Summary of Ocean1-4_COM_POP2x Results

Xylar Asay-Davis

January 2, 2017

1 Model Details

- Model and version: Parallel Ocean Program v. 2x (POP2x)
- Repository: not publicly available.
- Vertical coordinate: z level with partial top and bottom cells.
- Horizontal mixing: harmonic (del2) along geopotentials.
- Vertical mixing: del2 with COM constant viscosity and diffusivity.
- Advection schemes: momentum: centered, tracers: flux limited Lax-Wendroff.
- Equation of state: linear with ISOMIP+ coefficients.
- Convection parameterization: enhanced vertical mixing (ISOMIP+ values of $\nu_{\text {unstab }}$ and $\kappa_{\text {unstab }}$)
- Melt parameterization: T_{w} and S_{w} are computed by averaging T and S with 20 m of the ice draft. u_{w} is averaged over 4 "horizontal" neighbors (at the ice-ocean interface) from the velocity to the tracer grid but is not averaged vertically.
- Modifications to Topography: Interpolated to 2-km grid with conservative interpolation scheme, smoothed with a Gaussian filter with half-width of 2 km . A minimum thickness of 2 grid cells (40 m) was maintained by deepening bathymetry near the grounding line. Partial top cells thinner than 5 m are either thickened or removed. Ice draft and bathymetry are automatically adjusted to ensure required connectivity between neighboring cells (e.g.removing or horizontally expanding cells with no horizontal neighbors).
- Maintaining sea level: Using virtual salt fluxes, so sea-level change is negligible.
- Moving boundaries (Ocean3-4): Topography data was interpolated to monthly snapshots, calving criterion was applied. After updating topography, T and S were progressively extrapolated first horizontally, then vertically into new ocean cells. Barotropic transport was maintained by re-distributing barotropic velocity across the expanded or contracted water column. Velocities are initially zero in new ocean columns. T, S and vare simply zeroed in cells removed from the ocean.
- Deviations from COM: none.
- Parameter values:

$$
\begin{array}{rl}
\Gamma_{T} & 0.0465085 \\
\Gamma_{S} & 1.32881428 \times 10^{-3} \\
C_{D, \text { top }} & 2.5 \times 10^{-3}
\end{array}
$$

