Quadcopter Dynamics

Bréguet Richet Gyroplane No. 11907

- Brothers Louis Bréguet and Jacques Bréguet
- Guidance of Professor Charles Richet
- The first flight demonstration of Gyroplane No. 1 with
 no control surfaces was achieved on 29 September 1907.

Jerome-de Bothezat Flying Octopus

- Georges de Bothezat and Ivan Jerome in 1922,
- 6-bladed rotors placed at each end of an X-shaped truss structure
- Built for US Army
- complexity, control difficulties, and high pilot workload, only capable of
 forward flight in a favorable wind

Étienne ©Ehmichen 1924

- Étienne ๔hmichen in 1924
- Set distance records
- first 1 km helicopter flight. 7 mins:40 secs

UAS Categories

- Fixed wing
- Better range
- Better performance
- Rotary wing
- higher degree of freedom
- low speed flying
- stationary flights
- indoor usage

Quadcopter

- 4 rotors located at the ends of a cross structure
- higher payload capacity
- Maneuverability (e.g. traversing an environment with many obstacles, or landing in small areas)
- Controlled by varying the speeds of each rotor
- Vertical Take Off and Landing (VTOL)
- hovering capability
- slow precise movements
- . There are also definite advantages to having a four rotor based propulsion system, such as a

Quadcopter Attitude Control

$\mathrm{Mx}=$ Motor direction
Tx = Thrust force direction

$$
\begin{aligned}
& f=\text { front } \\
& I=\text { left } \\
& r=\text { right } \\
& b=\text { back }
\end{aligned}
$$

Quadcopter Attitude Control

- Vary rotation speed of each motor
- Front Rotor (Mf) and Back Rotor (Mb) pair rotates in a clockwise direction
- Right Rotor (Mr) and Left Rotor (MI) pair rotates in a counter-clockwise direction
- Configuration to balance the drag created by each of the spinning rotor pairs

Four Maneuvers

Four Maneuvers

- Roll Angle:
- Change relative speed of the right and left rotors
- Pitch Angle
- Change relative speed of the front and back rotors
- Yaw Angle
- Change speed of clockwise rotating pair and counterclockwise rotating pair
- Vertical
- Increasing or decreasing the speeds of all four rotors simultaneously controls the collective thrust

Reference Frames

Reference Frames

- Inertial
- earth-fixed coordinate system
- origin located on the ground (e.g. base station)
- Convention:
- x-axis points towards the north
- y-axis points towards the east
- z -axis points towards the center of the earth.
- Body
- origin located at the center of gravity (COG) of the quadrotor
- axes aligned with the quadrotor structure
- x-axis is along the arm with front motor
- y-axis is along the arm with right motor
- z-axis cross product of x and y
- Vehicle
- inertial frame with the origin located at the COG of the quadrotor
- Vehicle frame has two variations, F ϕ and FӨ
- $F \phi$ is the vehicle frame
- Fv, rotated about its z-axis by an angle ψ so that and are aligned with and , respectively.
- $\mathrm{F} \theta$ is frame $\mathrm{F} \phi$ rotated about its y-axis, , by a pitching angle, θ, such that $\mathrm{x} \theta$ and $\mathrm{y} \theta$ are aligned with and x_{b} and z_{b}

Transforming Reference Frames

- Translation and rotation matrices are used to transform one coordinate reference frame into another desired frame of reference
- Transformation from F_{i} to F_{v} provides the displacement vector from the origin of the Inertial frame to the center of gravity (COG) of the quadrotor Vehicle
- Transformation from F_{v} to F_{b} is rotational in nature \rightarrow the roll, pitch and yaw angles.

Quadrotor Kinematics

- Quadrotor Position fro Frame F
$P_{F}^{\top}=\left[p_{x}, p_{y^{\prime}}-p_{z}\right]$
- Quadrotor Orientation for Frame F

$$
\Omega_{F}^{\top}=[\Phi, \theta, \Psi]
$$

- Quadrotor Speed

$\left[\mathrm{R}_{\mathrm{Fv}}\right]^{\mathrm{F}}=$ Translational matrix $v \rightarrow \mathrm{~b}$

Quadrotor Dynamics (Vertical Axis Only)

Total Thrust =
Thrust front motor +
Thrust back motor +
Thrust left motor +
Thrust right motor

Weight (N) = mass (Kg) * gravitational constant ($\mathrm{m} / \mathrm{s}^{2}$)
$=9.8$
$\operatorname{Drag}(\mathrm{N})=0.5 * \mathrm{D}^{*} \mathrm{~V}^{2}{ }^{*} \mathrm{C}_{\mathrm{D}}{ }^{*}$ Surface Area

Forces on Quadcopter (in body vertical axis)

Quadrotor Dynamics: Takeoff to Hover

$m a=\Sigma F$

Hover
$a_{z}=0, a_{x}=a_{y}=0$
Sum forces in Body Z axis
$0=T-W$
$0=\mathrm{T}-\mathrm{mg}$
$\mathrm{T}=\mathrm{mg}$
Thrust required to hover = thrust to overcome weight

Vertical Takeoff (i.e. stationary to climb velocity
$a_{z}>0, a_{x}=a_{y}=0$
Sum forces in Body Z axis

$$
m a_{z}=T-W-D
$$

$$
m a_{z}=T-m g-D
$$

$T=m g+m a_{z}+D$
Thrust required to takeoff $=$ thrust to overcome weight + thrust to overcome inertia + thrust to overcome Drag

Drag $=0.5 \rho \mathrm{~V}^{2} \mathrm{C}_{\mathrm{D}}$ Surface Area

Quadrotor Dynamics: Takeoff to Hover

Accel in Z axis

$m a=\Sigma F$

Constant Speed Vertical Climb
$a_{z}=0, a_{x}=a_{y}=0$
Sum forces in Body Z axis
$0=T-W-D$
$0=T-m g-D$
$\mathrm{T}=\mathrm{mg}+\mathrm{D}$
Thrust required to climb at constant speed =
thrust overcome weight +
thrust to overcome Drag

Drag $=0.5 \rho \mathrm{~V}^{2} \mathrm{C}_{\mathrm{D}}$ Surface Area

Quadrotor Dynamics: Segments of Takeoff to Hover

Build Your Own Quadcopter Simulation

Spreadsheet columns

- Time (secs)
- Thrust (N)
- Weight (N)
- \quad Drag (N)
- \quad Sum of the Forces (N)
- Accelz $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
- Vertical Velocity (m/s)
- Vertical Position (m)

1. Insert the correct equations in each column

- Time increments in seconds (0 to 50 seconds)
- Thrust is user input
- Weight is fixed (mass $=5 \mathrm{~kg}$)
- Drag is function of Vertical Velocity (use previous second Velocity), $C_{D}=0.5, S=0.1 \mathrm{~m}^{2}$
- Vertical Velocity = Accel z from previous sec * 1 sec + Vertical Velocity from previous second (i.e. integral of Accel)
- Vertical Position = Vertical Velocity from previous sec * 1 sec + Vertical Position from previous second (i.e. integral of Vertical Velocity)

2. Enter in Thrust Values to control the Quadcopter to takeoff, accelerate to Vertical Velocity $5 \mathrm{~m} / \mathrm{s}$ and then level off to hover at 15 m
3. Plot Thrust, Accel z, Vert Vel, Vert Pos vs Time (see previous slide)
4. Bonus: Enter in Thrust Values to Land Quadcopter with smooth gentle landing (i.e. Kinetic Energy at landing < 250 Joules)

How to Move Forwards

How to Pitch Forward

- Pitching Torque
$T_{\theta}=\ell\left(T_{f}-T_{b}\right)$
$\ell=$ length of boom (m)

To pitch forward
$T_{b}>T_{f}$
This diagram shows pitching backwards

