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Abstract. This paper investigates the dynamics and control of a quadcopter using the Model 

Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with 

six degrees of freedom that include disturbances and model uncertainties. The control approach 

is developed based on MPC to track different reference trajectories ranging from simple ones 

such as circular to complex helical trajectories. In this control technique, a linearized model is 

derived and the receding horizon method is applied to generate the optimal control sequence. 

Although MPC is computer expensive, it is highly effective to deal with the different types of 

nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC 

parameters (control and prediction horizons) are selected by trial-and-error approach. Several 

simulation scenarios are performed to examine and evaluate the performance of the proposed 

control approach using MATLAB and Simulink environment. Simulation results show that this 

control approach is highly effective to track a given reference trajectory. 

1. Introduction 

The interest in quadcopter has gradually increased among researchers due to its structural simplicity and 

flexibility in flight, in addition to its versatile applications in both civil and military areas [1]. In 

conjunction to this, it is vital to operate the quadcopter with proper control to gain better performance 

from it. An effective controller ensures its smooth and collision-free flight in the complex environment 

considering aerodynamic drag and moments [2]. In literatures, the quadcopter’s control problem has 

been widely investigated using several control approaches including proportional-integral-derivative 

(PID), linear quadratic regulator (LQR) and H-infinity for linear control system. In the meantime, for 

nonlinear control system, approaches like backstepping, feedback linearization and model predictive 

control are applied. The comparison between PID and LQR control techniques on micro quadcopter has 

been demonstrated in a previous study and the system is shown to be stabilized around the hover position 

but PID shows poor performance at different operating points [3, 4]. Moreover, another study has 

applied the backstepping control approach based on Lyapunov theory to stabilize the quadcopter to track 

a given desired position and attitude. In that work, an under-actuated subsystem is introduced to control 

the horizontal position through roll and pitch angles while a fully-actuated subsystem is used to control 

the vertical position through yaw and a propeller subsystem to control propeller forces [5]. Additionally, 

another study used feedback linearization for trajectory tracking to control rotational and translational 

dynamics [6].  
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Model Predictive Control (MPC) becomes one of the widespread controllers nowadays because of 

its capability in working with constraints and disturbances, predictive behaviour, simplicity in tuning 

and advanced performance with multi-variable at the same time. It is considered as a nonlinear control 

system that works on predicting future states and errors [7]. MPC has been used to track the reference 

trajectory considering disturbances and nonlinear H-infinity to obtain the robustness of the system in 

quadcopter [8]. In a previous study, MPC is applied to gain robust performance from the system under 

wind-gust disturbance condition for attitude reference tracking in quadcopter [9]. In that work, MPC has 

successfully tracked the reference point using a single MPC technique on the quadcopter platform that 

considers external disturbances in the system and constraints for the actuators saturation at control 

inputs. The study presented in this paper investigates the quadcopter's dynamics and control using the 

MPC approach. 

 

2. System Design 

Quadcopter basically holds a rigid cross-linked structure that has four independent rotors with fixed 

pitched propellers. Among the four propellers, two are rotating in clockwise direction while the other 

two rotate in anti-clockwise direction, as shown in Figure 1. The control of quadcopter is obtained by 

changing the angular speed of the propellers Ω𝑖 (𝑖 = 1, 2, 3, 4). The rotational movement of quadcopter 

along X, Y and Z axes can be described by roll (𝜙), pitch (𝜃) and yaw angle (𝜓). 

 
Figure 1: Configuration of quadcopter, where B and E denote the body fixed frame and the Earth fixed 

frame, respectively 

Every controller input has an effect on a certain movement such as 𝑢2 affects on roll movement, 𝑢3 

affects on pitch movement, 𝑢4 affects on yaw movement and 𝑢1 has an effect on upward movement 

along Z axis. Here, as ‘+’ (plus) configuration is chosen for this quadcopter, the control inputs produce 

the effects on the system as described in Equation 1 to Equation 4. The initial conditions and nominal 

parameters for simulation of the quadcopter are shown in Table 1 [10]. 

                                                                     𝑢1 = 𝑘𝑓(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)                                           (1) 

            𝑢2 = 𝑘𝑓(Ω4
2 − Ω2

2)                    (2) 

           𝑢3 = 𝑘𝑓(−Ω3
2 + Ω1

2)       (3) 

               𝑢4 = 𝑘𝑀(Ω1
2 − Ω2

2 + Ω3
2 − Ω1

2)        (4) 
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Table 1: Parameters and initial conditions for simulation 

Symbol Description Value Unit 

𝐼 Moment of inertia 
(
7.5𝑒 − 3 0 0

0 7.5𝑒 − 3 0
0 0 1.3𝑒 − 2

) 
kg.m2 

𝑙 Arm length 0.23 m 

𝐼𝑟 Inertia of motor 6e-5 kg.m2 

𝑘𝑓 Thrust coefficient 3.13e-5 Ns2 

𝑘𝑀 Moment coefficient 7.5e-7 Nms2 

𝑚 Mass of quadcopter 0.65 kg 

𝑔 Gravity 9.81 ms2 

𝑘𝑡 Aerodynamic thrust drag 

coefficient (
0.1 0 0
0 0.1 0
0 0 0.1

) Ns/m 

𝑘𝑟 Aerodynamic moment drag 

coefficient (
0.1 0 0

0 0.1 0

0 0 0.1

) 
Nm.s 

The mathematical model of the quadcopter is given by Equation 5 to Equation 10 [11-13]. 

   𝑥̈ =
−1

𝑚
[𝑘𝑡𝑥

𝑥̇ +  𝑢1(𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃)]                                       (5) 

 

                                       𝑦̈ =
−1

𝑚
[𝑘𝑡𝑦

𝑦̇ +  𝑢1(𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃)]                                       (6) 

 

                                                    𝑧̈ =
−1

𝑚
[𝑘𝑡𝑧

𝑧̇ − 𝑚𝑔 + 𝑢1𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃]                                                  (7) 

 

                                             𝑝̇ =
−1

𝐼𝑥
[𝑘𝑟𝑥𝑝 − 𝑙𝑢2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟]                                           (8) 

 

                                           𝑞̇ =
−1

𝐼𝑦
[−𝑘𝑟𝑦𝑞 + 𝑙𝑢3 − 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟]                                          (9) 

 

                                                     𝑟̇ =
−1

𝐼𝑧
[𝑢4 − 𝑘𝑟𝑧𝑟 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞]                                                 (10) 

Another kinematic relationship is required between Euler rates, [𝜙,̇ 𝜃̇, 𝜓̇]T on the earth fixed frame and 

angular velocity, [𝑝, 𝑞, 𝑟]T of the quadcopter to describe the whole complete system. This is given by 

Equation 11 to Equation 13 [14]. 

                                                              𝜙̇ = 𝑝 + 𝑟𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃 + 𝑞𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃                                              (11) 

                                                                           𝜃̇ = 𝑞𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑖𝑛𝜙                                                           (12) 

                                                                   𝜓̇ = 𝑟
𝑐𝑜𝑠𝜙

𝑡𝑎𝑛𝜃
+ 𝑞

𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜃
                                                           (13) 

Therefore, the complete dynamic model of the quadcopter can be described by four control inputs, 𝑢 =
[𝑢1𝑢2𝑢3𝑢4]

𝑇 and 12 state vectors,  𝑥𝑠  =  [𝑥  𝑦   𝑧   𝑥̇  𝑦̇  𝑧̇  𝜙   𝜃   𝜓   𝑝   𝑞   𝑟]𝑇. 
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3. Controller Design 

MPC, or known as receding horizon control (RHC), is a control approach that comprises a systematic 

algorithm where the dynamic model of the system is solved under a finite, moving horizon and closed 

control problem. It has the ability to use constraints in both control inputs and outputs on the system 

during design process. It basically predicts a number of outputs of the system such that it can generate 

an optimized control effort for the system to reach the reference trajectory. The optimization problem is 

solved for a predefined time interval that is also known as prediction horizon at each sampling time 

interval. The immediate optimized control signal is applied in the system until the next sampling time 

interval and this process is repeated for each sampling time interval [15].  

3.1. Plant Model and Prediction Horizon 

A nonlinear system can be written as in Equation 14, where 𝑥(𝑡)𝜖𝑅𝑛  denotes the states of the system 

and 𝑢(𝑡)𝜖𝑅𝑚 denotes system inputs. 

                                                                𝑥̇ = 𝑓((𝑥), 𝑢(𝑡))                                                                  (14) 

The quadcopter’s dynamic model is linearized at hover condition as in Equation 15 to Equation 18 [15, 

17], where the nominal states and control inputs are 𝑥𝑇 and 𝑢𝑇, respectively, 𝑘 is the sample time, 

𝐴 𝜖 𝑅𝑛×𝑛 is the state matrix, 𝐵 𝜖 𝑅𝑛×𝑚 is input matrix, 𝑦 𝜖 𝑅𝑝 is system outputs, 𝐶 𝜖 𝑅𝑝×𝑛 is output 

matrix and 𝐷 𝜖 𝑅𝑝×𝑚 is feedforward matrix. For this system, 𝑛 = 12 and 𝑚 = 4 are considered. 

 
∆𝑥𝑘+1 = 𝐴∆𝑥𝑘 + 𝐵∆𝑢𝑘 

∆𝑦𝑘 = 𝐶∆𝑥𝑘 + 𝐷∆𝑢𝑘 

∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑇 

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑇 

 

(15) 

(16) 

(17) 

(18) 

 

A prediction horizon has to be determined such that the controller can predict a number of future 

states to reach the desired states. A state observer with an estimator is also required to be implemented 

in the controller to predict the future states while the estimator predicts future behaviour of the system. 

A Linear Quadratic Estimator is applied for the algorithm. By expanding Equation 15 and Equation 16 

up to 𝑘 + 𝑁, the future states and outputs can be achieved depending on initial states and future inputs 

as given by Equation 19 and Equation 20, respectively. 

 
 ∆𝑥𝑘+𝑁 = 𝐴𝑁∆𝑥𝑘 + 𝐴𝑁−1𝐵∆𝑢𝑘 + 𝐴𝑁−2𝐵∆𝑢𝑘+1 + ⋯+ 𝐴𝐵∆𝑢𝑘+𝑁−2 + 𝐵∆𝑢𝑘+𝑁−1  (19) 

 

    ∆𝑦𝑘+𝑁 = 𝐶𝐴𝑁∆𝑥𝑘 + 𝐶(𝐴𝑁−1𝐵∆𝑢𝑘 + 𝐴𝑁−2𝐵∆𝑢𝑘+1 + ⋯+ 𝐴𝐵∆𝑢𝑘+𝑁−2 + 𝐵∆𝑢𝑘+𝑁−1) (20) 

 

The equations can also be written in matrix form as shown by Equation 21 and Equation 22. 

 
 

(

 
 

∆𝑥𝑘

∆𝑥𝑘+1

∆𝑥𝑘+2

⋮
∆𝑥𝑘+𝑁−1)

 
 

=

(

 
 

𝐼
𝐴
𝐴2

⋮
𝐴𝑁−1)

 
 

∆𝑥𝑘 +

(

 
 

0 0 ⋯ 0 0
𝐵 0 ⋯ 0 0
𝐴𝐵 𝐵 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐴𝑁−2𝐵 𝐴𝑁−3𝐵 ⋯ 𝐵 0)

 
 

(

 
 

∆𝑢𝑘

∆𝑢𝑘+1

∆𝑢𝑘+2

⋮
∆𝑢𝑘+𝑁−1)

 
 

 

 

 

 

(21) 

 

(

 
 

∆𝑦𝑘

∆𝑦𝑘+1

∆𝑦𝑘+2

⋮
∆𝑦𝑘+𝑁−1)

 
 

=

(

 
 

𝐶 0 0 ⋯ 0
0 𝐶 0 ⋯ 0
0 0 𝐶 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐶)

 
 

(

 
 

∆𝑥𝑘

∆𝑥𝑘+1

∆𝑥𝑘+2

⋮
∆𝑥𝑘+𝑁−1)

 
 

+

(

 
 

𝐷 0 0 ⋯ 0
0 𝐷 0 ⋯ 0
0 0 𝐷 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐷)

 
 

(

 
 

∆𝑢𝑘

∆𝑢𝑘+1

∆𝑢𝑘+2

⋮
∆𝑢𝑘+𝑁−1)

 
 

 

 

 

(22) 
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As D = 0 in most of the cases, the two equations can be rewritten as in Equation 23 and Equation 24 in 

a shorter form. 
 ∆𝑋𝑘 = 𝐴𝑚∆𝑥𝑘 + 𝐵𝑚∆𝑢𝑘 

 
(23) 

 ∆𝑌𝑘 = 𝐶𝑚∆𝑥𝑘 (24) 

3.2. Control Design 

The MPC technique is helped by cost function in its control algorithm to calculate the optimal solution 

at every sampling time interval. The cost function is generally designed in a way that the predicted 

outputs are directed towards the desired states as described in Equation 20 while the control efforts are 

minimized as well. In this study, the cost function is minimized by the norm of the difference between 

the current outputs and desired trajectory and the norms of motor inputs as in Equation 25, where 𝑊̂𝑢 

and 𝑊̂𝑦 are given by Equation 26 and Equation 27, respectively [16]. 

 

 𝐽(∆𝑥, ∆𝑢) = (∆𝑢𝑘)
𝑇𝑊̂𝑢

2
(∆𝑢𝑘) + (∆𝑌𝑘 − ∆𝑌𝑘

𝑟)𝑇𝑊̂𝑦
2
(∆𝑌𝑘 − ∆𝑌𝑘

𝑟)  (25) 

         𝑊̂𝑢 = 

[
 
 
 
 
 
 
 
 
 
𝑊𝑢|0,1 0 ⋯ 0 ⋯ 0 0 ⋯ 0

0 𝑊𝑢|0,2 ⋯ 0 ⋱ 0 0 ⋱ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑊𝑢|0,𝑚 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 ⋯ 𝑊𝑢|𝑁−1,1 0 ⋯ 0

0 0 ⋯ 0 ⋯ 0 𝑊𝑢|𝑁−1,2 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 ⋯ 0 0 ⋯ 𝑊𝑢|𝑁−1,𝑚]

 
 
 
 
 
 
 
 
 

                (26) 

    𝑊̂𝑦 = 

[
 
 
 
 
 
 
 
 
 
𝑊𝑦|0,1 0 ⋯ 0 ⋯ 0 0 ⋯ 0

0 𝑊𝑦|0,2 ⋯ 0 ⋱ 0 0 ⋱ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑊𝑦|0,𝑚 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 ⋯ 𝑊𝑦|𝑁−1,1 0 ⋯ 0

0 0 ⋯ 0 ⋯ 0 𝑊𝑦|𝑁−1,2 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 ⋯ 0 0 ⋯ 𝑊𝑦|𝑁−1,𝑚]

 
 
 
 
 
 
 
 
 

                (27) 

3.3. Quadratic Programming  

As the cost function is in quadratic form, a quadratic programming is chosen to solve the optimization 

problem. The main purpose of the quadratic programming is to reduce the cost function 𝐽(∆𝑥, ∆𝑢) by 

finding out a feasible search direction, ∆𝑢. 

3.4. Input and Constraint Handling 

During the design of the quadcopter, it is important to apply constraint at the force of each motor. This 

is to enable the motors to be operated between maximum and minimum rotations per minute (rpm). 

There is an upper bound, 𝑢𝑢𝑏 and a lower bound, 𝑢𝑙𝑏 at the control inputs where 𝑢𝑙𝑏 ≤ 𝑢𝑘+𝑖 ≤ 𝑢𝑢𝑏 for 

𝑖 = 0, 1, 2, … ,𝑁 − 1. As the dynamic model is linearized around a certain operating point, the MPC 

approach solves the perturbed control inputs for the linearized model. The constraints can be described 

in matrix form as in Equation 28, where 𝐼𝑚×𝑚 is an identity matrix. 
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[

Im×m

−Im×m
] ∆uk+i ≤ [

uub − ∆uT

−(ulb − ∆uT)
] (28) 

After rearranging, Equation 28 can be rewritten as Equation 29, where 𝑰𝒖 is given by Equation 30. 

                                                                     𝐼𝑢∆𝑢𝑘 ≤ ∆𝑢𝑏                                                                   (29) 

                   𝐼𝑢 =

[
 
 
 
 
 
 [

𝐼𝑚×𝑚

−𝐼𝑚×𝑚
] 0 ⋯ 0

0 [
𝐼𝑚×𝑚

−𝐼𝑚×𝑚
] ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ [
𝐼𝑚×𝑚

−𝐼𝑚×𝑚
]
]
 
 
 
 
 
 

 ,∆𝑢𝑏 = 

[
 
 
 
 
 
 [

𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
]

[
𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
]

⋮

[
𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
]
]
 
 
 
 
 
 

                       (30) 

 It is also necessary to consider a limit on the angles to avoid kinematic singularities because of the 

limitations of the model. The angles are limited within the bounds and the bounds are given as follows 

for roll, pitch and yaw, respectively: −𝜋 ≤ 𝜙 ≤ 𝜋, −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 and−𝜋 ≤ 𝜓 ≤ 𝜋.  

If a specific output is to be constrained, it can be described as Equation 31 and the constraints can be 

represented by Equation 32, where 𝑧𝑙𝑏 and 𝑧𝑢𝑏 are denoted as lower bound and upper bound for the 

outputs. 

                                                                    ∆𝑧𝑙𝑏 = 𝐶𝑧∆𝑥𝑘                                                                   (31) 

 

                                           𝑧𝑙𝑏 ≤ 𝐶𝑧𝑥𝑘+𝑖 ≤ 𝑧𝑢𝑏; 𝑖 = 0, 1, 2, 3, … . , 𝑁 − 1                                          (32) 

Similarly, it also can be shown in matrix form as in Equation 33. 

                                                    [
𝐶𝑧

−𝐶𝑧
] ≤ [

𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]                                                          (33) 

From Equation 23 and Equation 24, the constraints can be described as in Equation 34 where ∆𝑥𝑘 is 

substituted and Γ𝑧 is given in Equation 35. 

                                                       Γ𝑧(𝐴𝑚∆𝑥𝑘 + 𝐵𝑚∆𝑢𝑘) ≤ ∆𝑧𝑏                                                        (34) 
 

                            Γ𝑧 =

[
 
 
 
 
 
 [

𝐶𝑧

−𝐶𝑧
] 0 ⋯ 0

0 [
𝐶𝑧

−𝐶𝑧
] ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ [
𝐶𝑧

−𝐶𝑧
]
]
 
 
 
 
 
 

,  ∆𝑧𝑏 =

[
 
 
 
 
 
 [

𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]

[
𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]

⋮

[
𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]
]
 
 
 
 
 
 

                             (35) 

The control input and output constraints can be described by one single Equation 36, where Π is given 

in Equation 37 [17].  

                                                                    Π∆𝑢𝑘 ≤ Υ                                                                         (36) 

                                             Π = [
𝑀𝑢

Γ𝑧𝐵𝑚
], Υ = [

∆𝑢𝑏

∆𝑧𝑏 − Γ𝑧𝐴𝑚∆𝑥𝑘
]                                                      (37) 
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4. Simulated Results 

As the dynamics of the quadcopter is nonlinear, it has been linearized at a certain point and considered 

as [0, 1𝑚, 0, 0, 0, 0, 0, 0,
5𝜋

180
, 0, 0, 0]𝑇. For this study, prediction horizon, N = 30 and control horizon, M 

= 2 are selected after several initial simulations where these two values provided the most efficient 

performance under the consideration of settling time and overshoot. The effects of different N along x, 

y and z axes on settling time and overshoot are shown in Figure 2. It can be observed from the figure 

that the settling time is increasing when N increases while the overshoot is decreasing with increasing 

N along the x, y and z axes. 

  
Figure 2: Effects of N on settling time and overshoot 

  

Sample time for the model is chosen as 0.25s after the confirmation of system stability where the 

pole of the system has been achieved: [0, 0, 0,−0.1538,−0.1538,−0.1538, 0, 0, 0, 0, 0, 0]𝑇. Figure 3 

illustrates the efficiency of MPC controller that can reject disturbances without affecting the control 

outputs. In this scenario, x = 3m, y = 2m and z = -5m is selected as the reference point to show the 

comparison among the disturbances that range from 0.1 to 1. The RMSE is found to remain exactly the 

same along x, y and z axes with 5.13%, 5.11% and 3.09%, respectively. This means that the external 

disturbance has no effect on the system. Moreover, Figure 4 shows the control effort against time for 

better understanding. 

Three different trajectories are chosen for tracking under certain constraints at control inputs and 

addition of disturbances in the system where the angular velocity of each motor is taken as 848 rad/s. 

This helps to find the constraints as: 0 < 𝑢1 < 90, −22.52 < 𝑢2 < 22.52, −22.52 < 𝑢3 < 22.52 and 

−1.08 < 𝑢4 < 1.08, and the disturbances considered for the four control inputs are [0.1, 0.1, 0.1, 0.1] 

as in Figure 5. 

 

 
Figure 3: Effects of different disturbances on RMSE 

 
Figure 4: Control efforts (unorm) against time 
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(a) 

 
(b) 

 
(c) 

Figure 5: (a) Circular trajectory, (b) helix trajectory and (c) complex helix trajectory 

  

For circular trajectory, 𝑥 =  𝑠𝑖𝑛(0.1𝑡), 𝑦 =  𝑐𝑜𝑠(0.1𝑡), 𝑧 =  −4𝑚 

For helix trajectory, 𝑥 =  𝑠𝑖𝑛(0.1𝑡), 𝑦 =  𝑐𝑜𝑠(0.1𝑡), 𝑧 =  −0.3𝑡 

For complex helix, 𝑥 =  𝑐𝑜𝑠(0.05𝑡) − 𝑐𝑜𝑠3(0.05𝑡), 𝑦 =  𝑠𝑖𝑛(0.05𝑡) − 𝑠𝑖𝑛3(0.05𝑡), 𝑧 =  −0.3𝑡 

 

 Root-Mean-Square (RMS) is an approach to evaluate the accuracy of the data by comparison. The 

performance of the controller is evaluated using RMS error (RMSE). Table 2 shows the comparison 

between reference trajectory and achieved trajectory values with respect to time for circular, helix and 

complex helix trajectory under disturbance and without disturbance. From Table 2, it is found that the 

RMSE is less than 5% for the three trajectories, which is considered tolerable. 

 

Table 2: RMSE for circle, helix and complex helix trajectories with and without disturbances 

 
RMSE for with disturbance RMSE for without disturbance 

x (%) y (%) z (%) x (%) y (%) z (%) 

Circle 2.3320 2.8844 0.8866 2.3321 2.8878 1.2029 

Helix 2.2526 1.2278 2.1067 2.2524 1.2281 2.9558 

Complex Helix 1.0628 2.5308 1.3508 1.0628 2.5308 1.3508 

 

5. Conclusion 

The presented work shows the use of Linear Model Predictive Control (LMPC) approach for different 

trajectories (i.e. circle, helix and complex helix trajectory) under disturbances. It is designed with the 

help of MPC toolbox in Simulink. The main advantage of MPC controller that make it different from 

other controllers such as PID, LQR, H-infinity or feedback linearization is the optimization of control 

inputs and outputs under the consideration of disturbances, noise and constraints. This has been shown 

to help achieve proper inputs and outputs under certain requirements of the system although the noise 

factor is not considered in this work. The most crucial issues to design a MPC model include choosing 

proper prediction horizon, control horizon and sample time because they all affect the system stability. 

After the confirmation of system stability, the system tracking can be improved by tuning to the proper 

gains. This study has successfully demonstrated a proper tracking with minimal RMSE under different 

disturbances that have been shown to be of negligible effect to the system outputs. In future, nonlinear 

Model Predictive Control (NMPC) approach will be designed that is expected to be more suitable for 

nonlinear quadcopter model. 
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