Skip to content
Fast, state-of-the-art ab initio prediction of protein secondary structure in 3 and 8 classes
C++ Python Perl Other
Branch: master
Clone or download
Latest commit 2d2196c Nov 6, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
example Any filename is now accepted Jan 21, 2019
scripts commented omp.h Apr 6, 2019
.gitignore
Dockerfile
LICENSE.md
Porter5.py
README.md
multiple_fasta.py
split_fasta.py

README.md

PWC

Porter 5

Light, fast and high quality prediction of protein secondary structure in 3 and 8 classes

The web server of Porter 5 is available at http://distilldeep.ucd.ie/porter/.
The train and test sets are available at http://distilldeep.ucd.ie/porter/data/.

More protein structure annotations predicted at http://distilldeep.ucd.ie/brewery/.

References

Deeper Profiles and Cascaded Recurrent and Convolutional Neural Networks for state-of-the-art Protein Secondary Structure Prediction, Scientific Reports, Nature Publishing Group
Mirko Torrisi, Manaz Kaleel and Gianluca Pollastri; doi: https://doi.org/10.1038/s41598-019-48786-x.

Porter 5: fast, state-of-the-art ab initio prediction of protein secondary structure in 3 and 8 classes
Mirko Torrisi, Manaz Kaleel and Gianluca Pollastri; bioRxiv 289033; doi: https://doi.org/10.1101/289033.

Protein Structure Annotations; Essentials of Bioinformatics, Volume I. Springer Nature
Mirko Torrisi and Gianluca Pollastri; doi: https://doi.org/10.1007/978-3-030-02634-9_10.

Setup

$ git clone https://github.com/mircare/Porter5/ --depth 1 && rm -rf Porter5/.git

Requirements

  1. Python3 (https://www.python.org/downloads/);
  2. NumPy (https://www.scipy.org/scipylib/download.html);
  3. HHblits (https://github.com/soedinglab/hh-suite/);
  4. uniprot20 (http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/old-releases/uniprot20_2016_02.tgz).

Optionally (for more accurate predictions):

  1. PSI-BLAST (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/);
  2. UniRef90 (ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz).

How to run Porter 5

# For fast and accurate predictions (exploiting HHblits only)
$ python3 Porter5/Porter5.py -i Porter5/example/2FLGA.fasta --cpu 4 --fast

# For very accurate predictions (exploiting both HHblits and PSI-BLAST)
$ python3 Porter5/Porter5.py -i Porter5/example/2FLGA.fasta --cpu 4

How to run Porter 5 on multiple sequences

# To split a FASTA file with multiple sequences (Optional)
$ python3 Porter5/split_fasta.py many_sequences.fasta

# To predict all the fasta files in a given directory (Fastas)
$ python3 Porter5/multiple_fasta.py -i Fastas/ --cpu 4 --fast

# To run multiple predictions in parallel (using a total of 8 cores)
$ python3 Porter5/multiple_fasta.py -i Fastas/ --cpu 4 --parallel 2 --fast

Use the docker image

# Set-up docker image
$ docker pull mircare/porter5

# adjust the PATHs to databases and query sequences (stored locally)
$ docker run --name porter5 -v /**PATH_to_uniprot20_2016_02**:/uniprot20 \
-v /**PATH_to_UniRef90**:/uniref90 -v /**PATH_to_fasta**/:Porter5/query \
--cap-add IPC_LOCK mircare/porter5 sleep infinity &

# How to run a prediction
$ docker exec porter5 python3 Porter5.py -i query/2FLGA.fasta --cpu 5 --fast

Performances in 3 states on large independent test set

Method Q3 per AA SOV'99 per AA Q3 per protein SOV'99 per protein
Porter 5 83.81% 80.41% 84.32% 81.05%
SPIDER 3 83.15% 79.43% 83.42% 79.79%
Porter 5 HHblits only 83.06% 79.49% 83.68% 80.26%
SSpro 5.1 with templates 82.58% 78.54% 83.94% 80.29%
PSIPRED 4.01 81.88% 77.36% 82.48% 78.22%
RaptorX-Property 81.86% 78.08% 82.57% 78.99%
Porter 4 81.66% 78.05% 82.29% 78.61%
SSpro 5.1 ab initio 81.17% 76.87% 81.10% 76.92%
DeepCNF 81.04% 76.74% 81.16% 76.99%

Calculated with http://dna.cs.miami.edu/SOV/.

Performances in 8 states on large independent test set in

Method Q8 per AA SOV8'99 per AA Q8 per protein SOV8'99 per protein
Porter 5 73.02% 69.91% 73.92% 70.76%
SSpro 5.1 with templates 71.91% 68.68% 74.46% 71.74%
Porter 5 HHblits only 71.8% 68.87% 72.83% 69.79%
RaptorX-Property 70.74% 67.59% 71.78% 68.36%
DeepCNF 69.76% 66.42% 70.14% 66.44%
SSpro 5.1 ab initio 68.85% 65.33% 69.27% 65.97%

Calculated with http://dna.cs.miami.edu/SOV/.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Email us at gianluca[dot]pollastri[at]ucd[dot]ie if you wish to use it for purposes not permitted by the CC BY-NC-SA 4.0.

Creative Commons License

You can’t perform that action at this time.