How does a Quadrotor fly? A journey from physics, mathematics, control systems and computer science towards a "Controllable Flying Object"

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Keynote - L.A.P. 1 Course - Jan 10, 2014

Overview

- Why Multi-rotors?
- Structure and Physics of a Quadrotor
- From Analysis to Driving: How can I impose a movement to my quadrotor?
- The ideal world and the real world: Why we need Control Systems Theory!
- Rates and Angles:

Could I control the attitude?

What about Altitude or GPS control?

<回と < 回と < 回と -

크

Why Multi-rotors?

Corrado Santoro How does a Quadrotor fly?

≡ • ク へ (~

ヘロン 人間 とくほど 人間 とう

Flying Machines

- "To fly" has been one of the dreams of the humans
- But the story tells that building flying machines is not easy!
- A basic and common component: the wing
- Two kind of "flying machines" (excluding rockets and balloons):
 - Fixed wing, i.e. airplanes
 - Rotating wing, i.e. helicopters

Design and Implementation problems

Airplanes (fixed wing)

- Wing profile and shape
- Wing and stab size/area
- Wing load
- Position of the COG
- Motion is achieved by driving (mechanically) the mobile surfaces (aleirons, rudder, elevator)

Helicopters (rotating wing, VTOL)

- Size and structure of the rotor
- Mechanical system to control motion inclination
- Yaw balancing system for the rotor at tail
- Position of the COG
- Motion is achieved by (mechanically) changing the inclination of the rotor and the pitch of the rotor wings

- are mechanically simple: they have n motors and n propellers
- do not require complex mechanical parts to control the flight
- can fly and move only by changing motor speed
- are controlled only by a electronic-/computer-based system

Building them is simple!!

< 臣→ 臣

Structure and Physics of a Quadrotor

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��や

Structure of a Quadrotor (Mechanics)

- Four equal propellers generating four thrust forces
- Two possible configurations: "+" and "×"
- Propellers 1 and 3 rotates CW, 2 and 4 rotates CCW
- Required to compensate the *action/reaction effect* (Third Newton's Law)
- Propellers 1 and 3 have opposite pitch w.r.t. 2 and 4, so all thrusts have the same direction

Structure of a Quadrotor (Electronics)

Corrado Santoro How does a Quadrotor fly?

Forces and Rotation speeds

- $\omega_1, \omega_2, \omega_3, \omega_4$: rotation speeds of the propellers
- *T*₁, *T*₂, *T*₃, *T*₄: forces generated by the propellers
- $T_i \propto \omega_i^2$: on the basis of propeller shape, air density, etc.
- m: mass of the quadrotor
- mg: weight of the quadrotor

<回と < 回と < 回と -

*M*₁, *M*₂, *M*₃, *M*₄: moments generated by the forces
 *M*_i = *L* × *T*_i

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣へで

Hovering Condition (Equilibrium)

- **Q** Equilibrium of forces: $\sum_{i=1}^{4} T_i = -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- S Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- **Equilibrium of rotation speeds**: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) = 0$

Violating one (or more) of these conditions implies to impose a certain movement to the quadrotor

(ロ) (部) (E) (E) (E)

Reference Systems

There are two reference systems:

- The **inertial** reference systems, i.e. the Earth frame (x_E, y_E, z_E)
- The quadrotor reference system, i.e. the Body frame (x_B, y_B, z_B)

回 とう ほ とう ほ とう

Three angles (ϕ, θ, ψ) define the transformation between the two systems:

- **Roll**, ϕ : angle of rotation along axis $x_B || x_E$
- Pitch, θ : angle of rotation along axis $y_B || y_E$
- Yaw, ψ : angle of rotation along axis $z_B || z_E$

They are called Euler Angles

Angular Speeds

The derivative of (ϕ, θ, ψ) w.r.t. time are the **angular**/rotation speeds $(\dot{\phi}, \dot{\theta}, \dot{\psi})$ of the system:

- $\dot{\phi}$, Roll rate
- $\dot{\theta}$, Pitch rate
- $\dot{\psi}$, Yaw rate

<回> < E> < E> < E> = E

From Analysis to Driving: How can I impose a movement to my quadrotor?

Hovering Condition (Equilibrium)

- **Q** Equilibrium of forces: $\sum_{i=1}^{4} T_i = -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- S Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- **Equilibrium of rotation speeds**: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) = 0$

As a consequence:

•
$$\dot{\phi} = \mathbf{0}$$
 $\dot{\theta} = \mathbf{0}$ $\dot{\psi} = \mathbf{0}$

•
$$\phi = \mathbf{0}$$
 $\theta = \mathbf{0}$ $\psi = \mathbf{0}$

(ロ) (部) (E) (E) (E)

Going Up and Down

- **O** No equilibrium of forces: $\sum_{i=1}^{4} T_i \neq -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- S Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- **Equilibrium of rotation speeds**: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) = 0$

By increasing/decreasing the rotation speed of **all** the propellers we can:

• Go Up: $\sum_{i=1}^{4} T_i > -mg$ • Go Down: $\sum_{i=1}^{4} T_i < -mg$

Euler angles and rates remain 0

(日) (日) (日) (日) (日)

Yaw Rotation

- **Q** Equilibrium of forces: $\sum_{i=1}^{4} T_i = -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- S Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- **Or a constant of a speeds:** $(\omega_1 + \omega_3) (\omega_2 + \omega_4) \neq 0$

As a consequence:

 $\dot{\psi} = k_Y((\omega_1 + \omega_3) - (\omega_2 + \omega_4)) \qquad \psi = \int \dot{\psi} dt$

Roll Rotation

No equilibrium of moments: $\sum_{i=1}^{4} M_i \neq 0$... by unbalancing propeller speeds as:

$$(\omega_1 + \omega_4) - (\omega_2 + \omega_3) \neq 0$$

As a consequence:

- $\dot{\phi} = k_R((\omega_1 + \omega_4) (\omega_2 + \omega_3))$ $\phi = \int \dot{\phi} dt$
- No equilibrium of directions: $T_{1,2,3,4}$ not parallel to g

Roll Rotation and Translated Flight

Total thrust $T = \sum_{i=1}^{4} T_i$ is decomposed in:

- Lift Force: $T_L = T \cos \phi$
- **Drag Force**: $T_D = T \sin \phi$

Avoiding diving implies $T_L = T \cos \phi = -mg$ thus in translated flight we need more power w.r.t. hovering or yawing.

★ E → ★ E →

Pitch Rotation

No equilibrium of moments: $\sum_{i=1}^{4} M_i \neq 0$

... by unbalancing propeller speeds as:

$$(\omega_1 + \omega_2) - (\omega_3 + \omega_4) \neq 0$$

As a consequence:

- $\dot{\theta} = k_P((\omega_1 + \omega_2) (\omega_3 + \omega_4))$ $\theta = \int \dot{\theta} dt$
- Also in this case the total thrust is decomposed thus we need more power w.r.t. **hovering** or **yawing**.

Equations of Movement

We assume a common factor of proportionality *k* and $F = \sqrt{T}$ (we will see that such an assumption is not a problem!):

$$\dot{\phi} = k((\omega_1 + \omega_4) - (\omega_2 + \omega_3)) = k\omega_1 - k\omega_2 - k\omega_3 + k\omega_4
\dot{\theta} = k((\omega_1 + \omega_2) - (\omega_3 + \omega_4)) = k\omega_1 + k\omega_2 - k\omega_3 - k\omega_4
\dot{\psi} = k((\omega_1 + \omega_3) - (\omega_2 + \omega_4)) = k\omega_1 - k\omega_2 + k\omega_3 - k\omega_4
F = k((\omega_1 + \omega_2 + \omega_3 + \omega_4)) = k\omega_1 + k\omega_2 + k\omega_3 + k\omega_4$$

or, using matrices:

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ F \end{pmatrix} = \begin{pmatrix} k & -k & -k & k \\ k & k & -k & -k \\ k & -k & k & -k \\ k & k & k & k \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix}$$

<回と < 回と < 回と -

臣

Equations of Movement

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ F \end{pmatrix} = \begin{pmatrix} k & -k & -k & k \\ k & k & -k & -k \\ k & -k & k & -k \\ k & k & k & k \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix} = K \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix}$$

This equation gives the **angular velocities** of the quadrotor, given the speed of the **propellers**.

But if we want to **control** the quadrotor we must understand *how to set* ω_i in order to impose a certain rotation rate of axis in the body frame.

<回と < 回と < 回と -

Controlling Roll, Pitch and Yaw Rates, and Total Thrust

▶ ★ 프 ▶ ★ 프 ▶ · · 프

P

The ideal world and the real world: Why we need Control Systems Theory!

Corrado Santoro How does a Quadrotor fly?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Can we really set the rotation rate of propellers??

Motor/Propeller Driving Schema

Drivers, motors and propellers are chosen to be of the same type for the four arms.

Software (firmware) controls PWM, but ...

- Are the drivers really all the same?
- 2 Are the motors really all the same?
- Are the propellers really all the same?
- Is the COG placed at the center of the quadrotor?

The answer is: In general, No!!

Can we really set the rotation rate of propellers??

Motor/Propeller Driving Schema

Same PWM signals applied different driver/motor/propeller chains provoke different thrust forces, even if the components are of the same type!

The "Real world" effect

Problem

We need to set ω_i by

$$\begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix} = \mathcal{K}^{-1} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ \mathcal{F} \end{pmatrix}$$

but we don't have a direct control on ω_i and propeller thrust

イロン イボン イヨン イヨン 二日

The Mathematician/Physicists Solution

Solution ??

Let's characterize **each driver/motor/propeller chain** and derive the functions:

 $T_i = f_i(PWM_i)$

Then, let's invert the functions:

 $PWM_i = f_i^{-1}(T_i)$

But...

- Characterization is not so easy
- If we change a component, we must repeat the process
- There are unpredictable variables, e.g. air density, wind, etc.

The Computer Scientist/Engineer Solution

Solution ??

Let's sperimentally tune:

- an offset for each channel
- a gain for each channel

until the system behaves as expected!

But...

- Tuning is not so easy
- If we change a component, we must repeat the process
- There are unpredictable variables, e.g. air density, wind, etc.

The Control System Engineer Solution

Solution!!!! Use feedback!

- Measure your variable through a sensor
- Compare the measured value with your desired set point
- Apply the correction to the system on the basis of the error
- Go to 1
 - Tuning is easy and, if the controller is properly designed ...
 - it works no matter the components
 - it works also in the presence of uncontrollable variables, e.g. air density, wind, etc.

Our Scenario

Our measures:

- Actual angular velocities on the three axis $(\dot{\phi_M}, \dot{\theta_M}, \dot{\psi_M})$
- They are measured through a 3-axis gyroscope!

Our set-points:

- **Desired** angular velocities on the three axis $(\dot{\phi_T}, \dot{\theta_T}, \dot{\psi_T})$
- They are given through the remote control

Using Feedback to Control the Quadrotor

The overall schema of the feedback controller is:

(ロ) (部) (E) (E) (E)

Using Feedback to Control the Quadrotor

Algorithmically

while True do On ΔT timer tick ; $(\dot{\phi_T}, \dot{\theta_T}, \dot{\psi_T}, F) = \text{sample_remote_control()};$ $(\dot{\phi}_M, \dot{\theta}_M, \dot{\psi}_M) = \text{sample_gyro}();$ $\boldsymbol{e}_{\dot{\phi}} := \dot{\phi}_T - \dot{\phi}_M; \quad \boldsymbol{e}_{\dot{\theta}} := \dot{\theta}_T - \dot{\theta}_M; \quad \boldsymbol{e}_{\dot{\eta}} := \dot{\psi}_T - \dot{\psi}_M;$ $C_{\dot{\alpha}} := \text{roll_rate_controller}(e_{\dot{\alpha}});$ $C_{\dot{e}} := \text{pitch}_{\text{rate}} \text{controller}(e_{\dot{e}});$ C_{ij} := yaw_rate_controller(e_{ij}); $(pwm_1, pwm_2, pwm_3, pwm_4)^T := K^{-1}(C_{\phi_{\tau}}, C_{\phi_{\tau}}, C_{\phi_{\tau}}, F)^T;$ send_to_motors($pwm_1, pwm_2, pwm_3, pwm_4$); end

Using Feedback to Control the Quadrotor

Algorithmically

while True do

On ΔT timer tick ; $(\dot{\phi_T}, \dot{\theta_T}, \dot{\psi_T}, F) = \text{sample_remote_control()};$ $(\phi_M, \theta_M, \psi_M) = \text{sample_gyro}();$ $\boldsymbol{e}_{\dot{\phi}} := \dot{\phi_T} - \dot{\phi_M}; \quad \boldsymbol{e}_{\dot{\theta}} := \dot{\theta_T} - \dot{\theta_M}; \quad \boldsymbol{e}_{\dot{\eta}} := \dot{\psi_T} - \dot{\psi_M};$ $C_{\dot{\alpha}} := \text{roll_rate_controller}(e_{\dot{\alpha}});$ $C_{\dot{\theta}} := \text{pitch}_{\text{rate}} \text{controller}(e_{\dot{\theta}});$ C_{ij} := yaw_rate_controller(e_{ij}); $(pwm_1, pwm_2, pwm_3, pwm_4)^T := K^{-1}(C_{\phi_\tau}, C_{\phi_\tau}, C_{\phi_\tau}, F)^T;$ send_to_motors($pwm_1, pwm_2, pwm_3, pwm_4$); end

The key is in the controllers!!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The most common used controller type is the **Proportional-Integral-Derivative** controller, represented by the following function:

PID Function

C := xxx_rate_controller(e); That is:

$$\mathcal{C}(t) := \mathcal{K}_{\mathcal{P}} \boldsymbol{e}(t) + \mathcal{K}_{i} \int_{0}^{t} \boldsymbol{e}(\tau) \ \boldsymbol{d}\tau + \mathcal{K}_{d} rac{\boldsymbol{d} \boldsymbol{e}(t)}{\boldsymbol{d}t}$$

In a discrete world (at k^{th} sampling instant):

$$C(k) := K_{p} e(k) + K_{i} \sum_{j=0}^{k} e(j) \Delta T + K_{d} \frac{e(k) - e(k-1)}{\Delta T}$$

The P.I.D. Controller

PID Function

$$C(k) := \mathcal{K}_{p} \boldsymbol{e}(k) + \mathcal{K}_{i} \sum_{j=0}^{k} \boldsymbol{e}(j) \Delta T + \mathcal{K}_{d} \frac{\boldsymbol{e}(k) - \boldsymbol{e}(k-1)}{\Delta T}$$

Constants K_p , K_i , K_d regulate the behaviour of the controller:

- K_p drives the short-term action
- *K_i* drives the long-term action
- K_d drives the action on the basis of the "error trend"

Constants K_p , K_i , K_d are tuned:

- Using a specific tuning method (Ziegler-Nichols)
- Sperimentally by means of "trial-and-error"

물에 귀 물에 다

Rates and Angles: Could I control the *attitude*?

イロン イヨン イヨン イヨン

Rates are not Angles

The above schema controls rates:

- suppose a roll angle of $\phi = 10^{o}$
- but no roll rotation (rate), i.e. $\dot{\phi} = 0$
- and no roll rotation command (sticks set to center)
- → the quadrotor is not horizontal and performs a translated flight

Could we control angles instead of rates?

First we must **measure** euler angles (ϕ, θ, ψ) ! We could do this by using **Gyroscopes**, **Accelerometers**, **Magnetometers**, but...

Gyroscopes measure *angular velocities* which can be **integrated** in order to derive the angle $\alpha(t) = \int_0^t \dot{\alpha}(\tau) d\tau$, but:

- Numeric integration is affected by approximation errors
- Gyroscopes are affected by an *offset*, i.e. they give non-zero value when the measure should be zero
- Such an *offset* is not constant over time and depends on the temperature

The estimated angle is not reliable!

Measuring Angles: Accelerometers

An accelerometer is a sensor measuring the acceleration over the three axis (a_x, a_y, a_z) .

- If the sensor is static sensed values are the projections of g vector in the sensor reference system
- Two functions (using *arctan*) determines **pitch** and **roll**: $\phi = \tan^{-1} \frac{-a_y}{-a_z}$ $\theta = \tan^{-1} \frac{a_x}{\sqrt{a_y^2 + a_z^2}}$
- But if the object is moving (e.g. shaking) other accelerations appear

The computed angles are not reliable!

(四) (三) (三)

• Gyros

- Drift
- Approximate discrete integration

Accelerometers

Precise only if sensor is not "shaking"

We have **two different source** of the **same** information which are affected by **two different error** types.

We can use **both** measures by *fusing* them in order to adjust the error and obtain a reliable information.

回 と く ヨ と く ヨ と …

Sensor Fusion

Basic Algorithm

while True do On ΔT timer tick : $(\dot{\phi}, \dot{\theta}, \dot{\psi}) = \text{sample}_{gyro}();$ $(a_x, a_y, a_z) = \text{sample_accel}();$ $(\phi, \theta, \psi) = (\phi, \theta, \psi) + \Delta T(\dot{\phi}, \dot{\theta}, \dot{\psi});$ $\hat{\phi} = \tan^{-1}(-a_v/-a_z);$ $\hat{\theta} = \tan^{-1}(a_x/\sqrt{a_y^2 + a_z^2});$ $(\phi, \theta, \psi) = fusion_filter(\phi, \theta, \psi, \hat{\phi}, \hat{\theta});$ end

Sensor Fusion: Algorithms

The key is the filter function!

- DCM (Direction Cosine Matrix)
- Complementary filters
- Kalman filters

Basic idea:

- Derive an error function e(t) = real(t) estimated(t)
- Design a **controller** able to guarantee $\lim_{t\to\infty} e(t) = 0$

Sensor Fusion: Algorithms

High computational load due to:

- Rotations in the 3D space
- Matrix calculations

May we reduce the load?

★ E ► ★ E ►

크

Direction Cosine Matrix

$$DCM = \begin{pmatrix} c\theta c\psi & s\phi s\theta c\psi - c\phi s\psi & c\phi s\theta c\psi + s\phi s\psi \\ c\theta s\psi & s\phi s\theta s\psi + c\phi c\psi & c\phi s\theta s\psi - s\phi c\psi \\ -s\theta & s\phi c\theta & c\phi c\theta \end{pmatrix}$$
$$s = \sin, \ c = \cos$$

This matrix is re-computed at each iteration!!

Rotating a vector v = (x, y, z) implies the product $DCM \cdot v$.

▲□ → ▲ □ → ▲ □ → …

Quaternions

A **quaternion** is a complex number with one real part and three imaginary parts:

$$q=q_0+q_1\mathbf{i}+q_2\mathbf{j}+q_3\mathbf{k}$$

$$\mathbf{i}, \mathbf{j}, \mathbf{k} = imaginary$$
 units

$$i^2 = j^2 = k^2 = ijk = -1$$

While **Complex numbers** can be used to represent **rotations** in **2D**, **Quaternions** can be used to represent **rotations in 3D**.

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

Rotations in 3D and Quaternions

• Transformations from Euler angles to quaternion exist:

 $oldsymbol{q} o (\phi, heta, \psi)$ $(\phi, heta, \psi) o oldsymbol{q}$

- Rotating a vector v using a quaternion implies the product $q\overline{v}q^*$ where q^* is the conjugate of q and $\overline{v} = \{0, v_x, v_y, v_z\}$.
- The overall fusion algorithm can be written using quaternion algebra, thus avoiding continuous sin, cos calculation.
- Quaternions avoid gimbal lock!
- The attitude can be easily obtained by using:

 $\boldsymbol{q} \rightarrow (\phi, \theta, \psi)$

So far so good: Controlling attitude

- Attitude control is achieved using (once again) *feedback controllers*.
- We set the Target (desired) Attitude $(\phi_T, \theta_T, \dot{\psi_T})$ from remote controller.
- Current quad attitude (φ_M, θ_M, ψ_M) is computed using sensor fusion.
- The error signals (differences) are sent to PID controllers whose output are the **target rates** for rate controllers.
- The basic model is "*cascading controllers*": attitude controllers which drives rate controllers.

Let's remind the schema of Rate Controllers

Corrado Santoro How does a Quadrotor fly?

Complete Attitude Controller

Control "loops": Requirements

- Two control loops in the schema
 - rate control (inner);
 - attitude control (outer);
- Attitude control "drives" rate control, thus rate control must have "enough time" to reach the desired target.
- Loops must have different dynamics, i.e. sampling time
- T_r = rate control sampling time
- T_a = attitude control sampling time
- $T_a >> T_r$, $T_a = nT_r$, $n \in \mathcal{N}$, n > 1
- In our quad: $T_r = 5ms$, $T_a = 50ms$

Finally, the overall algorithm

while True do On T_r timer tick ; $(\phi_M, \theta_M, \psi_M) = \text{sample_gyro}();$ $(a_x, a_y, a_z) = \text{sample}_\text{accel}();$ $(\phi_M, \theta_M) = fusion_filter(\phi_M, \theta_M, \psi_M, a_x, a_y, a_z);$ if after N loops then $(\phi_T, \theta_T, \psi_T, F) = \text{sample_remote_control()};$ $\phi_T := \text{roll_controller}(\phi_M, \phi_T);$ $\dot{\theta_{\tau}} := \text{pitch_controller}(\theta_M, \theta_{\tau});$ end $C_{\dot{\phi}} := \text{roll_rate_controller}(\phi_M, \phi_T);$ $C_{\dot{\theta}} := \text{pitch}_{\text{rate}} \text{controller}(\theta_M, \theta_T);$ C_{ψ} := yaw_rate_controller(ψ_M, ψ_T); $(pwm_1, pwm_2, pwm_3, pwm_4)^T := K^{-1} (C_{\phi_{\tau}}, C_{\phi_{\tau}}, C_{\phi_{\tau}}, F)^T;$ send_to_motors(*pwm*₁, *pwm*₂, *pwm*₃, *pwm*₄);

What about Altitude or GPS control?

Corrado Santoro How does a Quadrotor fly?

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へで

Do you need another kind of control? Repeat the schema!

- Identify your source of measure m
- Identify your target *t*
- Identify the variables to drive v
- Identify the sampling time
- Use a (PID) controller v = pid(t, m)

日本・モン・モン

Altitude Control

- H_T = our target height
- *H_M* = measured height (from a sensor)
- F = output variable to control (desired thrust)
- MT_r = altitude control sampling time, M > N

```
while True do

On T_r timer tick ;

...;

if after M loops then

H_M = sample_altitude_sensor();

F :=altitude_controller(H_M, H_T);

end

...

end
```

・ 同 ト ・ ヨ ト ・ ヨ ト

GPS Control

- Lat_T, Lon_T = our target position
- *Lat_M*, *Lon_T* = measured position (from a GPS sensor)
- ϕ_T , θ_T = target variables to control (desired pitch and roll)
- *GT_r* = GPS control sampling time, *G* > *N*

```
while True do

On T<sub>r</sub> timer tick ;

...;

if after G loops then

(Lat_M, Lon_M) = \text{sample_gps}();

\phi_T := \text{gps_lon_controller}(Lon_M, Lon_T);

\theta_T := \text{gps_lat_controller}(Lat_M, Lat_T);

end

...

end
```

Note: for a proper GPS navigation, a compass (with related yaw

Vision-based Control

while True do

```
On T_r timer tick ;

...;

if after H loops then

(\Delta X, \Delta Y, \Delta \psi) = identify_target_with_camera();

\phi_T := x_controller(\Delta X);

\theta_T := y_controller(\Delta Y);

\psi_T := heading_controller(\Delta \psi);

end
```

It seems easy

Corrado Santoro How does a Quadrotor fly?

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へで

... but, where is the trick?

Are sensors reliable?

- Sometimes, NO!
- Noise due to mechanical vibrations (MEMS-IMU to be filtered by applying **Fourier analysis**)
- False positives due to wiring problems (Magnetometers, ADC, etc.)

• Are execution platforms reliable?

- Check it!
- Controllers need precise (real-time) timing
- DO NOT Windows to stabilize your quad!!!
- You can try with RT-Linux

Is PID Tuning really easy?

- NO! You must learn it!
- ... and be sure to have a large set of propellers!!

• Are all those things fun?

• OF COURSE!!!! ご

Will Multi-rotors be the future of personal transportation systems?

Where do I park my multi-rotor??

Demonstration Flight

First prototype: PROBLEMS!!!

• DIY is fun but ...

- The frame is not well balanced... but the control will do the job
- Too many vibrations (many of them suppressed using Chebyshev filters)
- Wrong choice of motors (specs report a thurst of 400gr each, but ...)

Wiring/Electronics problems

- Current spikes reset the ultrasonic sensor
- I2C sometimes locks (a watchdog intervenes and turn-off motors)

Firmware problems

 Still working on the sensor fusion algorithm, since it is not satisfactory (we want more stability...) How does a Quadrotor fly? A journey from physics, mathematics, control systems and computer science towards a "Controllable Flying Object"

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Keynote - L.A.P. 1 Course - Jan 10, 2014