in the classic Mininet environment, as it was beyond its scope to provide
primitives for dealing specifically with wireless communication.

This book closes a cycle of development, innovation and transfer of new
knowledge to society. By very didactically documenting and explaining how
to use Mininet-WiFi through scripts, example codes, illustrations and other
resources, the book will foster many new experiences like the ones just men-
tioned. There is no doubt that it will endure as an important work in the
academic, industry and government sectors. I congratulate the authors for
their praiseworthy initiative of advancing knowledge in this fascinating and



fundamental field. There is no time to waste: the time has come to "roll up our
sleeves" and begin our immersion in Mininet-WiFi. Good reading and enjoy!

Prof. Luciano Paschoal Gaspary
Institute of Informatics - UFRGS



Chapter Organization

This book is organized as follows:

Chapter I introduces theoretical fundamentals of wireless networks, software-
defined wireless networks and also Mininet-WiFi. This chapter goes in-depth
into concepts relevant to the learning objectives of this book. For a deeper
understanding of the different topics explored, the reader will be provided
references to relevant literature in the field;

Chapter II introduces the beginner level of Mininet-WiFi proficiency and
is devoted solely to providing the working details of Mininet-WiFi, where
its key functional aspects are described. If you are already proficient with
Mininet-WiFi, you can focus on chapters III and IV instead. You do not need
to be familiar with Mininet to use Mininet-WiFi, but if you are, you will
certainly have a smoother feel as to how Mininet-WiFi works. The tutorials
included in this chapter can be used as complementary activities in theory
classes at the undergraduate level (e.g. EA074 at FEEC/UNICAMP), as well
as in practical laboratory courses (e.g. EA080 at FEEC/UNICAMP);

Chapter III introduces the intermediate level of Mininet-WiFi proficiency,
covers tutorials that employ wireless networking, software-defined wireless
networking, as well as a number of concepts related to computer networking.
This chapter also describes the use of some network applications, such as
tcpdump and Wireshark. In addition to meeting the pedagogical goals of
more advanced computer network classes such as those involving laboratory
activities, the tutorials in this chapter are also suitable for graduate classes
(e.g. IA369, IA376 at FEEC/UNICAMP) and specialization courses (e.g.
INF-556 at IC/UNICAMP), as they allow experimental research to be carried
in more complex scenarios, such as the development of SDN solutions using
the OpenFlow protocol;

Finally, Chapter IV introduces the expert level of Mininet-WiFi proficiency,
has tutorials about kernel manipulation, containers, security, IoT, vehicular
networks, etc., with valuable information on adapting the OpenFlow protocol
to wireless networks. This chapter is labeled as advanced because it requires



more in-depth knowledge and the use of third-party applications. Therefore,
the tutorials in this chapter are best suited for specialization and graduate
courses, not only in classes but also as technical training for master’s and doc-
toral students, thus helping the development of experimental research aimed at
advancing the state of the art. However, nothing prevents curious readers from
reproducing these tutorials, since they have similar walkthroughs, as well as
the support provided by the codes from the previous chapters.



Conventions used in this book

To facilitate the reading of this book, the following conventions have been
adopted:

italic: indicates foreign language words or program/tool names.

<file>: indicates files or scripts.

The symbols below represent:

Complementary information to previously exposed content.

Relevant alert or remark.

Question regarding the topic being explored.

Citations and other complementary sources.

Demonstration videos.

Requirement(s) For each existing experiment there will be an indi-
cation of the prerequisites to conduce it. For convenience, we have
assigned the “script(s) only” label to the prerequisites requiring only
the use of scripts that are already available for use. Since all scripts
were coded with Mininet-WiFi in mind, we do not include Mininet-
WiFi in the Prerequisites tab. The same goes for all packages that
are installed during the Mininet-WiFi installation process, such as
OVS, the OpenFlow protocol, etc.



Other conventions
As there is a tendency to replace tools from the net-tools package by those of
the iproute2 package in Linux operating systems, network tools like iw and
ip are preferred for the tutorials. Nonetheless, programs from the net-tools
package can also be used.

Finally, due to code update issues all scripts are available in a repository
on Github (https://github.com/ramonfontes/mn-wifi-book-en).



Precautions

It is recommended that all tutorials available in this book be completed using
the latest version of Mininet-WiFi available on Github. Should you, the reader,
find any inconsistencies in the tutorials, you may contact the authors of this
book at any time for clarification.

Although this book brings hands-on experience at all times, we recommend
that you review each command or configuration beforehand so that the entire
process can be understood.
Do not try to complete the tutorials without clearly understanding what
is being done!

I must use Linux. But why?
Because the code base of Mininet-WiFi, Mininet, was developed for Linux
systems. The development of Mininet-WiFi has maintained the same operating
structure as that of Mininet. The Ubuntu operating system should be preferred,
especially its Long Term Support (LTS) versions, as they are the most stable
Ubuntu distributions.

Why open source code?

We will answer this question with a simple answer: because most of the time
we (you, I and everyone) have the freedom to use the tool/program we want.
Whether it is because we need to do work or academic research, or because we
want to know more about Mininet-WiFi, or even because we need to modify it
to suit our needs, we can choose. However, this seems like a ready answer,
which we often receive as an answer by others when we wonder about the
advantages of opening the source code of a particular program.

Arguing chronologically, we could say that without Mininet-WiFi, I, Ra-
mon, would not have obtained a doctoral degree; many researchers would not
have done their research; Mininet, the emulator Mininet-WiFi was based on,
would probably not exist either, and so on. What we mean is that without open
source philosophy, we would not have access to Mininet and would not have
developed Mininet-WiFi. Just as Mininet would not have been developed with-



out the previous development of its backbone and its subsequent availability
for anyone to use. Most likely you would not even be reading this book now
and many fewer persons would be interested in the subjects we covered in it.

Can you imagine how much research on other topics would be undermined by
only focusing on the field of research covered in this book and ignoring other
possibilities? Perhaps you will have a better idea as you complete the tutorials
proposed throughout this book.

There is a whole chain that would be seriously impacted if the codes were
not free to use. The main paper [14] about Mininet alone has had about 1500
direct citations, not to mention countless indirect citations by blogs and even
the media.

Experiences: Impact, Reproducibility and Quality

If you are wondering whether it is worth researching and exposing your code
to the public, even though it is still in the early stages of development, here
are some reports of experiences we have gained throughout Mininet-WiFi
development.

Impact. Making code, data, documentation and demonstration videos public
has certainly contributed and still greatly contributes to increasing Mininet-
WiFi’s visibility. Although there has been no systematic and qualitative assess-
ment of the Mininet-WiFi community, users have contributed to the project
several times, whether by discussing or even suggesting code improvements
and new implementations.

Reproducibility. Making data public and reproducible is not always a simple
task. By the way, writing a book whose tutorials users can complete without
any setbacks is not easy. Most likely there will be one or another tutorial that
will not flow as expected. This is due to several factors, such as differences in
tool versions, issues that may be related to the operating system, hardware, etc.
Throughout the development of Mininet-WiFi, we had a hard time reproducing
experiments by other researchers, as there was often not enough information
to do so. For this reason, we have chosen not only to make our experiments



public, but also to describe how they can be reproduced. Making research
reproducible generally adds credibility to its respective work and obtained
results.

Quality. In a broader sense of research quality, all the experiences gained
throughout the development of Mininet-WiFi allowed us to learn and refine
our research. Although ensuring the reproducibility of a project increases
workload, reproducible work has a number of significant advantages, such as:
(i) synergy with open source functionality, as the latter increases the chances of
direct and indirect reproducibility and, consequently, (ii) greater impact, since
the chances of researchers using the solutions proposed by reproducible works
increase; (iii) improvement of programming habits, wherein special attention
is given to code quality; (iv) encouragement of the use of scientific workflows,
as researchers are carefully concerned with providing reliable results so that
anyone can produce results similar to those they have obtained.

So if you have the opportunity, and if your code is not a license, patent,
or any other copyrighted content, try making your code public!



List of Figures

1.1 RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Effect of path loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 IEEE 802.11 modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 IEEE 802.11b channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 ad hoc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 IEEE 802.11 frame header. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 High-level and generic architecture for SDWN . . . . . . . . 11
1.9 Experimental platforms for wireless networks . . . . . . . . . . 14
1.10 Mininet-WiFi architecture . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 Main components of Mininet-WiFi . . . . . . . . . . . . . . . . . . 16

2.1 Simple topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Executing xterm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Single topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



ii LIST OF FIGURES

2.4 Linear topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Visual Network Descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Miniedit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 2D Graphic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 3D Graphic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Working with mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Bonding interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Packets captured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Captured beacons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 linssid capture screen with two access points. . . . . . . . . 76

3.5 Signal overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 linssid capture screen with three access points . . . . . . . 77

3.7 Captured beacons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.8 Ad hoc and mesh topology. . . . . . . . . . . . . . . . . . . . . . . . 83

3.9 OpenFlow message capture. . . . . . . . . . . . . . . . . . . . . . . 89

3.10 Communication between switch and controller. . . . . . 90

3.11 Handover topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.12 DHCP Server topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.13 Interface sta1-wlan0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.14 DHCP Server running. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.15 Switching loop topology. . . . . . . . . . . . . . . . . . . . . . . . . 109

3.16 VLANs topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.17 VLAN ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.18 Static routing topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.19 Dynamic routing topology. . . . . . . . . . . . . . . . . . . . . . . . 118

3.20 QoS topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.21 MP-TCP Kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1 sFlow-RT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



LIST OF FIGURES iii

4.2 Basic WiFi scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.3 Handover scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.4 BSSID based scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.5 Internet topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.6 WiFi network card connected to laptop. . . . . . . . . . . . . 155
4.7 Interaction with physical nodes topology. . . . . . . . . . . . 157
4.8 Packets sent by sta1 and sta2 . . . . . . . . . . . . . . . . . . . . . 164
4.9 Forwarding by SSID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.10 ARP spoofing attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.11 The four-way handshake. . . . . . . . . . . . . . . . . . . . . . . . . 174
4.12 Snort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.13 Capturing RADIUS protocol messages. . . . . . . . . . . . . . 181
4.14 RADIUS topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.15 Nodes connected via 6LoWPAN. . . . . . . . . . . . . . . . . . 185
4.16 6LoWPAN packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.17 Simulation of Urban MObility (SUMO). . . . . . . . . . . . . . . 190





List of Tables

1.1 Comparing IEEE 802.11 modes . . . . . . . . . . . . . . . . . . . . . . 7
1.2 IEEE 802.11n and IEEE 802.11ac comparison . . . . . . . . . . . 8





List of Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

AP Access Point

BER Bit Error Rate

BOFUSS Basic OpenFlow User-space Software Switch

BSS Basic Service Set

CAPWAP Control and Provisioning of Wireless Access Points

CD Collision Detection

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

Hostapd Host Access Point Daemon

HTTPS Hyper Text Transfer Protocol Secure

IBSS Independent Basic Service Set

IDS Intrusion Detection System

IFB Intermediate Functional Block



viii LIST OF ACRONYMS

IoT Internet of Things

LTE Long-Term Evolution

LWAPP Lightweight Access Point Protocol

MCS Modulation and Coding Scheme

MIMO Multiple Input, Multiple Output

MLME Media Access Control Sublayer Management Entity

MPTCP MultiPath TCP

MQTT Message Queuing Telemetry Transport

NFV Network Function Virtualization

OF OpenFlow

ONF Open Networking Foundation

OVSAP OpenvSwitch Access Point

RSSI Received Signal Strength Indicator

RTC Request To Receive

RTS Request To Send

SDN Software Defined Networking

SDWN Software Defined Wireless Networking

SNR Signal to Noise Ratio

SSID Service Set Identifier

STA Station

SUMO Simulation of Urban MObility

TC Traffic Control

UserAP User level Access Point

VANET Vehicular Ad hoc NETwork

WLAN Wireless Local Area Network



I
1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Wireless communications
1.2 WiFi: IEEE 802.11-based wireless local area networks
1.3 Software-defined wireless networking
1.4 Mininet-WiFi

Introduction





1. Background

1.1 Wireless communications

Wireless communications continues to be one of the most vibrant fields in the
telecommunications sector. Although they began in the late nineteenth and
early twentieth centuries, wireless communication research and development
activities intensified between the 1970s to 1990s, fueled by a growing demand
for increasingly better connectivity. Initially driven by the development of cell
phones for voice services and then data applications, wireless technologies
keep evolving, fostered by new forms of content creation and consumption
and interaction between humans, machines and everyday objects, a trend
commonly known as the Internet of Things (IoT).

Conventional wireless communication networks encompass several elements,
the most basic of which are listed below: (i) the wireless terminals - such
as laptops, smartphones, which are the interface between the user and the
network; (ii) radio links, which connect the terminals to an agent providing the
network coverage service; (iii) base stations, which function as the coverage
agents; (iv) switching and control centers, which concentrate the base stations



4 Background

and connect them to other communication services.

There are numerous technologies that provide wireless services, such as Blue-
tooth, LTE, Zigbee, WiFi, among other means. Wireless communications
have unique features that make them distinct from other technologies. One
of them, and certainly the most important one, is the propagation of radio
waves. A signal propagating from one point to another undergoes three types
of phenomena, namely: attenuation, long-term fading and short-term fading.
Attenuation refers to loss of transmission when the receiver moves away from
the source. Long-term fading refers to conditions when the average signal
changes slowly over time due to obstructions to the signal path, such as build-
ings, trees, etc. Short-term fading refers to quick fluctuations of the signal
due to reflection, scattering and diffraction. There is also the problem of inter-
ference by services using the same frequency or even approximate frequencies.

Due to the increasing worldwide demand for wireless communications, new
technologies are emerging so that systems can meet this demand. In any
case, the development of any system, and, more specifically, wireless systems,
requires a deep knowledge of the phenomena involved. Figure 1.1 exem-

� � � � � � �

����������������������

−25

−20

−15

−10

−5

d
B
m

R2Lab��������

�������������������������

���������������������������

������������������

Figure 1.1: RSSI. Source: [18]



1.2 WiFi: IEEE 802.11-based wireless local area networks 5

plifies the phenomenon of path loss by showing how the Received Signal
Strength Indicator (RSSI), in dBm, oscillates in relation to the physical dis-
tance between a base station and a wireless station. The figure compares
the estimations of different propagation models described in the literature
(Free-Space, Log-Distance, ITU) - which are available in the Mininet-WiFi
emulator - compared to measurements taken in a laboratory environment, the
R2Lab1 testbed. Figure 1.2, in turn, illustrates the phenomena of long-term
and short-term fading.

Distance (log)

Received Signal (dB)

Shadow Fading

Path Loss

Rayleigh fading

Figure 1.2: Effect of path loss.

• M. D. Yacoub, Foundations Of Mobile Radio Engineering. CRC Press, 1993.
ISBN: 978-0849386770

• T. Rappaport, Wireless Communications: Principles and Practice, Pearson
Education India, 2010. ISBN: 978-0130422323

• A. K. Jagannatham, Principles of Modern Wireless Communication Systems
Theory and Practice. McGraw Hill Education, 2017. ISBN: 978-1259029578

1.2 WiFi: IEEE 802.11-based wireless local area networks
Established by the Institute of Electrical and Electronics Engineers (IEEE),
IEEE 802.11 is the most accepted wireless communications standard in the

1https://r2lab.inria.fr



6 Background

IEEE 802.11

2Mbps
DSSS, FHSS

802.11

11Mbps
CCK, DSSS

802.11b 802.11a

54Mbps
OFDM, 5Ghz

54Mbps
OFDM, 2.4Ghz

600Mbps
4x4 MIMO,
2.4/5Ghz

802.11n

VHT
< 6Ghz

VHT
60Ghz

802.11ac

802.11ad

802.11p

27Mbps
5.9Ghz

TV White
Spaces

802.11af

1997 2003 2009 2013

802.11g

Figure 1.3: IEEE 802.11 modes.

world. WiFi technology, as it is most commonly known, is the Wireless Lo-
cal Area Network (WLAN) technology based on IEEE 802.11, and it is a
trademark of the Wi-Fi Alliance. The reasons for the wide acceptance of this
pattern are diverse, but the main justification is cost-performance ratio.

As illustrated in Figure 1.3, there are several 802.11 standards, such as the
older 802.11b, 802.11a, and 802.11g versions, and other versions that may
be considered as newer, such as 802.11n, 802.11ac, 802.11p, and so on. In
general, the standards defined for 802.11 operate on two main frequencies:
2.4 GHz or 5 GHz. In the example given by Figure 1.4, it can be seen how
the 802.11b standard defines 13 channels on the 2.4 GHz band at 2.4835 Ghz,
allocating 22 MHz for each channel, with a spacing of 5 MHz among them.
With this arrangement, only channels 1, 6 and 11 can operate without band
overlap.

The Bit Error Rate (BER), which is a requirement to be fulfilled in the system
design, can be determined by knowing the modulation scheme, the type of
encoding and the signal-to-noise ratio (SNR). It is known that an increase in
transmitter power results in a higher SNR and a consequent decrease in BER.
Obviously, power cannot be increased indefinitely, due to interference and to
power limitations in the transmitter itself.



1.2 WiFi: IEEE 802.11-based wireless local area networks 7

Figure 1.4: IEEE 802.11b channels. Source: adapted from [3] (CC BY 2.0)

Table 1.1: Comparing IEEE 802.11 modes.

Protocol Freq. (GHz) Bandwidth
(MHz)

Internal Signal
Range

External Signal
Range

802.11 2.4 20 20 m / 66 ft 100 m / 330 ft
802.11a 3.7/ 5 20 35 m / 115 ft 120 m / 390 ft
802.11b 2.4 20 35 m / 115 ft 140 m / 460 ft
802.11g 2.4 20 38 m / 125 ft 140 m / 460 ft
802.11n 2.4/5 20 - 40 70 m / 230 ft 250 m / 820 ft
802.11ac 5 20/40/80/160 35 m / 115 ft n/d
802.11ad 60 2,160 60 m / 200 ft 100 m / 300 ft
802.11ay 60 8000 60 m / 200 ft 1000 m / 3000 ft

Table 1.1 compares different 802.11 standards in terms of operating frequency,
channel bandwidth and coverage radius estimates in indoor and outdoor en-
vironments. Table 1.2 compares 802.11n and 802.11ac, two of the newer
standards that incorporate recent advances in wireless communications, such
as spatial flows based on MIMO (Multiple Input Multiple Output).

The 802.11 architecture consists primarily of an access point and a number
of wireless stations (clients). In this case, the architecture is defined as Basic
Service Set (BSS), or infrastructure mode. In contrast, 802.11 networks com-
posed of only wireless stations (clients) are referred to as Independent Basic
Service Set (IBSS) or ad-hoc mode. The graphical representations of these
two architectures (or modes of operation) are illustrated in Figures 1.5 e 1.6.



8 Background

Table 1.2: IEEE 802.11n and IEEE 802.11ac comparison.

IEEE 802.11n IEEE 802.11ac
Frequency 2.4 GHz & 5 GHz 5 GHz
MIMO Single User (SU) Multi User (MU)
Spatial Flows 4 8
Taxa PHY 600 Mbps 6.9 Gbps
Channel Width 20 or 40 MHz 20, 40, 80, 80-80, 160 MHz
Modulation 64 QAM 256 QAM
Flow rate MAC* 390 Mbps 4.49 Gbps
*Assuming 65 % MAC efficiency and the highest rate of MCS
(Modulation and Coding Scheme)

sta1

sta4a3

Figure 1.5: infrastructure. Figure 1.6: ad hoc.

As is true with Ethernet devices, each 802.11 wireless device has a 6-byte
MAC address stored on the network interface card. It is through the wireless
network interface that stations can associate with an access point or even other
client stations before receiving or sending 802.11 frames.

Because wireless networks do not have the physical means to prevent colli-
sions, these do happen even with the most advanced wireless technologies.
While the IEEE 802 standards for Ethernet family cabling enable Collision De-
tection (CD), wireless networks have no means to detect a collision. The strat-
egy adopted by the 802.11 standards to handle wireless access control is known
as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).

When the CSMA/CA method is used, each station informs about its own
transmission intent and the associated time for Collision Avoidance (CA). The
stations, which are equipped with wireless interfaces, listen to the medium
using wireless interfaces to verify the presence of signals (signal level at



1.2 WiFi: IEEE 802.11-based wireless local area networks 9

Frame
Control

Duration Address 1 Address 2 Address 3
Sequency

Control
Address 4 Frame Body CRC

2 bytes 2 bytes 6 bytes 6 bytes 6 bytes 2 bytes 6 bytes
0-2312

2 bytes

Version Type Subtype To DS
From More

Flag
Retry

Power
Management

More
data

2 bits 2 bits 4 bits 1 bit

Protection RSVD

1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit

802.11 Frame

Detail of frame control subfields

DS

bytes

Figure 1.7: IEEE 802.11 frame header.

the carrier frequency) and wait until the medium is clear before transmitting.
These mechanisms are known as Request to Send (RTS) and Clear to Send
(CTS).

Despite the similarities between Ethernet frames and 802.11 frames, there are
several fields that are specific to wireless links. The fields in the 802.11 table
are shown in Figure 1.7. The numbers above each field in the frame represent
their lengths in bytes, while the numbers above each of the sub-fields in the
frame control field represent the lengths of the sub-fields in bits.

Although we do not go into detail about the function of each of the fields and
sub-fields belonging to frame 802.11, it is advisable to know about them even
if superficially. These fields may be useful for further exploration of some of
the tutorials that will be presented throughout this book.

The future of WiFi

Although wireless networks are very important, there are still structural barri-
ers that prevent their innovation, even with regard to WiFi itself. Furthermore,
large wireless infrastructure is not completely accessible because there are
restrictions on its use or authentication requirements. Namely, the issue here
is not to open access to wireless networks completely and freely, but to allow
users to connect to multiple networks (preserving security and quality stan-
dards), thus opening up a huge capacity for coverage and enabling continuous
innovation, as proposed by [20].

Nevertheless, there are already several studies on vehicular networks and



10 Background

also the Internet of Things that use WiFi in their methods. Many of them, of
course, provide only suggestions for improvements that may advance 802.11 in
the future. Yet it is not for nothing that researchers already speak of 802.11ax,
an evolution of 802.11ac that promises to connect more devices with higher
baud rates than its predecessor.

Among the proposals for improvements and advancements in wireless net-
works and especially WiFi, is the concept of software-defined wireless net-
works, which also promises significant progress by constructing a new idea of
connectivity. Therefore, along with the concept of software-defined wireless
networks, this book will present a series of tutorials that will explore various
cases involving Mininet-WiFi. Mininet-WiFi is the wireless emulator that we
will use extensively throughout this book. It was developed with the aim of
providing an environment capable of supporting research on wireless networks
and software-defined wireless networks, enabling innovations to be developed
for the most diverse wireless technologies.

• Matthew S. Gast. 802.11 Wireless Networks: The Definitive Guide. O’Reilly
Media, 2005. ISBN-13: 978-0596100520

• Matthew S. Gast. 802.11ac: A Survival Guide: Wi-Fi at Gigabit and Beyond.
O’Reilly Media (Edição: 2), 2013. ISBN-13: 978-1449343149

• Jim Geier, Designing and Deploying 802.11 Wireless Networks: A Prac-
tical Guide to Implementing 802.11n and 802.11ac Wireless Networks For
Enterprise-Based Applications. Cisco Press, 2015. ISBN-13: 978-1587144301

• IEEE 802.11 Wireless Local Area Networks. The Working Group for WLAN
Standards. Available at: http://www.ieee802.org/11/

1.3 Software-defined wireless networking

Software-defined wireless networking (SDWN) [5, 11] is an approach that
allows centralized control of the network through the use of programs that
do not necessarily have to be located in access points. Thus, rules defined by
these programs (commonly known as controllers) dictate the behavior of the
network. The principles of SDWN, which separate the control plane from the
data plane, are very similar to those of software-defined networks (SDN) [12].



1.3 Software-defined wireless networking 11

Control/Management of Wireless 
and Mobile functions
(e.g. mobility, authorization, QoS)

Wireless SDN Controllers

Northbound interface

Southbound interface
(e.g. OpenFlow, Capwap)

Applications
(Service Providers, Operators)

Wireless RANMobile terminals

Figure 1.8: High-level and generic architecture for SDWN. Source: Adapted from [18]

The software-defined approach allows network administrators to specify net-
work behavior in a logical and centralized way. To do so, they use programs
provided by control platforms that implement southbound interfaces on net-
work devices such as switches. In this context, the OpenFlow protocol [15]
is the most popular southbound interface. However, there are other viable
interfaces, such as CAPWAP [22], FORCES [7], NETCONF [8], etc.

Due to the increased interest of mobile operators [2, 19], mainly in Net-
work Function Virtualization (NFV) [10], SDWN has become a branch of
software-defined networks of considerable interest to the scientific community.
The separation between the control plane and the data plane is not new in
the history of wireless networks. The IETF standardized both the LWAPP
(Lightweight Access Point Protocol) and the CAPWAP (Control and Provision-
ing of Wireless Access Points) many years ago by issuing RFC5412 [4] and
RFC4564 [22], respectively - even before the development of software-defined
networks and the OpenFlow protocol.



12 Background

Many companies use wireless network management systems by means of
protocols such as LWAPP and CAPWAP. LWAPP defines message control for
configuration, authentication and other operations, while CAPWAP is based
on LWAPP and allows a controller to manage different access points.

The number of studies on software-defined wireless networks has grown
significantly in recent years. It is worth reading [11] for a more comprehen-
sive survey, in addition to some software projects, such as: OpenRoads [23],
Odin [21], OpenRF [13], Ethanol [17]. Architectures such as CloudMac [6]
and Chandelle [16] use CAPWAP in their code. CloudMac describes wireless
network management protocols, such as CAPWAP, as difficult to be config-
ured with new features, since access point controllers that use CAPWAP are
mostly proprietary systems. Chandelle, on the other hand, proposes a migra-
tion between smooth and fast access points using SDN/OpenFlow, but faces
integration issues with regard to traditional switches and CAPWAP.

It is important to mention that there is an open source imple-
mentation of the CAPWAP protocol that is compatible with
RFC 4515 and RFC 4516, called OpenCAPWAP [1], whose
development started in 2015 (https://github.com/vollero/
openCAPWAP).

The benefits of integrating wireless networks with OpenFlow generally involve
centralized management and monitoring, unified policies, greater scheduling,
and better control of wireless functions.

Taking into account these benefits and the limitations associated with CAP-
WAP, which is likely to be a more robust but closed-source solution, some
questions are unavoidable: “Is CAPWAP compatible with SDWN?”, “How
to improve the OpenFlow specification, so that it supports centralized man-
agement of wireless networks? Or even, could you extend it to wireless
networks?”, “Are new approaches needed?” or “How much could be recycled
from the existing infrastructure?”.



1.4 Mininet-WiFi 13

• L. E. Li, Z. M. Mao and J. Rexford, Toward Software-Defined Cellular Net-
works. European Workshop on Software Defined Networking (EWSDN),
2012.

• A. Gudipati et al., SoftRAN: software defined radio access network. Proceed-
ings of Hot topics in software defined networking (HotSDN). 2013.

• C. J. Bernardos et al., An architecture for software defined wireless networking.
IEEE Wireless Communications. 2014.

• T. Chen et al., Software defined mobile networks: concept, survey, and research
directions, IEEE Communications Magazine. 2015.

• Mao Yang et al., Software-Defined and Virtualized Future Mobile and Wireless
Networks: A Survey. Mob. Netw. Appl. 2015.

• I. T. Haque and N. Abu-Ghazaleh, Wireless Software Defined Networking: A
Survey and Taxonomy, in IEEE Communications Surveys & Tutorials. 2016.

• A. Abdelaziz et al. On Software-Defined Wireless Network (SDWN) Network
Virtualization: Challenges and Open Issues. Computer Journal. 2017.

• Linux Foundation’s Open Networking Foundation (ONF) SDN Wire-
less Transport. Available at: https://www.opennetworking.org/tag/
wireless-transport/

1.4 Mininet-WiFi
Network emulation has been widely used in performance evaluation, protocol
testing and debugging, as well as in a variety of research on computer network
architectures. A researcher typically has several possible methods to evaluate
and validate research data and network protocols, as well as perform analyses,
among other operations.

Simulators, emulators and testbeds are the main evaluation tools that help
researchers in their tasks. Still, regarding their practical applications, all these
evaluation tools are very different in their degree of abstraction. Some of the
experimental platforms that can be used for experimentation with wireless
networks are shown in Figure 1.9. In this research field, the emulation of
wireless networks - which has peculiar characteristics, especially compared
with emulators for wired networks - has to implement node mobility, signal
propagation, among other features, to allow experiments with environments
that have interference, signal attenuation, etc.



14 Background

cost = f(CAPEX, time-to-experiment, complexity, resources, etc.)

EmulatorsSimulators Testbeds
Formal Math.
Models

Live 
Networks

Experimental Options
Realism

Increased Realism/Complexity

Mininet-WiFi
DCE/ns-3

Core
OpenNet Less real experimental 

conditions

Less scalability, flexibility, 
reproducibility, repeatibility, etc.

OMNeT++
Estinet

OpenNet

WARP
R2lab

EMULAB
Nitos
Orbit

Figure 1.9: Experimental platforms for wireless networks. Source: Adapted from [9].

We will not go into detail about the differences between experimental plat-
forms, but we can highlight two important features of Mininet-WiFi: (i) it
allows the use of third-party tools without modifications to the source code of
these tools, and (ii) it uses the actual network protocol stack.

Mininet-WiFi is an emulator for wireless networks that was extended from
Mininet, a well-known emulator to researchers working in the field of software-
defined networks. Mininet-WiFi has native WiFi support, but other wireless
networking technologies can also be simulated in experiments using it. With
Mininet-WiFi, the user can virtualize stations and access points and also use
existing Mininet nodes such as hosts, switches and OpenFlow controllers.
Consequently, Mininet-WiFi also enables the processing of packages using
the OpenFlow protocol, an important solution for SDN.

SoftMAC is a term used to describe a type of wireless net-
work interface in which the MAC Layer Management Entity
(MLME), for example, is expected to be managed using software.
Mac80211 is a driver API for SoftMAC.

Mininet-WiFi is developed based on the Mininet code and the most used WiFi
driver for Linux systems, SoftMac. With Mininet-WiFi, the user can choose to



1.4 Mininet-WiFi 15

use the old Mininet features independently or use the extensions implemented
for Mininet-WiFi.

1.4.1 Architecture
The entire virtualization process of Mininet-WiFi works similarly to Mininet,
i.e. it is based on processes that run on Linux network namespaces and virtual
network interfaces (see Figure 1.10). Linux network namespaces are, in a
logical sense, copies of the Linux operating system’s network stack, which
includes its own routes, firewall rules and network devices. They act as if
they were real computers, with the same network properties that a physical
computer can have.

root namespace

ofprotocol ofdatapath mn-wifi

controller

eth0

TCP/SSL
connnection

unix socket
tmp/s1

tmp/ap1

raw socket

raw socket

pipepipe

h1-eth0 sta1-wlan0

/bin/bash

host/station namespace

h2-eth0 sta2-wlan0

/bin/bash

host/station namespace

switch/access point

if switch:eth if accesspoint:wlan

lin
k

Figure 1.10: Mininet-WiFi architecture. Source: [9]

The behavior of wireless interfaces basically depends on the function they
perform, such as, for instance, the case of stations and access points, whose
interfaces operate in the managed or master modes, respectively. Just as with
a real environment, the stations communicate with access points by a process
called authentication and association. By default, each station has only one
wireless interface, and more can be added if needed. Once connected to an
access point, stations can communicate with traditional Mininet hosts, if they
are also connected to the access point. Access points, on the other hand, are
responsible for managing stations that are associated with them.

Conceptually, access points are the same entities as the Mininet switches,



16 Background

but equipped with WiFi network cards operating in master mode. Access
points are virtualized in the hostapd2 daemon, which basically uses virtual
WiFi interfaces to provide access point capabilities. Details on the running
environment of Mininet-WiFi are discussed below.

1.4.2 Components

cfg80211

nl80211

Kernel Space

User Space

mac80211_hwsim

station sta1
namespace

sta1-wlan0

station sta2
namespace

sta2-wlan0

mac80211

root ap1
namespace

Mininet-WiFi

ap1-wlan0

Provides MLME management services with which 
drivers can be developed to support softMAC

Creates Virtual WiFi Interfaces

Configuration management
for wireless devices

wlan1 wlan2 wlan3

TC tool and

MLME
station mode

MLME
AP mode

Hostapdiwconfigiwwpa_supplicant

ofdatapath ofprotocol controller

M
o

b
ili

ty
 M

o
d

el
s

P
ro

p
ag

a
ti

o
n

 M
o

d
el

s
P

ro
p

ag
a

ti
o

n
 M

o
d

el
s

Configuration management
for wireless devices

Wmediumd

Figure 1.11: Main components of Mininet-WiFi. Source: [9]

The components comprising the Mininet-WiFi architecture are shown in Fig-
ure 1.11. Communication among them occurs as follows: during its initializa-
tion, the module called mac80211_hwsim, responsible for the virtualization of
WiFi network cards, is loaded with the number of virtual wireless interfaces re-
quired for all nodes previously defined by the user. Located in the kernel space
of the Linux operating system, all features supported by mac80211_hwsim
come from mac80211, a framework based on SoftMAC that developers use to
write drivers for wireless devices.

Also in the kernel space is cfg80211, which is an 802.11 heap configura-
tion API for Linux systems. Its configuration is done by running nl80211,
which also performs the interaction between kernel and user spaces.

The main network applications used by Mininet-WiFi are in the user space.
Among them is hostapd, whose function is to provide access point services;

2Hostapd (Host Access Point Daemon) is a user-level software capable of launching a
wireless network interface on access points and authentication servers.



1.4 Mininet-WiFi 17

the TC and Wmediumd programs, which will be described below; iw, iwconfig
and wpa_supplicant. The latter is used for, among other tasks, WPA/WPA2
authentication.

Interacting with the emulation environment
Mininet-WiFi also maintains the same interaction structure as Mininet. E.g.,
commands such as those shown below can be used, respectively, for connec-
tivity tests or to measure th bandwidth between two nodes. If you are already
familiar with Mininet, this is certainly nothing new.

mininet-wifi> sta1 ping sta2
mininet-wifi> iperf sta1 sta2

In addition to these, other commands exclusive to Mininet-WiFi can be used
for a better experience with the WiFi environment, such as the ones described
below:

mininet-wifi> sta1 iw dev sta1-wlan0 scan
mininet-wifi> sta1 iw dev sta1-wlan0 connect ssid-ap1

These commands allow you to scan WiFi networks and connect to one of
them, respectively. Scripts such as iw, the command used above, are natively
supported by most Linux operating systems and have not been ported or
modified to work on Mininet-WiFi. Mininet-WiFi can execute any command
and/or program that runs on Linux distributions, such as Ubuntu.

• Ramon dos Reis Fontes, Samira Afzal, Samuel Brito, Mateus Santos, Christian
Esteve Rothenberg. Mininet-WiFi: Emulating Software-Defined Wireless
Networks. In 2nd International Workshop on Management of SDN and NFV
Systems 2015. Barcelona, Spain, Nov. 2015. [9]





II
2 Beginner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Downloading and installing Mininet-WiFi
2.2 First steps to use Mininet-WiFi
2.3 Customizing topologies
2.4 Accessing node information
2.5 OVSAP versus UserAP
2.6 Graphical User Interface (GUI)
2.7 Wireless network emulation
2.8 Propagation model
2.9 Distance versus received signal
2.10 Modifying bitrate
2.11 Distance versus throughput
2.12 Mobility models

Level: beginner





2. Beginner

In this chapter we introduce Mininet-WiFi and all features supported by this
emulator, highlighting critical information necessary to understand the tutorials
explored throughout this book. We begin by discussing all steps needed to get
Mininet-WiFi up and running on your computer.

2.1 Downloading and installing Mininet-WiFi

The Mininet-WiFi source code is a Git repository publicly available on Github.
Git is an amazing open source system, capable of handling the distributed ver-
sion control of any given project, in this case the Mininet-WiFi project. It was
devised by Linus Torvalds1 himself as a means of helping the development, at
the time, of a tiny project called Linux.

To ease the searching and following-up of projects managed by Git, developers
usually share their Git repository on Github, a platform for creating, managing,
further distributing and interacting with open-source projects. This means

1github.com/torvalds



22 Beginner

that the life cycle of a project can be easily analyzed by contributors through
Github, which keeps any file’s modification history since its origin. In this
book we only use the basic concepts of the Git system. For more information
about Git and Github, please refer to <git-scm.com> and <github.com/>.

To obtain Mininet-WiFi’s source code and install it, you will need to per-
form a process called cloning, in which all the information pertaining to a
project is downloaded to your computer. Since Mininet-WiFi is a Git reposi-
tory on Github, its cloning is carried out using the Git system.

After this brief introduction to Git and Github, you can clone the Mininet-
WiFi source code by using the following command line, which consists of the
instruction git clone followed by a link to Mininet-Wifi’s Github repository.

~$ git clone https://github.com/intrig-unicamp/mininet-wifi

Mininet-WiFi relies on Linux Kernel components to function
properly. Of the different Linux distributions that can be used
to this end, we recommend Ubuntu, since Mininet-WiFi was
extensively tested on it.

In the link to Mininet-WiFi’s repository, intrig-unicamp refers to the profile or
organization where the repository is located on Github. mininet-wifi, in turn,
is the name of the repository where the source code is deposited.

If you do not have git, you can install it using the sudo apt
install git command.

Once the clone is complete, a directory named <mininet-wifi> should be cre-
ated. Since the cloning was done from the user’s directory, the Mininet-WiFi
source code should be located at </home/your_username/mininet-wifi>, or
simply <∼/mininet-wifi>.

Now you need to install Mininet-WiFi. To do so, you will need to access
the created directory and execute the sudo util/install.sh command, as
follows.



2.2 First steps to use Mininet-WiFi 23

~$ cd mininet-wifi
~/mininet-wifi$ sudo util/install.sh -Wlnfv6

Further information on the Wlnfv6 parameters can be found on
the Mininet-WiFi source code page on Github.

Alternatively, you can also use the virtual machine available on the source
page. To ensure that the virtual machine has the latest version of Mininet-WiFi,
you must use the commands below.

~/mininet-wifi$ git pull
~/mininet-wifi$ sudo make install

Capturing the code through the git clone command ensures
that the source code will always contain the latest updates imple-
mented for Mininet-WiFi.

Even if you already have Mininet-WiFi and/or the virtual machine installed,
the git pull command can be issued from the Mininet-WiFi directory at
any time. This command will synchronize the code that is on your computer
with the source code available in the Mininet-WiFi source code repository. By
doing this, you will always have the latest version of Mininet-WiFi installed.

2.2 First steps to use Mininet-WiFi
In the following paragraphs, we will begin to understand how to use Mininet-
WiFi.

First, we need to be aware of three commands: sudo mn --version, which
prints the Mininet-WiFi version in use; sudo mn --help, which prints a help
menu; and sudo mn -c, which is responsible for cleaning up poorly-made
Mininet-WiFi executions. Remember this last command, because it will be
very useful later on.

Mininet-WiFi can be started by running a very simple command, sudo mn
--wifi. In addition to opening the Command Line Interface (CLI), this com-
mand will create a topology consisted of two stations connected to an access



24 Beginner

point via a wireless medium, as well as an SDN controller that is connected to
the access point, as shown in Figure 2.1.

sta2sta1 c0 ap1

Figure 2.1: Simple topology.

~/mininet-wifi$ sudo mn --wifi
*** Creating network
*** Adding controller
*** Adding stations:
sta1 sta2
*** Adding access points:
ap1
*** Configuring wifi nodes...
*** Adding link(s):
(sta1, ap1) (sta2, ap1)
*** Configuring nodes
*** Starting controller(s)
c0
*** Starting switches and/or access points
ap1 ...
*** Starting CLI:
mininet-wifi>

If you already know Mininet, you have probably already used the
sudo mn command, which creates a simple topology with two
hosts, one switch and one OpenFlow controller, connected by a
wired medium.

If you notice an error similar to the one below, it means that there
is a controller or process already running on port 6653, the default
port used by the most recent OpenFlow controllers. This problem
can be solved using the sudo fuser -k 6653/tcp command,
which will kill the process that is using port 6653. If the controller
is running on port 6633, the same must be done with this port
number.



2.2 First steps to use Mininet-WiFi 25

Exception: Please shut down the controller which is running on port 6653:
Active Internet connections (servers and established)
tcp 0 0 0.0.0.0:6653 0.0.0.0:* LISTEN 2449/ovs-testcontro
tcp 0 0 127.0.0.1:55118 127.0.0.1:6653 TIME_WAIT -

To identify the Mininet-WiFi CLI, just search for the text below:

mininet-wifi>

Within the CLI you can essentially use any network commands or programs.
Additionally, it is also possible to list and execute a number of commands that
have been implemented exclusively for Mininet-WiFi. The help command
allows you to list available commands, as follows.

mininet-wifi> help
Documented commands (type help <topic>):
========================================
EOF exit iperf nodes pingpair py start x
distance gterm iperfudp noecho pingpairfull quit stop xterm
dpctl help links pingall ports sh switch
dump intfs net pingallfull px source time

Most of these commands already existed in Mininet and were kept for Mininet-
WiFi. Only three new commands have been added to Mininet-WiFi: distance,
start and stop. distance allows you to check the distance between two
nodes, while start and stop allow you to pause and continue experiments
that implement node mobility.

This book will demonstrate the commands implemented for
Mininet-WiFi, in addition to some others already implemented
on Mininet.

Try using the nodes command to identify nodes that are part of the topology.
Note that the nodes described by the nodes command are the same as those
shown previously in Figure 2.1.
Note: Node c0 will be discussed later.

mininet-wifi> nodes
available nodes are:
ap1 c0 sta1 sta2



26 Beginner

As previously mentioned, the sudo mn --wifi command creates a topology
with stations that are connected through a wireless medium to an access point.
This can be easily verified using wireless networking tools.

Although the sudo mn --wifi command creates an AP with an SSID called
“my-ssid” operating on channel 1 (2412MHz), these values can also be cus-
tomized. For instance, we will exit the Mininet-WiFi CLI with the exit
command and then set up a new SSID and a new channel, as follows:

mininet-wifi> exit
~/mininet-wifi$ sudo mn --wifi --ssid=new-ssid --channel=10

Then try the following command.

mininet-wifi> sta1 iw dev sta1-wlan0 info
Interface sta1-wlan0

ifindex 33
wdev 0x1000000001
addr 02:00:00:00:00:00
ssid new-ssid
type managed
wiphy 16
channel 10 (2457 MHz), width: 20 MHz (no HT), center1: 2457 MHz
txpower 14.00 dBm

If you are new to wireless networking, especially on Linux operating systems,
you might not have noticed, but you have just used a very common program
in wireless networking environments, the iw tool. iw is a utility for wireless
networks that is gradually replacing iwconfig. We will use it extensively
throughout this book.

iwconfig is certainly already installed on your system and you
can also use it. For example, sta1 iwconfig will produce a similar
result to the one shown previously by iw. Try running iwconfig
--help for more information on how to use it.

With respect to the command that we have just used, the info parameter brings
up information about the association (or no association) between nodes. It is
noticeable that sta1 is associated with an access point with a SSID new-ssid



2.2 First steps to use Mininet-WiFi 27

that also operates on channel 10, exactly as defined by the command.

Additionally, using the link parameter instead of info allows the user to obtain
the signal level perceived by the node and the bitrate, in addition to transmitted
and received packets, among other data.

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:02:00 (on sta1-wlan0)

SSID: new-ssid
freq: 2457
RX: 1241 bytes (22 packets)
TX: 93 bytes (2 packets)
signal: -36 dBm
tx bitrate: 1.0 MBit/s

bss flags: short-slot-time
dtim period: 2rendering this PDF.

beacon int: 100

Now, let us use the ping command to verify the connectivity between sta1
and sta2.

mininet-wifi> sta1 ping -c1 sta2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.380 ms

--- 10.0.0.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.380/0.380/0.380/0.000 ms

The command shows that there is communication between the two nodes in
question, since it also displays a response time in milliseconds belonging to
sta2(ms). It is important to note that because Mininet-WiFi is an emulation
platform capable of emulating several nodes, it is necessary to define in the
CLI the source node that will be responsible, in practice, for issuing a given
command.

The -c1 parameter used with the ping command means that only
one ICMP packet will be sent. Otherwise, sta1 will send endless
ICMP packets.



28 Beginner

Thus, as the ping command needs a target node - which can be either a name
or an IP address -, sta2’s destination can also be replaced by its IP address.
As can be seen below, the IP address that identifies sta2 is 10.0.0.2/8.

mininet-wifi> sta2 ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000�→
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
34: sta2-wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc htb state

UP group default qlen 1000�→
link/ether 02:00:00:00:01:00 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.2/8 scope global sta2-wlan0

valid_lft forever preferred_lft forever
inet6 fe80::ff:fe00:100/64 scope link

valid_lft forever preferred_lft forever

Alternatively, you can also open different terminals for each node and issue
commands as if they were being sent directly to a computer, exactly as it hap-
pens in the real world (see Figure 2.2). For example, the following command
will open two terminals, one for sta1 and another for sta2. Once there is a
terminal for each node, it will no longer be necessary to indicate which one is
the origin, as explained in the previous paragraph.

mininet-wifi> xterm sta1 sta2

Xterm may not work as expected if there is no GUI enabled on
your operating system.

Now, we will perform a few routines and exclusive actions of the wireless
environment. To begin, we will disconnect sta1 from ap1 and confirm the
disassociation by issuing the following command:

mininet-wifi> sta1 iw dev sta1-wlan0 disconnect
mininet-wifi> sta1 iw dev sta1-wlan0 link

Not connected.

So let us try a new ping between sta1 and sta2.



2.2 First steps to use Mininet-WiFi 29

mininet-wifi> sta1 ping -c1 sta2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable

--- 10.0.0.2 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

As you can see, station sta1 is no longer associated with access point ap1, so
it would be logically impossible to perform any kind of communication with
sta2.

Now, we will connect sta1 again to the ap1 access point and confirm the
association.

mininet-wifi> sta1 iw dev sta1-wlan0 connect new-ssid
mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:02:00 (on sta1-wlan0)

SSID: new-ssid
freq: 2457
RX: 370 bytes (9 packets)
TX: 202 bytes (3 packets)
signal: -36 dBm
tx bitrate: 6.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

Figure 2.2: Executing xterm.



30 Beginner

And then we will try a new ping between sta1 and sta2. The ping command
should run successfully, as follows.

mininet-wifi> sta1 ping -c1 sta2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1011 ms

--- 10.0.0.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1011.206/1011.206/1011.206/0.000 ms

Another very useful operation for WiFi networks is scanning, which allows
you to check which access points a certain station can see. For example, let
us assume that the SSID of access point ap1 is unknown. In this case, the
following command can be used to display ap1’s SSID.

mininet-wifi> sta1 iw dev sta1-wlan0 scan
BSS 02:00:00:00:02:00(on sta1-wlan0) -- associated

TSF: 1534710096681871 usec (17762d, 20:21:36)
freq: 2457
beacon interval: 100 TUs
capability: ESS ShortSlotTime (0x0401)
signal: -36.00 dBm
last seen: 0 ms ago
Information elements from Probe Response frame:
SSID: new-ssid
Supported rates: 1.0* 2.0* 5.5* 11.0* 6.0 9.0 12.0 18.0
DS Parameter set: channel 1
ERP: Barker_Preamble_Mode
Extended supported rates: 24.0 36.0 48.0 54.0
Extended capabilities:

* Extended Channel Switching
* Operating Mode Notification

2.3 Customizing topologies

Different topologies can be created in Mininet-WiFi, through simple com-
mands or even by using scripts written in Python.

The topologies that can be created through commands are single and linear.
To generate these two kinds of topologies, we will need to close Mininet-WiFi.

mininet-wifi> exit



2.3 Customizing topologies 31

So let us start with the single topology, which consists of one access point,
ap1, and n stations associated with it. For example, the following command
creates four stations, one access point and one SDN controller, as shown in
Figure 2.3.

~/mininet-wifi$ sudo mn --wifi --topo single,4

ap1

sta4

sta3sta2

sta1

c0

Figure 2.3: Single topology.

At this point, we can test the connectivity between all the nodes by issuing the
pingall command, as follows.

mininet-wifi> pingall
*** Ping: testing ping reachability
sta1 -> *** sta1 : ('ping -c1 10.0.0.2',)
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.170 ms

--- 10.0.0.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.170/0.170/0.170/0.000 ms
sta2 *** sta1 : ('ping -c1 10.0.0.3',)
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=0.121 ms

--- 10.0.0.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.121/0.121/0.121/0.000 ms
sta3 *** sta1 : ('ping -c1 10.0.0.4',)
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.129 ms

--- 10.0.0.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.129/0.129/0.129/0.000 ms



32 Beginner

The other topology that can be created using commands is linear, which
consists of n access points and n stations, in which each station is associated
with one access point and all the access points are connected in a linear way.
For example, the following command creates four access points, four stations,
and one SDN controller, as shown in Figure 2.4.

~/mininet-wifi$ sudo mn --wifi --topo linear,4

ap1 ap2 ap3 ap4

sta4sta3sta2sta1

c0

Figure 2.4: Linear topology.

The customization of topologies, on the other hand, is done by means of scripts
that contain all the information about the topology as well as the configuration
of its nodes. In the </mininet-wifi/examples> directory there is a wide variety
of scripts that can be used as a basis for creating custom topologies.

It is always recommended that you check whether there is a script already
developed for the scenario you want to work on. This helps you to create your
own. Throughout this book we will use various scripts, which will certainly
help in understanding how they can be customized.

2.4 Accessing node information
Now, let us learn how to get information from the nodes that make up a
topology. To do so, we will create the simplest topology and add two new
parameters: position and wmediumd. The position parameter will define initial
positions for the nodes, while the wmediumd parameter will enable wmediumd,
a wireless simulator that will be shown in 2.7.2.

~/mininet-wifi$ sudo mn --wifi --link=wmediumd --position



2.4 Accessing node information 33

Then try issuing the distance command, as follows:

mininet-wifi> distance sta1 sta2
The distance between sta1 and sta2 is 100.00 meters

Now, check the position of sta1 and sta2. Note that the x, y, and z axes are
separated by commas.

mininet-wifi> py sta1.position
[1.0, 0.0, 0.0]

mininet-wifi> py sta2.position
[101.0, 0.0, 0.0]

As you can see, the initial positions were defined, and the distance command
can be used to verify the distance between two nodes.

At this point a question surely may arise: what if a specific position for
a node must be defined? In this case, there are two possible solutions: ei-
ther through the Mininet-WiFi CLI or scripts. The example below shows the
setPosition() method, which can be used with the CLI and scripts.

mininet-wifi> py sta1.setPosition('10,0,0')

Note that when a method implemented on the Mininet-WiFi source code
is evoked by the CLI, the prefix py must always be used. In addition to
setPosition(), other methods will be demonstrated throughout this book.

Now, let us check the newly defined position.

mininet-wifi> py sta1.position
[10.0, 0.0, 0.0]

In this case, the position is defined as: x=10, y=0 and z=0.

Various other data about a particular node can be obtained using the generic
form node.params or node.wintfs, as shown below.

mininet-wifi> py sta1.params
{'wlan': ['sta1-wlan0'], 'ip': '10.0.0.1/8', 'ip6':

'2001:0:0:0:0:0:0:1/64', 'channel': 1, 'mode': 'g'}�→
mininet-wifi> py sta1.wintfs
{0: <managed sta1-wlan0>}



34 Beginner

Now, you can filter the desired information as follows.

mininet-wifi> py sta1.wintfs[0].freq
2.412
mininet-wifi> py sta1.wintfs[0].mode
g
mininet-wifi> py sta1.wintfs[0].txpower
14
mininet-wifi> py sta1.wintfs[0].range
62
mininet-wifi> py sta1.wintfs[0].antennaGain
5

wintfs[0] means that the information to be obtained comes from the first
wireless interface. If the node has multiple interfaces, wintfs[n] - e.g. wintfs[1]
to indicate the second interface and so on - can also be used.

2.5 OVSAP versus UserAP

Mininet-WiFi supports two types of access points that differ basically in the
location where they are run. OVSAP or OVSKernelAP runs in the kernel space
of the operating system, whereas the UserAP is executed in the user space.
Additionally, you may prefer one over the other due to possible advantages,
such as supported features and performance.

For example, some features may be supported by one and not by another.
Until recently, OVSAP did not support meter tables, a type of table belonging
to the OpenFlow protocol that is responsible for Quality of Service (QoS)-
related operations, which was included in version 1.3 of this protocol. On the
other hand, UserAP already supported it by then.

Another important issue is the possibility of running switches or access points
in particular network namespaces. In this case, OVS does not support this
feature natively yet, unlike UserAP, which supports it. What does that mean?
Try using the following command.

~/mininet-wifi$ sudo mn --wifi

It allows you to view the interfaces of the ap1 access point.



2.5 OVSAP versus UserAP 35

mininet-wifi> ap1 ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode

DEFAULT group default qlen 1000�→
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp2s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel
state DOWN mode DEFAULT group default qlen 1000�→
link/ether 84:7b:eb:fc:63:1a brd ff:ff:ff:ff:ff:ff

3: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP mode DORMANT group default qlen 1000�→
link/ether f8:da:0c:95:12:d3 brd ff:ff:ff:ff:ff:ff

4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
state DOWN mode DEFAULT group default�→
link/ether 02:42:04:ed:bc:24 brd ff:ff:ff:ff:ff:ff

5: br-7e51375c6c71: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
noqueue state DOWN mode DEFAULT group default�→
link/ether 02:42:6f:43:07:ee brd ff:ff:ff:ff:ff:ff

6: hwsim0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000�→
link/ieee802.11/radiotap 12:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff

9: ap1-wlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc tbf master
ovs-system state UP mode DEFAULT group default qlen 1000�→
link/ether 02:00:00:00:02:00 brd ff:ff:ff:ff:ff:ff

10: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000�→
link/ether ee:99:70:bb:39:89 brd ff:ff:ff:ff:ff:ff

11: ap1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
group default qlen 1000�→
link/ether 0a:94:5d:2c:8b:40 brd ff:ff:ff:ff:ff:ff

Note that a large number of network interfaces can be viewed, including those
that, in practice, do not integrate the ap1 access point, such as the wireless and
wired interfaces of the computer running Mininet-WiFi. This is the behavior
observed when OVS, the default type of switch or access point for Mininet-
WiFi, is being used.

Now, let us look at how UserAP behaves. To do so, run the following com-
mand.

~/mininet-wifi$ sudo mn --wifi --ap user --innamespace

The –innamespace parameter was not used with OVS because it
does not support this command yet. –innamespace is responsible
for making the node run in its own network namespace, instead
of the root network namespace.



36 Beginner

After that, check the interfaces of the ap1 access point.

mininet-wifi> ap1 ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group

default qlen 1000�→
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ap1-eth0@if46: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP mode DEFAULT group default qlen 1000�→
link/ether de:93:af:2c:68:a0 brd ff:ff:ff:ff:ff:ff link-netnsid 0

45: ap1-wlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc tbf state
UP mode DEFAULT group default qlen 1000�→
link/ether 02:00:00:00:02:00 brd ff:ff:ff:ff:ff:ff

As you can realize, the number of network interfaces has dropped considerably.
The loopback interface was expected to appear among the results, in addition
to the ap1-wlan1 interface, which is the wireless interface of the ap1 access
point. The only interface that could be considered as unexpected would be
the ap1-eth0 interface, which is the interface used to connect to the SDN
controller.

Another relevant issue between OVSAP and UserAP is the performance.
UserAP’s performance has significantly worsened since the releases of the
newer versions of the Linux kernel. The reason? We confess not to have an
answer to this question. However, we invite you to check this issue in practice.

The following command will run Mininet with OVS and test the through-
put between nodes h1 and h2.

~/mininet-wifi$ sudo mn --test iperf
*** Iperf: testing TCP bandwidth between h1 and h2
*** Results: ['40.1 Gbits/sec', '40.0 Gbits/sec']

The following command runs Mininet with UserSwitch and measures the
throughput between the same nodes, h1 and h2.

~/mininet-wifi$ sudo mn --switch=user --test iperf
*** Iperf: testing TCP bandwidth between h1 and h2
*** Results: ['171 Mbits/sec', '172 Mbits/sec']



2.6 Graphical User Interface (GUI) 37

If you are not able to execute the previous command, you need to
start an SDN controller on another terminal and replace --test
iperf by --controller=remote. Then, after starting the con-
troller, run iperf on the Mininet-WiFi CLI as follows: iperf h1
h2.

You may be wondering: why UserSwitch? UserAP has been extended from
Mininet’s UserSwitch. So in practice, they are the same switch or access
point. But back to the result, did you notice the difference between them?
UserSwitch has much lower performance compared to OVS.

With respect to UserAP still, an example of its implementation is Basic Open-
Flow Software Switch (BOFUSS), a successor of ofsoftswitch132. It has been
employed in several studies and you may definitely want to use it at some
point. BOFUSS promises to eliminate most performance-related issues.

To install BOFUSS, just run sudo util/install.sh -3f from
Mininet-WiFi’s root directory.

2.6 Graphical User Interface (GUI)
For those who do not know Python or are new to Mininet-WiFi, currently
there are two options for creating scripts in Python with the support of graphic
interfaces: by using Visual Network Descriptor (VND) or MiniEdit.

2.6.1 Visual Network Descriptor

Requirement(s): web server, php, flash player, visual network
descriptor

Visual Network Descriptor, or simply VND, is a tool created for a master’s
work that is able to generate Python scripts for Mininet-WiFi via a web browser.
Written predominantly in the Flex programming language, VND also includes

2https://github.com/CPqD/ofsoftswitch13



38 Beginner

some instructions in PHP and XML.

Using VND is relatively simple. First you need to make a clone of its source
code, which can be downloaded at https://github.com/ramonfontes/
vnd, and follow the installation steps available on the source code page. In
general terms, you must have a web server, PHP and Flash Player installed.
Then just access it through your preferred web browser. If all goes well, a
screen similar to the one shown in Figure 2.5 should appear.

Figure 2.5: Visual Network Descriptor.

With VND open, you can use the mouse cursor to select the nodes that you
want to include in the topology and their respective connections. You can
also create settings for nodes and save the topology for later use. To generate
scripts for Mininet-WiFi, just follow the File->Export->Export to Mininet-
WiFi menu. A standard file with a .sh extension will be created; it consists of
Python statements and can be executed as if it were a Python file.

For example, a script named <mytopology.sh> can be executed as follows.

~/mininet-wifi$ sudo python mytopology.sh

Visual Network Descriptor:
https://youtu.be/KsoRMnDP_PA



2.6 Graphical User Interface (GUI) 39

2.6.2 MiniEdit

Requirement(s): scripts only

Another alternative for creating topologies with graphics support is MiniEdit.
Written in Python, MiniEdit was initially developed for Mininet and has been
constantly upgraded to work with Mininet-WiFi. The goal of MiniEdit’s de-
velopers is to make all the features supported by Mininet-WiFi available on
MiniEdit.

MiniEdit has a fairly simple user interface that features a screen with a line of
tool icons on the left side of the window and a menu bar at the top. It comes
already included in the Mininet-WiFi source code.

To use it, just run <examples/miniedit.py>.

~/mininet-wifi$ sudo python examples/miniedit.py

Figure 2.6: Miniedit.

After you run it, a screen similar to the one shown in Figure 2.6 should appear.
With it you can add nodes supported by Mininet-WiFi and their respective
settings, in addition to their links, of course. In the current version of MiniEdit,
different types of scenarios are already supported, for example: adhoc and
mesh networks, WiFi-Direct, Radius protocol, WPA, among other environ-
ments.



40 Beginner

You might ask: what is the best alternative to work with GUI? MiniEdit
or VND? You may want to use MiniEdit, since it is a part of Mininet-WiFi.
There is also a tendency for VND to be gradually discontinued.

MiniEdit and Mininet-WiFi:
https://youtu.be/j4JS4xxCrCA

2.6.3 Viewing 2D and 3D graphics
Viewing topologies by means of graphics is another feature that can be used in
Mininet-WiFi. You can generate both 2D and 3D graphics. Nevertheless, there
are situations where 3D graphics are very useful, such as surveys involving
drones and satellites, since the representation of different levels of altitudes
may be necessary.

Thus, given its importance, we will then understand how it is possible to
generate 2D and 3D graphics on Mininet-WiFi. Initially we will learn to create
the two types of graphics (2D and 3D) using the CLI.

The command below will generate a 2D topology.

~/mininet-wifi$ sudo mn --wifi --plot --position

While the following command will generate a 3D topology.

~/mininet-wifi$ sudo mn --wifi --plot3d --position

All scripts available in the </examples> directory - a Mininet-WiFi directory
where you can find a wide variety of ready-to-run scripts - generate 2D graph-
ics. If you choose to generate 3D graphics, simply make a small change in the
code.

For example, let us take as an example <position.py>, available in the </exam-
ples> directory. This file contains the following content:



2.6 Graphical User Interface (GUI) 41

net.plotGraph(max_x=100, max_y=100)

As can be seen, only the x and y axes were defined and the resulting graph will
be somewhat similar to the one shown in Figure 2.7. Therefore, to generate
3D graphics, simply add the z axis, which will produce something similar to
what was shown in Figure 2.8.

Figure 2.7: 2D Graphic. Figure 2.8: 3D Graphic.

net.plotGraph(max_x=100, max_y=100, max_z=100)

Optionally, minimum values for x, y and z axes can also be defined.

net.plotGraph(min_x=10, min_y=10, min_z=10, max_x=100, max_y=100,
max_z=100)�→

Graphics generated by Mininet-WiFi are supported by matplotlib,
a data visualization library available in the Python programming
language.

Building 3D Graphic:
https://youtu.be/lMkIV0YBTss



42 Beginner

2.7 Wireless network emulation
Wireless media emulation in Mininet-WiFi can be done in two ways: with
TC3 or Wmediumd4. Let us then understand how to use them and what are
the differences between them.

2.7.1 TC (Traffic Control)
If Mininet-WiFi is running, quit it. Then start it again with the following
command:

~/mininet-wifi$ sudo mn --wifi --position

Now, view the TC information on the Mininet-WiFi CLI:

mininet-wifi> ap1 tc qdisc
qdisc noqueue 0: dev lo root refcnt 2
qdisc pfifo_fast 0: dev enp2s0 root refcnt 2 bands 3
priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc noqueue 0: dev wlp1s0 root refcnt 2
qdisc noqueue 0: dev docker0 root refcnt 2
qdisc tbf 2: dev ap1-wlan1 root refcnt 5 rate 54Mbit burst 14998b lat 1.0ms
qdisc pfifo 10: dev ap1-wlan1 parent 2:1 limit 1000p

The output that interests us is highlighted below:

qdisc tbf 2: dev ap1-wlan1 root refcnt 5
rate 54Mbit burst 14998b lat 1.0ms

In general terms, this output instructs ap1 to limit the bandwidth to up to 54
Mbits/s, which represents the maximum value that the IEEE 802.11g standard
can nominally support. With this information it is easier to understand how
TC works.

Considering that TC values are applied to stations and also that propaga-
tion models are supported by Mininet-WiFi, for a distance d between access
point and station, there is always a received signal value, which can vary with
the chosen propagation model. Then, as the node is moving to a new position,
a new value for d is calculated and from this we obtain the received signal and

3https://en.wikipedia.org/wiki/Tc_(Linux)
4https://github.com/ramonfontes/wmediumd/



2.7 Wireless network emulation 43

the bandwidth value that will be applied by TC to the wireless interface of the
node.

In practice, the value applied by TC to ap1 does not change; instead, the
values applied to the interfaces of the stations change. Thus, in an infrastruc-
ture environment we will always have two reference points for the calculation
of d: the station and the access point. Two stations may be associated with
the same access point, and different bandwidth values can be assigned to their
interfaces: one for sta1 and another for sta2.

Now let us imagine a wireless ad hoc network with three stations. As a
wireless network, we can say that this network consists of a non-infrastructure
environment, which means that this topology does not have a central node,
i.e. the access point. In this type of network the three stations can associate
with each other, where, for example, sta1 can maintain association with
sta2 and sta3. However, they only have one wireless interface, and thus are
particularly difficult to control using TC.

What would be the reference point to calculate d for sta1, sta2 or sta3? Dif-
ferently from an infrastructure network, where we have two reference points
for the calculation of d - station and access point -, in a non-infrastructure
network this does not occur. Thus, wireless adhoc and mesh, require the use of
Wmediumd, which implements an ideal wireless medium simulator for these
types of networks.

2.7.2 Wmediumd
The module responsible for virtualizing WiFi network cards on Mininet-WiFi,
mac80211_hwsim, uses the same virtual medium for all its wireless nodes.
This means that all nodes are internally within reach of each other and can be
discovered by scanning, as we have done with iw previously. If the wireless
interfaces need to be isolated from each other, the use of Wmediumd is recom-
mended.

Wmediumd had been developed since 20115, but only in 2017 it was inte-

5https://github.com/jlopex/mac80211_hwsim



44 Beginner

grated into Mininet-WiFi thanks to Patrick Große6, the developer responsible
for creating the first Wmediumd extension for Mininet-WiFi.

Unlike TC, which limits the bandwidth available to the interface, Wmedi-
umd relies on a signal table7 and manages the isolation of the interfaces in
real time as data travels across the network.

2.7.3 TC versus Wmediumd in practice
Start Mininet-WiFi with the following command.

~/mininet-wifi$ sudo mn --wifi --topo single,3 --position --plot

This command will create three stations that will associate themselves with
access point ap1. The --plot parameter will open a topology graph. More
details on this parameter will be seen later.

Now, check the signal strength perceived by sta1 in relation to the ap1
access point by running the scan command.

mininet-wifi> sta1 iw dev sta1-wlan0 scan
BSS 02:00:00:00:03:00(on sta1-wlan0) -- associated

TSF: 1536705774286475 usec (17785d, 22:42:54)
freq: 2412
beacon interval: 100 TUs
capability: ESS ShortSlotTime (0x0401)
signal: -36.00 dBm
last seen: 0 ms ago
Information elements from Probe Response frame:
SSID: my-ssid
Supported rates: 1.0* 2.0* 5.5* 11.0* 6.0 9.0 12.0 18.0
DS Parameter set: channel 1
ERP: Barker_Preamble_Mode
Extended supported rates: 24.0 36.0 48.0 54.0
Extended capabilities:

* Extended Channel Switching
* Operating Mode Notification

Also check the RSSI using the wintfs option:

6https://github.com/patgrosse
7https://github.com/ramonfontes/wmediumd/blob/mininet-wifi/tests/

signal_table_ieee80211ax



2.7 Wireless network emulation 45

mininet-wifi> py sta1.wintfs[0].rssi
-66.0

As you can see, there is a difference in the signals received by the iw scan
and wintfs options. With iw the received signal was -36 dBm, whereas using
wintfs it was -66 dBm. While TC is in use, it will not be possible to get any
updated information about the signal strength, or any other data that depends
on it, by using network commands, such as iw. Perhaps one of the few useful
data to verify is whether the station sta1 is in fact associated with the access
point ap1.

The iw link command can also be used for this, as follows.

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)
SSID: my-ssid
freq: 2412
RX: 12486 bytes (236 packets)
TX: 805 bytes (9 packets)
signal: -36 dBm
tx bitrate: 18.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

Now let us move sta1 and test the received signal again by performing a new
scan.

mininet-wifi> py sta1.setPosition('250,250,0')
mininet-wifi> sta1 iw dev sta1-wlan0 scan
BSS 02:00:00:00:03:00(on sta1-wlan0)

TSF: 1536706071142532 usec (17785d, 22:47:51)
freq: 2412
beacon interval: 100 TUs
capability: ESS ShortSlotTime (0x0401)
signal: -36.00 dBm
last seen: 0 ms ago
Information elements from Probe Response frame:
SSID: my-ssid
Supported rates: 1.0* 2.0* 5.5* 11.0* 6.0 9.0 12.0 18.0
DS Parameter set: channel 1
ERP: Barker_Preamble_Mode
Extended supported rates: 24.0 36.0 48.0 54.0
Extended capabilities:



46 Beginner

* Extended Channel Switching
* Operating Mode Notification

Surprisingly, the signal remained the same as before, even when changing the
position of sta1. In fact, ap1 should not even appear in the scan, as sta1
is no longer under the signal coverage of access point ap1. This shows that
the TC really does not perceive the wireless medium, since even when the
station is no longer within the signal coverage of the ap1 access point, it is
still capable of seeing it.

Now, let us repeat what we did earlier by using Wmediumd.

~/mininet-wifi$ sudo mn --wifi --topo single,3 --link=wmediumd --position
--plot�→

Then we perform the scan from sta1, change its position and repeat the scan.

mininet-wifi> sta1 iw dev sta1-wlan0 scan
BSS 02:00:00:00:03:00(on sta1-wlan0) -- associated

TSF: 1536709235310507 usec (17785d, 23:40:35)
freq: 2412
beacon interval: 100 TUs
capability: ESS ShortSlotTime (0x0401)
signal: -67.00 dBm
last seen: 0 ms ago
Information elements from Probe Response frame:
SSID: my-ssid
Supported rates: 1.0* 2.0* 5.5* 11.0* 6.0 9.0 12.0 18.0
DS Parameter set: channel 1
ERP: Barker_Preamble_Mode
Extended supported rates: 24.0 36.0 48.0 54.0
Extended capabilities:

* Extended Channel Switching
* Operating Mode Notification

mininet-wifi> py sta1.setPosition('250,250,0')
mininet-wifi> sta1 iw dev sta1-wlan0 scan

As you can see, the signal strength perceived by sta1 was initially -67 dBm.
However, when it went out of the signal range of access point ap1, there was
a predicted change in the result. In addition to returning an expected signal
value at the first moment, in the second the ap1 access point could not be
reached, since ap1 was not able to reach sta1 anymore.



2.8 Propagation model 47

Using wintfs with Wmediumd is not recommended since some
implementations of the latter for the calculation of the received
signal were not transferred to Mininet-WiFi. In this case, it is
always preferable to use iw or iwconfig.

2.8 Propagation model
Propagation models are mathematical models typically used by simulators and
wireless network emulators to try to mimic the behavior of a wireless medium.
In the literature, several propagation models have been proposed in order to
support the different features of wireless media, such as varied environment
types (indoor and outdoor), signal attenuation, interference, etc.

Mininet-WiFi currently supports the following propagation models: Friis
Propagation Loss Model, Log-Distance Propagation Loss Model (default),
Log-Normal Shadowing Propagation Loss Model, International Telecommuni-
cation Union (ITU) Propagation Loss Model and Two-Ray Ground Propaga-
tion Loss Model.

The correct choice of propagation model makes a big difference. For ex-
ample, one of the variables used in propagation models is the exponent. The
exponent is variable that will instruct the propagation model as to the testing
environment, i.e. whether it is an indoor or outdoor environment, or whether
it is an interference-free environment or not.

Specifying a propagation model is a simple task. The various Mininet-
WiFi sample scripts will certainly support this task, especially <propaga-
tionModel.py>. In it you can find the function responsible for defining the
propagation model and its parameters.

To demonstrate how the propagation model can affect the configuration of the
nodes that make up the network, we will execute the following script.

~/mininet-wifi$ sudo python examples/propagationModel.py

Using the pre-defined propagation model, we can observe that the signal



48 Beginner

strength perceived by sta1 was around -79 dBm.

mininet-wifi> py sta1.wintfs[0].rssi
-79.0

On the other hand, after configuring the free space propagation model, the
signal strength increased to approximately -47 dBm. If you did not find the
-79 dBm and -47 dBm values, do not worry. What matters is the value ob-
tained after setting up the propagation model. This should be higher than the
previously noted values.

The propagation model can be modified as follows:

from:

net.setPropagationModel(model="logDistance", exp=4)

to:

net.setPropagationModel(model="friis")

Then, check the RSSI after running the modified script.

mininet-wifi> py sta1.wintfs[0].rssi
-47.0

Another relevant change you can see is related to the range of the access
point. Certainly the new range of access point ap1 is now much larger than
the previously observed one.

<propagationModel.py> does not use Wmediumd, so if it is nec-
essary to obtain the signal strength it should always be obtained
using the wintfs command.

The new signal range value evidences the importance of choosing the correct
propagation model for the scenario on which it is necessary to work. The
new signal strength, which is higher than the previous one, also shows the
behavior of the free space propagation model, since free space does not take
into account any kind of interference or barrier that could attenuate the signal.



2.8 Propagation model 49

It is important to note that in addition to the exponent discussed above, there
are other parameters that may be unique or not in relation to each model. You
can find more information about the supported models and their parameters
on Mininet-WiFi’s web page8.

2.8.1 Providing more realism
Some propagation models have no signal variation over time. This means
that if we check the signal strength of a particular node, the perceived signal
strength will always be the same. However, as we all know, the wireless
medium is not constant and many factors can affect the perceived signal
strength.

Therefore, in cases where the variation in signal strength is important and you
need to represent what happens in the real world with greater fidelity, it is
necessary to set up the fading_coefficient, which produces signal attenuation
over time.

To check the effect caused by fading in practice, let us run the following
code.

~/mininet-wifi$ sudo python examples/wmediumd_interference.py

Now we are able to verify the signal strength variation perceived by a given
station through iw, as below. Notice that as <wmediumd_interference.py>
uses Wmediumd, the signal strength can be obtained by running either iw or
iwconfig.

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)
SSID: new-ssid
freq: 5180
RX: 6901 bytes (124 packets)
TX: 712 bytes (8 packets)
signal: -65 dBm
tx bitrate: 12.0 MBit/s

bss flags: short-slot-time
dtim period: 2

8http://mininet-wifi.github.io/



50 Beginner

beacon int: 100

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)
SSID: new-ssid
freq: 5180
RX: 8827 bytes (165 packets)
TX: 800 bytes (9 packets)
signal: -62 dBm
tx bitrate: 12.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

As you can see, the signal strength perceived by sta1 was initially -65 dBm
and then switched to -62 dBm later on. This variation is expected to happen
whenever the received signal level is checked. This is a variation that occurs
in a random fashion while also respecting the interval defined by the fading
parameter.

Try changing the fading value and check the result. The higher
the fading value, the greater the signal variation.

All propagation models supported by Mininet-WiFi can be found
in <mn_wifi/propagationModels.py>. Should you want to imple-
ment new propagation models, you will need to include them in
this file.

2.9 Distance versus received signal
In addition to the throughput, the distance variation will also impact the signal
strength received from the nodes. Obviously, the more distant the source and
destination are, the worse the perceived signal should be. This is due to signal
attenuation.

We have already seen in 2.2 how we can visualize the signal strength perceived
by a node. Let us use, then, the same command to observe the perceived signal
strength from different positions. To do so, run <wmediumd_interference.py>.



2.9 Distance versus received signal 51

~/mininet-wifi$ sudo python examples/wmediumd_interference.py

Then check the received signal.

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)

SSID: new-ssid
freq: 5180
RX: 9142 bytes (184 packets)
TX: 88 bytes (2 packets)
signal: -64 dBm
tx bitrate: 6.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

Now, let us use the distance command to view the distance between sta1
and ap1.

mininet-wifi> distance sta1 ap1
The distance between sta1 and ap1 is 11.18 meters

As you can see, the distance between them is just over 11 meters, and the
signal level perceived by sta1 was -64 dBm. So let us change the position of
sta1 in order to reduce the distance from access point ap1 and check again
the signal strength received by sta1.

mininet-wifi> py sta1.setPosition('40,40,0')
mininet-wifi> distance sta1 ap1
The distance between sta1 and ap1 is 26.93 meters
mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)

SSID: new-ssid
freq: 5180
RX: 176746 bytes (4379 packets)
TX: 1668 bytes (19 packets)
signal: -79 dBm
tx bitrate: 18.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

We can see that after changing the position, the distance increased and con-
sequently the signal level decreased from -64 dBm to -79 dBm. This may be



52 Beginner

a simple and obvious conclusion; however, the steps we have just taken aid
greatly in the teaching and learning process.

• Ramon dos Reis Fontes, Mohamed Mahfoudi, Walid Dabbous, Thierry Turletti,
Christian Esteve Rothenberg. How far can we go? Towards Realistic Software-
Defined Wireless Networking Experiments. In The Computer Journal (Special
Issue on Software Defined Wireless Networks), 2017.

2.10 Modifying bitrate
Bitrate refers to the rate of data transmission supported for a given moment.
Wi-Fi devices are able to adjust their Modulation and Coding Scheme accord-
ing to the received signal level. In practice, the more complex the modulation
scheme is, the more bits can be transmitted. In contrast, they also become
more sensitive to interference and noise, and hence require a cleaner channel.

We will use iw to modify bit rates. To do so, consider using <wmedi-
umd_interference.py> one more time.

~/mininet-wifi$ sudo python examples/wmediumd_interference.py

Next, let us do some simple tests and note the difference in the bandwidth
values obtained for different bitrates.

First, run iperf without changing the bitrate values.

mininet-wifi> iperf sta1 sta2
*** Iperf: testing TCP bandwidth between sta1 and sta2
*** Results: ['14.3 Mbits/sec', '14.4 Mbits/sec']

Then look at the current bitrate. As you can see below, the bitrate value was
54 Mbits/s.

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)

SSID: new-ssid
freq: 5180
RX: 581186 bytes (7475 packets)



2.10 Modifying bitrate 53

TX: 19278284 bytes (12610 packets)
signal: -64 dBm
tx bitrate: 54.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

Now, change the bitrate and re-measure the bandwidth.

mininet-wifi> sta1 iw dev sta1-wlan0 set bitrates legacy-5 6 9
mininet-wifi> iperf sta1 sta2
*** Iperf: testing TCP bandwidth between sta1 and sta2
*** Results: ['5.87 Mbits/sec', '5.93 Mbits/sec']
mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)

SSID: new-ssid
freq: 5180
RX: 840551 bytes (12506 packets)
TX: 23301226 bytes (15251 packets)
signal: -64 dBm
tx bitrate: 9.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

Note that the bitrate was limited to 9 Mbits/s and the measurement from iperf
dropped to less than 6 Mbits/s.

Finally, let us make another bitrate change and measure the bandwidth once
more.

mininet-wifi> sta1 iw dev sta1-wlan0 set bitrates legacy-5 6
mininet-wifi> iperf sta1 sta2
*** Iperf: testing TCP bandwidth between sta1 and sta2
*** Results: ['4.37 Mbits/sec', '4.44 Mbits/sec']
mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)

SSID: new-ssid
freq: 5180
RX: 1044693 bytes (16503 packets)
TX: 26353234 bytes (17256 packets)
signal: -64 dBm
tx bitrate: 6.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100



54 Beginner

Once again the available bandwidth dropped and the bitrate was limited to 6
Mbits/s, as defined by the command.

Another interesting test is to verify the difference in the transfer rate supported
by different Wi-Fi standards. For example, since the script is configured to
operate on the IEEE 802.11a standard, which supports up to 54 Mbits/s, it was
possible to get the 14 Mbits/s acquired in the previous test. On the other hand,
another standard, IEEE 802.11b, would support only up to 11 Mbits/s.

Let us carry out a simple test: change the operating mode of the script from
mode=’a’ to mode=’b’, and change the channel from 36 to 1. Then run iperf
one more time and observe the result.

Due to a lack of knowledge, many users end up making mistakes
when they configure the channel on an access point. What hap-
pens is that, for example, channel one does not work at 5 GHz, the
frequency used in the IEEE 802.11a standard. You cannot, thus,
use channel strips that are not compatible with certain 802.11
standards. The document available on hostapd9 can serve as a
good reference point to identify the correct channels for certain
operating standards.

mininet-wifi> iperf sta1 sta2
*** Iperf: testing TCP bandwidth between sta1 and sta2
*** Results: ['4.50 Mbits/sec', '4.57 Mbits/sec']

As you can see, the measured bandwidth was 4.5 Mbits/s, which is limited to
11 Mbits/s, exactly as defined by the IEEE 802.11b standard.

2.11 Distance versus throughput
Throughput is the ability to transmit data from one network point to another
over a period of time, determining the speed at which data travels through a
link. In wireless networks, throughput is, in theory, highly impacted by the
distance between two nodes.

9https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf



2.11 Distance versus throughput 55

Among the tools for measuring throughput, iperf is certainly the one that
stands out the most, as it is the preferred tool in most cases. Throughput
measurement using iperf is relatively simple, since two nodes executing it are
enough for it to function, with one of the nodes operating as client and the
other as server.

In order to run iperf to verify the relation between distance and bandwidth,
we will use the <position.py> file as a basis.

~/mininet-wifi$ sudo python examples/position.py

After running it, you will see a topology with two stations and one access point.

Since the script file has been successfully executed, let us measure the through-
put between sta1 and sta2 according to their initial arrangement.

mininet-wifi> iperf sta1 sta2
*** Iperf: testing TCP bandwidth between sta1 and sta2
*** Results: ['8.42 Mbits/sec', '9.04 Mbits/sec']

Keep a record of the result observed in this test round. The result may suffer
slight variations.

Now, we will change the positions of sta1 and sta2 so that they are fur-
ther away from access point ap1. Then we will measure the throughput
between sta1 and sta2 again.

mininet-wifi> py sta1.setPosition('40,90,0')
mininet-wifi> py sta2.setPosition('60,10,0')
mininet-wifi> iperf sta1 sta2
*** Iperf: testing TCP bandwidth between sta1 and sta2
*** Results: ['6.98 Mbits/sec', '7.14 Mbits/sec']

Comparing this new result with the previous one, it is clear that the more
distant the stations are from the access point, the smaller the throughput tends
to be.

In Mininet-WiFi, the iperf sta1 sta2 command automati-
cally defines sta1 as a server and sta2 as a client. Later on
we will see examples of the most common way of using iperf.



56 Beginner

Publications that have already used Mininet-WiFi for performance re-
search:

• Gilani S.M.M., Heang H.M., Hong T., Zhao G., Xu C. OpenFlow-Based
Load Balancing in WLAN: Throughput Analysis. Communications, Signal
Processing, and Systems (CSPS), 2016.

• Krishna Vijay Singh, Sakshi Gupta, Saurabh Verma, Mayank Pandey. Im-
proving performance of TCP for wireless network using SDN. Proceedings of
ICDCN, 2019.

2.12 Mobility models

Mobility models are also very important because they try to mimic the mobility
of persons, vehicles or any other object that is mobile, i.e. able to move from
one point to another. There are several studies that try to identify the patterns
of human mobility during natural disasters, such as major storms, floods, etc.

As for the propagation models, there are several mobility models that are
accepted by the scientific community worldwide, and some of them are sup-
ported by Mininet-WiFi, such as Random Direction, Random Walk, Gauss
Markov, among other models. Mobility can be observed either using CLI or a
graph, as illustrated in Figure 2.9.

Because of their importance, we will now check how mobility models can
be configured on Mininet-WiFi. To do so, let us use the <mobilityModel.py>
script, which contains the Random Direction mobility model in its code. It is
important to note that for each mobility model there may be unique parameters
such as minimum and maximum speed limits, areas where nodes can move,
etc. All the information you need about mobility model settings can be found
on Mininet-WiFi’s web page10.

Seed is one of the most important mobility model settings. It modifies mobility
significantly. For instance, if a seed number one causes the nodes to move
from certain x and y values, a seed number two will change the initial values
of x and y. It will not be able to change the mobility behavior, but it may

10http://mininet-wifi.github.io/



2.12 Mobility models 57

Figure 2.9: Working with mobility.

change its own initial positions. This is an important feature because the initial
arrangement of the nodes may not always meet the requirements defined for a
particular experiment.

Now that we know a little more about the theory of mobility models, let
us run the following script and observe how the nodes behave when configured
with the Random Direction mobility model.

~/mininet-wifi$ sudo python examples/mobilityModel.py

Record the behavior of the nodes and try to change the mobility
model at a later time for comparison purposes.

Then we will test two of the three implemented Mininet-WiFi commands that
were presented in the 2.2 section: stop and start.

Let us first try the stop command.

mininet-wifi> stop

Should everything go as expected, the stop command will cease mobility,
causing the nodes to stop moving. This feature is useful in cases where the



58 Beginner

user wishes to observe information such as signal strength or even available
bandwidth connected to an arrangement of nodes.

Now, we can issue the start command to resume mobility.

mininet-wifi> start

All mobility models supported by Mininet-WiFi can be found
in <mn_wifi/mobility.py>. Should you want to implement new
mobility models, you must include them in this file.

Studies that previously used Mininet-WiFi for research on mobility:
• K. V. K. Singh, M. Pandey. Software-defined mobility in IP based Wi-Fi

networks: Design proposal and future directions. IEEE ANTS, 2016
• D. Tu, Z. Zhao and H. Zhang. ISD-WiFi: An intelligent SDN based solution

for enterprise WLANs. WCSP, 2016,
• A. Kaul, L. Xue, K. Obraczka, M. Santos, T. Turletti. WiMobtitHandover

and Load Balancing for Distributed Network Control: Applications in ITS
Message Dissemination. ICCCN, 2018.

• Z. Han, T. Lei, Z. Lu, X. Wen, W. Zheng, L. Guo. Artificial Intelligence Based
Handoff Management for Dense WLANs: A Deep Reinforcement Learning
Approach. IEEE Access, 2019.



FAQ





197

Frequently Asked Questions
I have completed all tutorials. What would be the next step(s)?
The answer to this question depends on your goals. But in general, if the goal
comes from the need to develop further scientific research and/or find out in
which other fields of application Mininet-WiFi has been used, the citation
catalogue is certainly a great reference point. It is continually updated and is
available on the Mininet-WiFi source code page.

Nevertheless, we find it useful to provide you with a couple of lists of works
that previously used Mininet-WiFi for research on topics such as video stream-
ing, 5G, power management, and other technologies. They are displayed
below.

Studies that previously used Mininet-WiFi for research on video streaming:
• Charles H.F. Santos, Felipe S. Dantas Silva and Augusto J. Venâncio Neto. An

Innovative Dynamic Bit Rate Streaming Approach to Improve Mobile User
Multimedia Quality of Experience. MobiWac, 2017

• Iulisloi Zacarias, Janaína Schwarzrock, Luciano Paschoal Gaspary, Kohl An-
derson, Ricardo Q. A. Fernandes, Jorgito M. Stocchero, and Edison Pignaton
de Freitas. Enhancing Mobile Military Surveillance based on Video Streaming
by Employing Software Defined Networks. Wireless Communications and
Mobile Computing, 2018.

• Daerawi, Kalamullah Ramli, Kalvein Rantelobo. Performance Evaluation of
Scalable High Efficiency Video Coding (SHVC) Transmission. International
Conference on Science and Technology (ICST), 2018.

• Reviakin, Aleksandr; Zahran, Ahmed H.; Sreenan, Cormac J. dashc: a highly
scalable client emulator for DASH video. MMSys, 2018.

• Yueming Zheng, Ying Wang, Mingda Rui, Andrei Palade, Shane Sheehan and
Eamonn O Nuallain. Performance Evaluation of HTTP/2 over TLS+TCP and
HTTP/2 over QUIC in a Mobile Network. Journal of Information Sciences and
Computing Technologies, 2018.



198 FAQ

Studies that previously used Mininet-WiFi for research on 5G, power manage-
ment, among other topics.

• Wang, Zeng, and Jinhe Zhou. Power control mechanism in software defined
wireless networking. ICCSN. IEEE, 2016.

• Zhang, Xiao, Haijun Wang, and Haitao Zhao. An SDN framework for UAV
backbone network towards knowledge centric networking. IEEE INFOCOM,
2018.

• Zacarias, Iulisloi, et al. Combining software-defined and delay-tolerant ap-
proaches in last-mile tactical edge networking. IEEE Communications Maga-
zine, 2017.

• Mastorakis, Spyridon, Alexander Afanasyev, and Lixia Zhang. On the evolu-
tion of ndnSIM: An open-source simulator for NDN experimentation. ACM
SIGCOMM Computer Communication Review, 2017.

• Canonico, Roberto, et al. A framework to evaluate 5G networks for smart
and fail-safe communications in ERTMS/ETCS. International Conference on
Reliability, Safety and Security of Railway Systems. Springer, 2017.

• Santos, I., et al. Emulating a Software Defined LTE Radio Access Network
Towards 5G. International Conference on Communications (COMM). IEEE,
2018.

I do not have mac80211_hwsim installed on my computer. How can I
get it?
Installing linux-image-extra will most likely install and compile mac80211_hwsim
as well.

$ sudo apt-get install linux-image-extra-`uname -r`

I am trying to start Mininet-WiFi, but I am having errors. How can I solve
them?
Most of the Mininet-WiFi runtime errors come from past executions that were
not successfully completed. Therefore, it is often necessary to run the sudo
mn -c command to clear any execution errors not properly completed.

How can I uninstall Mininet-WiFi?
To uninstall Mininet-WiFi, simply run the following command.

$ sudo rm -rf /usr/local/bin/mn /usr/local/bin/mnexec
/usr/local/lib/python*/*/*mininet* /usr/local/bin/ovs-*
/usr/local/sbin/ovs-*

�→
�→



199

I would like to know more about Mininet-WiFi. What do I need to do?
The Mininet-WiFi Handbook was created for both users and developers. This
is undoubtedly the best document for information and troubleshooting about
Mininet-WiFi. The mailing list (mininet-wifi-discuss@googlegroups.com) is
also another important source to consult. It is frequently used by users who
need new features or find Mininet-WiFi difficult in some situations.

• Web page:
http://mininet-wifi.github.io/

• Mailing list mininet-wifi-discuss:
https://groups.google.com/forum/#!forum/
mininet-wifi-discuss





References





References

[Ago+16] Elena Agostini et al. “OpenCAPWAP v2.0: the new open-source im-
plementation of the CAPWAP protocol”. In: International Journal
of Network Management 26.6 (Sept. 2016), pages 537–552 (cited on
page 12).

[Ber+14] Carlos Bernardos et al. “An architecture for software defined wireless
networking”. In: Wireless Communications, IEEE 21.3 (June 2014),
pages 52–61. ISSN: 1536-1284 (cited on page 11).

[Bin+12] Md Asri Bin Ngadi et al. “A taxonomy of cross layer routing met-
rics for wireless mesh networks”. In: EURASIP Journal on Wireless
Communications and Networking 2012.1 (May 2012), page 177. ISSN:
1687-1499 (cited on page 7).

[Cal15] Pat R. Calhoun. “Lightweight Access Point Protocol”. In: Request for
Comments 5412. RFC Editor, Nov. 2015 (cited on page 11).

[Cos+12] Salvatore Costanzo et al. “Software Defined Wireless Networks: Un-
bridling SDNs”. In: Software Defined Networking (EWSDN), 2012
European Workshop on. IEEE, Oct. 2012, pages 1–6. ISBN: 978-1-
4673-4554-5 (cited on page 10).



204 References

[Del+12] Peter Dely et al. “CloudMAC - An OpenFlow based architecture for
802.11 MAC layer processing in the cloud”. In: Globecom Workshops
(GC Wkshps), 2012 IEEE. IEEE, Dec. 2012, pages 186–191. ISBN:
978-1-4673-4942-0 (cited on page 12).

[Dor+15] Avri Doria et al. “Forwarding and Control Element Separation (ForCES)
Protocol Specification”. In: Request for Comments 5810. RFC Editor,
Oct. 2015 (cited on page 11).

[Enn+15] Rob Enns et al. “Network Configuration Protocol (NETCONF)”. In:
Request for Comments 6241. RFC Editor, Oct. 2015 (cited on page 11).

[Fon+15] R. R. Fontes et al. “Mininet-WiFi: Emulating software-defined wireless
networks”. In: Network and Service Management (CNSM), 2015 11th
International Conference on. Nov. 2015, pages 384–389 (cited on
pages 14–17).

[Han+15] Bo Han et al. “Network function virtualization: Challenges and oppor-
tunities for innovations”. In: Communications Magazine, IEEE 53.2
(Feb. 2015), pages 90–97 (cited on page 11).

[JK+14] Nachikethas A. Jagadeesan, Bhaskar Krishnamachari, et al. “Software-
Defined Networking Paradigms in Wireless Networks: A Survey”. In:
ACM Comput. Surv. 47.2 (Nov. 2014), 27:1–27:11. ISSN: 0360-0300
(cited on pages 10, 12).

[Kre+15] D. Kreutz et al. “Software-Defined Networking: A Comprehensive
Survey”. In: Proceedings of the IEEE 103.1 (Jan. 2015), pages 14–76.
ISSN: 0018-9219 (cited on pages 10, 88).

[Kum+13] Swarun Kumar et al. “Bringing Cross-layer MIMO to Today’s Wireless
LANs”. In: Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM. SIGCOMM ’13. Hong Kong, China: ACM, Oct. 2013,
pages 387–398. ISBN: 978-1-4503-2056-6 (cited on page 12).

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. “A network in a
laptop: rapid prototyping for software-defined networks”. In: Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks.
ACM. 2010, page 19 (cited on page ).

[McK+08] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus
Networks”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008),
pages 69–74. ISSN: 0146-4833 (cited on page 11).

[MSS14] Sergey Monin, Alexander Shalimov, and Ruslan Smeliansky. “Chan-
delle: Smooth and Fast WiFi Roaming with SDN OpenFlow”. In: 2014
(cited on page 12).



205

[Mou+15] Henrique Moura et al. “Ethanol: Software defined networking for
802.11 Wireless Networks”. In: IFIP/IEEE International Symposium
on Integrated Network Management, IM 2015, Ottawa, ON, Canada,
11-15 May, 2015. IEEE, May 2015, pages 388–396 (cited on page 12).

[Rei+17] Ramon dos Reis Fontes et al. “How Far Can We Go? Towards Realistic
Software-Defined Wireless Networking Experiments”. In: Comput. J.
60.10 (2017), pages 1458–1471 (cited on pages 4, 11).

[Sam+15] Malla Reddy Sama et al. “Software-defined control of the virtualized
mobile packet core”. In: IEEE Communications Magazine 53.2 (2015),
pages 107–115 (cited on page 11).

[San+14] M. A. Santos et al. “Software-defined networking based capacity shar-
ing in hybrid networks”. In: 2013 21st IEEE International Conference
on Network Protocols (ICNP). Volume 00. Oct. 2014, pages 1–6 (cited
on page 9).

[Sur+12] Lalith Suresh et al. “Towards Programmable Enterprise WLANS with
Odin”. In: Proceedings of the First Workshop on Hot Topics in Software
Defined Networks. HotSDN ’12. Helsinki, Finland: ACM, Aug. 2012,
pages 115–120. ISBN: 978-1-4503-1477-0 (cited on page 12).

[YGC15] Lily Yang, Saravanan Govindan, and Hong Cheng. “Objectives for
Control and Provisioning of Wireless Access Points (CAPWAP)”. In:
Request for Comments 4564. RFC Editor, Oct. 2015 (cited on page 11).

[Yap+10] Kok-Kiong Yap et al. “Blueprint for Introducing Innovation into Wire-
less Mobile Networks”. In: Proceedings of the Second ACM SIG-
COMM Workshop on Virtualized Infrastructure Systems and Architec-
tures. VISA ’10. New Delhi, India: ACM, Sept. 2010, pages 25–32.
ISBN: 978-1-4503-0199-2 (cited on page 12).




