
A Simple Alpha(Go) Zero Tutorial

29 December 2017

This tutorial walks through a synchronous single-thread single-GPU (read malnourished) game-agnostic
implementation of the recent AlphaGo Zero paper by DeepMind. It's a beautiful piece of work that trains an agent
for the game of Go through pure self-play without any human knowledge except the rules of the game. The
methods are fairly simple compared to previous papers by DeepMind, and AlphaGo Zero ends up beating AlphaGo
(trained using data from expert games and beat the best human Go players) convincingly. Recently, DeepMind
published a preprint of Alpha Zero on arXiv that extends AlphaGo Zero methods to Chess and Shogi.

The aim of this post is to distil out the key ideas from the AlphaGo Zero paper and understand them concretely
through code. It assumes basic familiarity with machine learning and reinforcement learning concepts, and
should be accessible if you understand neural network basics and Monte Carlo Tree Search. Before starting out
(or after finishing this tutorial), I would recommend reading the original paper. It's well-written, very readable and
has beautiful illustrations! AlphaGo Zero is trained by self-play reinforcement learning. It combines a neural
network and Monte Carlo Tree Search in an elegant policy iteration framework to achieve stable learning. But
that's just words- let's dive into the details straightaway.

The Neural Network

Unsurprisingly, there's a neural network at the core of things. The neural network is parameterised by and
takes as input the state of the board. It has two outputs: a continuous value of the board state
from the perspective of the current player, and a policy that is a probability vector over all possible actions.

When training the network, at the end of each game of self-play, the neural network is provided training
examples of the form . is an estimate of the policy from state (we'll get to how is arrived at in
the next section), and is the final outcome of the game from the perspective of the player at (+1
if the player wins, -1 if the player loses). The neural network is then trained to minimise the following loss
function (excluding regularisation terms):

The underlying idea is that over time, the network will learn what states eventually lead to wins (or losses). In
addition, learning the policy would give a good estimate of what the best action is from a given state. The neural
network architecture in general would depend on the game. Most board games such as Go can use a multi-layer
CNN architecture. In the paper by DeepMind, they use 20 residual blocks, each with 2 convolutional layers. I was
able to get a 4-layer CNN network followed by a few feedforward layers to work for 6x6 Othello.

Monte Carlo Tree Search for Policy Improvement

Given a state , the neural network provides an estimate of the policy . During the training phase, we wish to
improve these estimates. This is accomplished using a Monte Carlo Tree Search (MCTS). In the search tree, each
node represents a board configuration. A directed edge exists between two nodes if a valid action can
cause state transition from state to . Starting with an empty search tree, we expand the search tree one node
(state) at a time. When a new node is encountered, instead of performing a rollout, the value of the new node is
obtained from the neural network itself. This value is propagated up the search path. Let's sketch this out in more
detail.

For the tree search, we maintain the following:

fθ θ

s vθ(s) ∈ [−1, 1]

→pθ(s)

(st, →πt, zt) →πt st →πt

zt ∈ {−1, 1} st

l = ∑
t

(vθ(st) − zt)
2 − →πt ⋅ log(→pθ(st))

s →pθ

i → j

i j

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://arxiv.org/abs/1712.01815
http://www.neuralnetworksanddeeplearning.com/
http://mcts.ai/about/index.html
https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
http://mcts.ai/about/index.html

view raw

: the expected reward for taking action from state , i.e. the Q values
: the number of times we took action from state across simulations

: the initial estimate of taking an action from the state according to the policy returned
by the current neural network.

From these, we can calculate , the upper confidence bound on the Q-values as

Here is a hyperparameter that controls the degree of exploration. To use MCTS to improve the initial policy
returned by the current neural network, we initialise our empty search tree with as the root. A single simulation
proceeds as follows. We compute the action that maximises the upper confidence bound . If the next
state (obtained by playing action on state) exists in our tree, we recursively call the search on . If it does
not exist, we add the new state to our tree and initialise and the value from
the neural network, and initialise and to 0 for all . Instead of performing a rollout, we then
propagate up along the path seen in the current simulation and update all values. On the other
hand, if we encounter a terminal state, we propagate the actual reward (+1 if player wins, else -1).

After a few simulations, the values at the root provide a better approximation for the policy. The
improved stochastic policy is simply the normalised counts . During self-play, we
perform MCTS and pick a move by sampling a move from the improved policy . Below is a high-level
implementation of one simulation of the search algorithm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

mcts.py hosted with ❤ by GitHub

Note that we return the negative value of the state. This is because alternate levels in the search tree are from
the perspective of different players. Since , is the value of the current board from the perspective
of the other player.

Policy Iteration through Self-Play

Q(s, a) a s

N(s, a) a s

P(s, ⋅) = →pθ(s) s

U(s, a)

U(s, a) = Q(s, a) + cpuct ⋅ P(s, a) ⋅
√ΣbN(s, b)

1 + N(s, a)

cpuct

s

a U(s, a)

s′ a s s′

P(s′, ⋅) = →pθ(s′) v(s′) = vθ(s′)

Q(s′, a) N(s′, a) a

v(s′) Q(s, a)

N(s, a)

→π(s) N(s, ⋅)/∑
b
(N(s, b))

→π(s)

def search(s, game, nnet):

 if game.gameEnded(s): return -game.gameReward(s)

 if s not in visited:

 visited.add(s)

 P[s], v = nnet.predict(s)

 return -v

 max_u, best_a = -float("inf"), -1

 for a in game.getValidActions(s):

 u = Q[s][a] + c_puct*P[s][a]*sqrt(sum(N[s]))/(1+N[s][a])

 if u>max_u:

 max_u = u

 best_a = a

 a = best_a

 sp = game.nextState(s, a)

 v = search(sp, game, nnet)

 Q[s][a] = (N[s][a]*Q[s][a] + v)/(N[s][a]+1)

 N[s][a] += 1

 return -v

v ∈ [−1, 1] −v

https://gist.github.com/suragnair/3bd7c64fb4b838c4e21d0d490308f621/raw/7dc25a98a5dae39b0650b5e13bab7dc692703c7a/mcts.py
https://gist.github.com/suragnair/3bd7c64fb4b838c4e21d0d490308f621#file-mcts-py
https://github.com/

view raw

Believe it or not, we now have all elements required to train our unsupervised game playing agent! Learning
through self-play is essentially a policy iteration algorithm- we play games and compute Q-values using our
current policy (the neural network in this case), and then update our policy using the computed statistics.

Here is the complete training algorithm. We initialise our neural network with random weights, thus starting with
a random policy and value network. In each iteration of our algorithm, we play a number of games of self-play. In
each turn of a game, we perform a fixed number of MCTS simulations starting from the current state . We pick
a move by sampling from the improved policy . This gives us a training example . The reward is
filled in at the end of the game: +1 if the current player eventually wins the game, else -1. The search tree is
preserved during a game.

At the end of the iteration, the neural network is trained with the obtained training examples. The old and the
new networks are pit against each other. If the new network wins more than a set threshold fraction of games
(55% in the DeepMind paper), the network is updated to the new network. Otherwise, we conduct another
iteration to augment the training examples.

And that's it! Somewhat magically, the network improves almost every iteration and learns to play the game
better. The high-level code for the complete training algorithm is provided below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

politer-selfplay.py hosted with ❤ by GitHub

Experiments with Othello

We trained an agent for the game of Othello for a 6x6 board on a single GPU. Each iteration consisted of 100
episodes of self-play and each MCTS used 25 simulations. Note that this is orders of magnitude smaller than the
computation used in the AlphaGo paper (25000 episodes per iteration, 1600 simulations per turn). The model
took around 3 days (80 iterations) for training to saturate on an NVIDIA Tesla K80 GPU. We evaluated the model

st

→πt (st, →πt, _) _

def policyIterSP(game):

 nnet = initNNet() # initialise random neural network

 examples = []

 for i in range(numIters):

 for e in range(numEps):

 examples += executeEpisode(game, nnet) # collect examples from this game

 new_nnet = trainNNet(examples)

 frac_win = pit(new_nnet, nnet) # compare new net with previous net

 if frac_win > threshold:

 nnet = new_nnet # replace with new net

 return nnet

def executeEpisode(game, nnet):

 examples = []

 s = game.startState()

 mcts = MCTS() # initialise search tree

 while True:

 for _ in range(numMCTSSims):

 mcts.search(s, game, nnet)

 examples.append([s, mcts.pi(s), None]) # rewards can not be determined yet

 a = random.choice(len(mcts.pi(s)), p=mcts.pi(s)) # sample action from improved policy

 s = game.nextState(s,a)

 if game.gameEnded(s):

 examples = assignRewards(examples, game.gameReward(s))

 return examples

https://gist.github.com/suragnair/fa6e1935d3b6cf650ac039bf04bc9b13/raw/d2022ac996a0b8164a1bde579c908aa4f1450a60/politer-selfplay.py
https://gist.github.com/suragnair/fa6e1935d3b6cf650ac039bf04bc9b13#file-politer-selfplay-py
https://github.com/

against random and greedy baselines, as well as a minimax agent and humans. It performed pretty well and even
picked up some common strategies used by humans.

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

1The agent (Black) learns to capture walls and corners in the early game

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

6

5

4

3

2

1

a b c d e f

1The agent (Black) learns to force passes in the late game

A Note on Details

This post provides an overview of the key ideas in the AlphaGo Zero paper and excludes finer details for the sake
of clarity. The AlphaGo paper describes some additional details in their implementation. Some of them are:

History of State: Since Go is not completely observable from the current state of the board, the neural
network also takes as input the boards from the last 7 time steps. This is a feature of the game itself, and
other games such as Chess and Othello would only require the current board as input.
Temperature: The stochastic policy obtained after performing the MCTS uses exponentiated counts, i.e.

, where is the temperature and controls the degree of exploration.
AlphaGo Zero uses (simply the normalised counts) for the first 30 moves of each game, and then
sets it to an infinitesimal value (picking the move with the maximum counts).
Symmetry: The Go board is invariant to rotation and reflection. When MCTS reaches a leaf node, the
current neural network is called with a reflected or rotated version of the board to exploit this symmetry. In
general, this can be extended to other games using symmetries that hold for the game.
Asynchronous MCTS: AlphaGo Zero uses an asynchronous variant of MCTS that performs the simulations
in parallel. The neural network queries are batched and each search thread is locked until evaluation
completes. In addition, the 3 main processes: self-play, neural network training and comparison between
old and new networks are all done in parallel.
Compute Power: Each neural network was trained using 64 GPUs and 19 CPUs. The compute power used
for executing the self-play in unclear from the paper.
Neural Network Design: The authors tried a variety of architectures including networks with and without
residual networks, and with and without parameter sharing for the value and policy networks. Their best
architecture used residual networks and shared the parameters for the value and policy networks.

This code presented in this tutorial provides a high-level overview of the algorithms involved. A complete game
and framework independent implementation can be found in this GitHub repo. It contains an example
implementation for the game of Othello in PyTorch, Keras and TensorFlow.

Feel free to leave questions/comments/suggestions below :).

→π(s) = N(s, ⋅)1/τ /∑b(N(s, b)1/τ) τ

τ = 1

https://github.com/suragnair/alpha-zero-general
https://disqus.com/home/forums/web-stanford-edu-surag/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy

110 Comments Surag's Posts 🔒 Disqus' Privacy Policy Login1

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

 Join the discussion…

?

Paulo Martel • 2 years ago

• Reply •

Dear Surag,
first of all thank you for the excellent article and code, really useful to understand the workings of AlpahZero.
However, I'm confused about one thing: since there is no stochasticity in MCTS when pitting two networks
againsts each other, shouldn't each game be exactly like any other? (or better, only two games depending on
which net is playing first). Every time I run "pit.py" with two nets I get the same N games... but these games are
all different, how is that happening ?...

 33△ ▽ 2

Surag Nair • 2 years ago • edited

• Reply •

Mod > Paulo Martel

Thanks Paulo! The original paper mentions that Dirichlet noise is added to prior probabilities for
additional exploration in the self-play stage, but at least from the paper it looks like the noise was not
added in the evaluation stage. If that is the case, then there is no stochasticity when pitting the
networks.

In my implementation, I do not clear the MCTS trees after each game in the pit stage. This explains why
you are seeing different games. This probably works for 6x6 Othello because we're using ~50
simulations per step, and so additional simulations may change the policy.
△ ▽

Gergely Papp • 2 years ago

• Reply •

> Paulo Martel

I think in the original algorithm it was achieved by adding dirichlet noise to the probabilities at the root
(and it was not removed at self-play). On the other hand, I see no noise added in this code.
△ ▽

Rolf Engstrand • 2 years ago

• Reply •

Very good article! One little criticism though: It states that one (single) board state is sufficient for Chess. But in
a few minor cases, knowledge of earlier board states are needed for interpreting the rules. I am thinking of en
passant (in which a pawn can be captured on a square where it currently is not) and castling (which can be
performed only if none of the two pieces has moved before.
 3△ ▽

Sharan G • 2 months ago • edited

• Reply •

> Rolf Engstrand

We simply allow/disallow those moves, as per the history. Let the network provide outputs for such
moves, but those wont be considered during move selection if invalid.
△ ▽

Fernando Mir • 4 months ago

• Reply •

"for a in range(game.getValidActions(s)):" seems like a bug. Why use range here? The value "a" is already the
action index.
 1△ ▽

Surag Nair • 3 months ago

• Reply •

Mod > Fernando Mir

Corrected, thanks!
 1△ ▽

 Recommend 14

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/home/forums/web-stanford-edu-surag/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://disqus.com/by/paulomartel/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3770707300
http://disq.us/url?url=http%3A%2F%2Fpit.py%3Ans0BN1LMpJuDxDU3_xWSrH8d0Z0&cuid=5363127
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3776065689
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3770707300
https://disqus.com/by/disqus_X8nGdaKsiu/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3775527141
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3770707300
https://disqus.com/by/rolfengstrand/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3880587044
https://disqus.com/by/disqus_uZGFSfs6hf/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4737535896
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3880587044
https://disqus.com/by/fernando_mir/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4651378553
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4701673318
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4651378553
https://disqus.com/by/disqus_s1nMBlEYwJ/
https://disqus.com/by/paulomartel/
https://disqus.com/by/surag_nair/
https://disqus.com/by/disqus_X8nGdaKsiu/
https://disqus.com/by/rolfengstrand/
https://disqus.com/by/disqus_uZGFSfs6hf/
https://disqus.com/by/fernando_mir/
https://disqus.com/by/surag_nair/
https://disqus.com/by/disqus_s1nMBlEYwJ/

Vaibhav Gupta • 7 months ago

• Reply •

This is the most beautifully written blog I found on this subject. Thanks so much
 1△ ▽

Surag Nair • 3 months ago

• Reply •

Mod > Vaibhav Gupta

Thank you :)
△ ▽

unhandyandy • 2 years ago

• Reply •

I'm new to neural nets. My understanding is they require very precise specification of dimensions at all levels.
But most games, including Chess, Go, and Othello, have different numbers of possible moves in different
positions. So how do you get a NN to return a policy vector whose length depends on the input? Or does it just
return a policy for all conceivable moves, which is then restricted to those actually playable?
 1△ ▽

Surag Nair • 2 years ago

• Reply •

Mod > unhandyandy

We design a neural neural network for each game, that at the very least differs at the input and output
dimensions :).
△ ▽

unhandyandy • 2 years ago • edited

• Reply •

> Surag Nair

But my point is that even for a specific game, the number of possible moves varies from position
to position.
△ ▽

Willahelm Bhavna • 2 years ago

• Reply •

> unhandyandy

You are right the number of outputs of a neural network is fixed. Therefore when you have
a policy network you have an output for all possible moves and simply discard the illegal
ones. The other possibility is a value network which gives a score to an entire board
position and then you iterate for all possible moves and choose the one that produces the
position with the highest score. AlphaGo Zero uses a combination of both methods.
 1△ ▽

unhandyandy • 2 years ago

• Reply •

> Willahelm Bhavna

So when training a net to play chess the policy vector must have thousands of entries -
there are 896 conceivable rook moves alone - even more than in Go!
△ ▽

Willahelm Bhavna • 2 years ago

• Reply •

> unhandyandy

I checked the AlphaZero chess paper and it says the policy representation contains 4,672
possible moves. It encodes as a combination of starting square and move so most moves
are just a subset of the possible moves for a queen.
https://arxiv.org/pdf/1712....
 1△ ▽

unhandyandy • 2 years ago

• Reply •

> Willahelm Bhavna

Interesting - it seems extremely inefficient, remarkable it worked so well.
△ ▽

Totoka • 4 months ago

• Reply •

> unhandyandy

You can think of it as this: when a chess master looks at the board, they can immediately
disregard 99% of the possible moves as "obviously wrong" (against the rules, supremely
damaging, etc). Similarly, once AlphaZero developed the same kind of intuition, the
simulations no longer have to visit all those thousands potential moves, only the
promising few.
△ ▽

>

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/disqus_s1nMBlEYwJ/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4557801415
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4701673211
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4557801415
https://disqus.com/by/unhandyandy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3946381787
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3948704455
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3946381787
https://disqus.com/by/unhandyandy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3948711314
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3948704455
https://disqus.com/by/willahelmbhavna/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3950812736
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3948711314
https://disqus.com/by/unhandyandy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3951111817
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3950812736
https://disqus.com/by/willahelmbhavna/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3951162895
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3951111817
https://disq.us/url?url=https%3A%2F%2Farxiv.org%2Fpdf%2F1712.01815.pdf%3AGtz-c4cgVdG2BlGWK5WraQ62i7w&cuid=5363127
https://disqus.com/by/unhandyandy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3951166108
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3951162895
https://disqus.com/by/kimochiyone/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4672994300
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3951166108
https://disqus.com/by/unhandyandy/
https://disqus.com/by/disqus_s1nMBlEYwJ/
https://disqus.com/by/surag_nair/
https://disqus.com/by/unhandyandy/
https://disqus.com/by/surag_nair/
https://disqus.com/by/unhandyandy/
https://disqus.com/by/willahelmbhavna/
https://disqus.com/by/unhandyandy/
https://disqus.com/by/willahelmbhavna/
https://disqus.com/by/unhandyandy/
https://disqus.com/by/kimochiyone/
https://disqus.com/by/unhandyandy/

unhandyandy • 4 months ago

• Reply •

> Totoka

Well, I'm guessing that in the future much more efficient algorithms will be found.
△ ▽

Christopher Jernigan • 2 years ago

• Reply •

Dumb question, but what is the benefit of having both a policy and value network? Can’t you estimate the policy
based off of the values (which should be closely proportional to the visit counts of each node)?
 1△ ▽

Surag Nair • 2 years ago • edited

• Reply •

Mod > Christopher Jernigan

That's a pretty good question, actually. My hunch is that the policy network allows you to prune certain
actions faster when the action space is huge. If you look at the formula for the upper confidence bound,
it includes a P(s,a) term which acts as a prior for the exploration component. This presumably cuts down
the action space at each state significantly by ruling out poor actions.
 2△ ▽

Lucas Simon • 2 years ago • edited

• Reply •

Why do you take the update

on line 19 of the first code snippet?

⛺

 1△ ▽

tbischel • 2 years ago

• Reply •

> Lucas Simon

Q(s,a) is the average valuation (v) of all searches traversing node s via action a, and N(s,a) is the
number of searches traversing node s via action a. This works out to an inline update of the average
valuation. The paper actually tracks another parameter W(s,a) which is the sum of all valuations through
s -> a... so that updating the average value is a slightly less expensive calculation.
 1△ ▽

Piotr • 2 years ago • edited

• Reply •

Hi!

Thank you guys for clear explanation and nice paper, (0.) have you published it somewhere? :) My friends and I
try to reproduce Alpha(Go) Zero for Othello and Connect4 on our own to practice and I have couple of
questions, maybe someone could help us:
1. How did you find NN architecture and hyper-parameters? Some kind of automated hyper-parameter tuning
or you found it by hand? Especially number of episodes you train NN after each self-play, it seems really
arbitrary and if chosen to low the NN would never train enough to win a tournament, but set it to high and it will
overfit.
2. Did you try to use validation set and then stop training when val_loss doesn't improve anymore? We did it,
but I don't know if it makes sens, for now it's disabled (for root causing problem from question 3.). Do you have
an opinion on that one?
3. We have a problem with our implementation, it seems unstable in a sens that models trained more can (and
very often do) loose when pitting with earlier ones. Have you encountered similar problems? NN seems to
forget what it learned after more training and even beside it still improves and beats current best it can be
worse then some models before.
We currently use this kind of NN:
conv 5x5x256/2 -> 3x residual block (conv 3x3x256) with bottleneck (128 channels) -> avgpool -> dense (512
neutrons) -> heads value and pi

I really appreciate any help and discussion!
 1△ ▽ 1

Li, Wenhan • 17 days ago

another question i thought that random choice serves to pick out a random sample why using it in this case to

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/unhandyandy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4673386020
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4672994300
https://disqus.com/by/christopherjernigan/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3736816364
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3738076979
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3736816364
https://disqus.com/by/disqus_hun3OFLx3h/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3690305191
https://disqus.com/by/tbischel/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3690896006
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3690305191
https://disqus.com/by/disqus_nkDhWGsJBy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3980736587
https://disqus.com/by/li_wenhan/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4790562227
https://disqus.com/by/unhandyandy/
https://disqus.com/by/christopherjernigan/
https://disqus.com/by/surag_nair/
https://disqus.com/by/disqus_hun3OFLx3h/
https://disqus.com/by/tbischel/
https://disqus.com/by/disqus_nkDhWGsJBy/
https://disqus.com/by/li_wenhan/

• Reply •

another question, i thought that random.choice serves to pick out a random sample, why using it in this case to
determine action?
△ ▽

Li, Wenhan • 17 days ago

• Reply •

thanks a lot for the explanation and code, but I am confused a little: 1. what if most games in generated in an
iteration are identical? would that be very inefficient? 2.how exactly should the neural net be trained? how many
epochs and batch size?
△ ▽

Li, Wenhan • 17 days ago

• Reply •

Thanks a lot for the explanation and code, but I am a little confused: what if all games in an iteration are played
in an exact same way?
△ ▽

Pilou45 • 2 months ago

• Reply •

The best blog written on this subject so far thank you !
I was just wondering what kind of small changes would you make if the player can execute multiple actions
(from 1 to 5 different actions) during one single turn ? (because in board game you take an action and then its
the opponent turn) I guess there would be a change in the way of treating the returned values for example
△ ▽

Amir Hefetz • 3 months ago

• Reply •

Hi, Thanks a lot for that post!

I have a question though:
The MCTS node Q score is basically an AVERAGE of all subtree nodes V score (probability of winning in this
state)
This is in contrast to minimax algorithms that calculate min\max of subtrees.
in my personal project - i encountered cases where after move X, the player can immediately win, with V score
of 99%, but in the alternative subtrees ,it loses, its like getting 1 chance to checkmate and win but all alternative
scenarios are a loss,
this causes MCTS to rule out this move because of low score, although with correct play it wins right away in
the next move.
In go it can occur the same - the next move can be capturing a group to win, but all other scenarios are a loss
because it lives. after checking all subtrees, the average is very low and will suffer because of lower N visits - 
and therefore won't be selected?
What am i missing here?
Thanks!!
△ ▽

Surag Nair • 3 months ago

• Reply •

Mod > Amir Hefetz

This should not happen. With sufficient sampling, the MCTS will eventually visit the most promising
path, and the average should be sufficiently positive. Do have a closer look at the algorithm!
△ ▽

Amir Hefetz • 3 months ago • edited> Surag Nair

Hi @Surag Nair ,
I checked it really carefully, in my tic tac toe implementation - the next move can be a win, but
ALL other optional subtrees lead to a lose\draw, the averaging between 20 subtrees that only 1
of them has a high V value, gets very low.

I solved it eventually.
I saw in the alphazero documentation that they use domain knowledge of game termination. so i
added a new rule in my MCTS that is using "domain knowledge" and help the model learn (and
eventually solved it perfectly):
- If any of actions within MCTS search is found, that terminated the game with a win - pick it
automatically regardless of the Q\V scores. this propogates only the high V value when a win is
encountered, and stops searching within subtrees that directly "ignore" playing a winning move.

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/li_wenhan/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4790557775
http://disq.us/url?url=http%3A%2F%2F2.how%3A1jtgPRZbCKPZ40dtRDoFbIxq7zk&cuid=5363127
https://disqus.com/by/li_wenhan/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4790174729
https://disqus.com/by/pilou45/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4749797488
https://disqus.com/by/amirhefetz/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4691468698
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4701676367
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4691468698
https://disqus.com/by/amirhefetz/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4705786257
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4701676367
https://disqus.com/by/surag_nair/
https://disqus.com/by/li_wenhan/
https://disqus.com/by/li_wenhan/
https://disqus.com/by/li_wenhan/
https://disqus.com/by/pilou45/
https://disqus.com/by/amirhefetz/
https://disqus.com/by/surag_nair/
https://disqus.com/by/amirhefetz/

• Reply •

I hope this is clear.
Thanks!
△ ▽

Surag Nair • 9 days ago • edited

• Reply •

Mod > Amir Hefetz

This bug may explain what you were seeing (if you were using alpha-zero-general).
△ ▽

Yazeed Mohi Eldeen • 4 months ago

• Reply •

Thank you for posting this :)
Very good explanation, Though you could've made it a bit more beginner-friendly ;)
△ ▽

Surag Nair • 3 months ago • edited

• Reply •

Mod > Yazeed Mohi Eldeen

I apologise for that, it is hard to get the balance right.
△ ▽

Peter Geiger • 6 months ago

• Reply •

@Surag Nair -- Your codebase is by far the easiest to extend that I've played with. I am modeling Hive - a
game with no board. The pieces have relationships to one another and I modeled this through an x,y,z vector
system. -- There are 22 pieces x 3 = 66 doubles in the representation for the board state. I haven't played with
NNs in a LONG time, so I'm catching back up. I was hoping you might have some suggestions on how to
modify your original NN definition for a representation like this. Appreciate any advice.
△ ▽

BlackRoll • 7 months ago

• Reply •

Dear Surag,
I am quite late to the party. Nevertheless, I hope you still get notified about this:
I am a student and trying to implement this on my own - your post has helped me quite a lot, thanks for that.
Here is my question:
You avoided the canonical form in this post, but this is the last part I am struggling with.

I want to use this for Connect4. To make it time-efficient, I implemented my Connect4 as Bitboard.
My Connect4Board Object has an array of 2 boards, which each store the pieces of one player.

I am unsure about the input dim for the NN and how to tell the NN to differentiate between the two players,
since I see so many different approaches in doing so.

The approaches I consider but cannot decide on and would really appreciate guidance:
1) I just input the dimension 7x6 (width x height) and each turn, only pass the pieces of 1 player to the neuronal
net
2) I increase the input dimension to 7x6x2, so the net has always information on all pieces (first 42 (7x6) are
player one pieces, last 42 are player two pieces)
3) I choose 7x6 + 2, 2 signaling which player's turn it is currently.

The second one seems the one I would take, since signaling which player's turn it is is not really necessary in
my opinion. Every state is unique and automatically tells u whose players turn it is by just counting the pieces.

I really hope this reaches you and thank you so much for your time.
△ ▽

James • 8 months ago

Hi,

I'm implementing a custom game where is similar to chess, but you attack the piece one square over, instead of
moving on top of the enemy piece.
I'm running into a MCTS max recursion, i believe due to not being able to find a leaf node, maybe because
every state with the current board is at one point played already, and the game hasn't ended yet. So that s is
never not-in self.Ps ...

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4800080852
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4705786257
https://disq.us/url?url=https%3A%2F%2Fgithub.com%2Fsuragnair%2Falpha-zero-general%2Fissues%2F156%3AY1orABSdtokHFzR0VbhQfVTizJM&cuid=5363127
https://disqus.com/by/yazeedmohieldeen/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4669729288
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4701673422
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4669729288
https://disqus.com/by/disqus_cUNU5xdu6t/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4577124358
https://disqus.com/by/surag_nair/
https://disqus.com/by/Bl4ckRoll/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4551398078
https://disqus.com/by/disqus_nDi6PKDz13/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4507441483
https://disqus.com/by/surag_nair/
https://disqus.com/by/yazeedmohieldeen/
https://disqus.com/by/surag_nair/
https://disqus.com/by/disqus_cUNU5xdu6t/
https://disqus.com/by/Bl4ckRoll/
https://disqus.com/by/disqus_nDi6PKDz13/

• Reply •

e e ot se s

Is there a way to either set max-tree depth? if so would we just do another self.Ps[s], v =
self.nnet.predict(canonicalBoard) and return -v among condition?

or can we set game end after max-tree depth?

How would chess handle a similar situation where each side only has a king left and the game can never end
due to running forever?

ps. I assume we can't just limit the game moves and call it game end after 1000 moves, since the board doesn't
represent this in a np.array form?

Would this still train the agent in a meaningful way?
△ ▽

Surag Nair • 8 months ago

• Reply •

Mod > James

Hi James, could you please post this as a GitHub issue. Will look into it there. Also it would be great if
you could explain your chess variant in a bit more detail in the post.
△ ▽

James • 8 months ago

• Reply •

> Surag Nair

will do, thanks :)
△ ▽

James • 10 months ago

• Reply •

Hi, Would having a non-symmetry board mess with the training?
△ ▽

Surag Nair • 9 months ago

• Reply •

Mod > James

No, you shouldn’t have any difficulties.
△ ▽

James • 7 months ago

• Reply •

> Surag Nair

update: just to prove it still works on non-sym boards, disabled random locations on the board,
and it still wins most of the games.
△ ▽

Jan Konopka • a year ago

• Reply •

I tried to recreate this from scratch, but sadly the random initial neural network assigns probability 0 to some
moves and thus never explores them. (Unless we get lucky with a backpropagation which rarely happens.) So
my net is simply beaten by choosing the move it never considered.
△ ▽

Jan Konopka • a year ago

• Reply •

> Jan Konopka

I looked at the AlphaZero paper and it said

In AlphaZero we reuse the same hyper-parameters for all games without game-specific tuning. The
sole exception is the noise that is added to the prior policy to ensure exploration (29); this is scaled in
proportion to the typical number of legal moves for that game type.

So I think I just have to add a constant 5% to the probability distribution function or so
△ ▽

Jan Konopka • a year ago> Jan Konopka

I found a different version of the paper with more info:

without game-specific tuning. The only exceptions are the exploration noise and the learning
rate schedule

Dirichlet noise Dir(α) was added to the prior probabilities in the root node; this was scaled in

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4507573015
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4507441483
https://disqus.com/by/disqus_nDi6PKDz13/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4508237384
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4507573015
https://disqus.com/by/disqus_nDi6PKDz13/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4448484570
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4464246089
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4448484570
https://disqus.com/by/disqus_nDi6PKDz13/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4549240304
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4464246089
https://disqus.com/by/disqus_JXxaRWix7d/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4382800710
https://disqus.com/by/disqus_JXxaRWix7d/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4382839432
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4382800710
https://disqus.com/by/disqus_JXxaRWix7d/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4385187475
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4382839432
https://disqus.com/by/surag_nair/
https://disqus.com/by/disqus_nDi6PKDz13/
https://disqus.com/by/disqus_nDi6PKDz13/
https://disqus.com/by/surag_nair/
https://disqus.com/by/disqus_nDi6PKDz13/
https://disqus.com/by/disqus_JXxaRWix7d/
https://disqus.com/by/disqus_JXxaRWix7d/
https://disqus.com/by/disqus_JXxaRWix7d/

 Surag Nair

Load more comments

• Reply •

Dirichlet noise Dir(α) was added to the prior probabilities in the root node; this was scaled in
inverse proportion to the approximate number of legal moves in a typical position, to a value of
α = {0.3, 0.15, 0.03} for chess, shogi and Go respectively.
△ ▽

Addy R • a year ago

• Reply •

Hi Surag, Thanks for the tutorial! I have one lingering question/confusion. During the policy iteration, it is stated
that the neural net is used to predict v(s) at a search leaf node instead of doing a traditional MCTS rollout, does
this mean you restrict MCTS to only have selection phase, expansion phase and backup phase? My question is
how does MCTS reach the end game with out doing rollout?
△ ▽

Surag Nair • a year ago

• Reply •

Mod > Addy R

Hi Addy- yes that is correct. If the search leaf node is indeed an end game node, it is assigned the true
value. In other cases, the neural network is used to predict. So in that sense, MCTS is indeed restricted
to the three phases you described.
△ ▽

Addy R • a year ago • edited

• Reply •

> Surag Nair

Thanks Surag!
△ ▽

Fu Jun • 2 years ago

• Reply •

Thanks Surag, great work!
Is the MCTS still needed for playing (testing)? If the P and V network get well trained at last, a further MCTS
could help very less, right?
Hope reply, thanks again.
△ ▽

Surag Nair • a year ago

• Reply •

Mod > Fu Jun

I agree with your point, but it seems like using MCTS during testing will not adversely impact
performance. It would be great if you could try out both the versions and report the difference!
△ ▽

unhandyandy • 2 years ago

• Reply •

From which paper did you get your formula for U(s,a)? I couldn't find it in the two papers linked in the first
paragraph.
△ ▽

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Do Not Sell My Data⚠

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

http://web.stanford.edu/~surag/snair.pdf
https://github.com/suragnair/
https://www.quora.com/profile/Surag-Nair
http://instagram.com/surag.nair/
https://web.stanford.edu/~surag/
https://disqus.com/
https://disqus.com/by/adirenduchintala/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4114110539
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4169693666
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4114110539
https://disqus.com/by/adirenduchintala/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4185903146
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4169693666
https://disqus.com/by/fu_jun/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4062538472
https://disqus.com/by/surag_nair/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4169692643
https://web.stanford.edu/~surag/posts/alphazero.html#comment-4062538472
https://disqus.com/by/unhandyandy/
https://web.stanford.edu/~surag/posts/alphazero.html#comment-3989709858
https://publishers.disqus.com/engage?utm_source=web-stanford-edu-surag&utm_medium=Disqus-Footer
https://disqus.com/data-sharing-settings/
https://disqus.com/by/adirenduchintala/
https://disqus.com/by/surag_nair/
https://disqus.com/by/adirenduchintala/
https://disqus.com/by/fu_jun/
https://disqus.com/by/surag_nair/
https://disqus.com/by/unhandyandy/

