Quadcopter Dynamics

Bréguet Richet Gyroplane No. 1 1907

- Brothers Louis Bréguet and Jacques Bréguet
- Guidance of Professor Charles Richet
- The first flight demonstration of Gyroplane No. 1 with no control surfaces was achieved on 29 September 1907.

Jerome-de Bothezat Flying Octopus

- Georges de Bothezat and Ivan Jerome in 1922,
- 6-bladed rotors placed at each end of an X-shaped truss structure
- Built for US Army
 - complexity, control difficulties, and high pilot workload, only capable of forward flight in a favorable wind

Étienne Œhmichen 1924

- Étienne Œhmichen in 1924
- Set distance records
 - first 1km helicopter
 flight. 7 mins:40 secs

UAS Categories

- Fixed wing
 - Better range
 - Better performance
- Rotary wing
 - higher degree of freedom
 - low speed flying
 - stationary flights
 - indoor usage

Quadcopter

- 4 rotors located at the ends of a cross structure
 - higher payload capacity
 - Maneuverability (e.g. traversing an environment with many obstacles, or landing in small areas)
- Controlled by varying the speeds of each rotor
 - Vertical Take Off and Landing (VTOL)
 - hovering capability
 - slow precise movements
 - There are also definite advantages to having a four rotor based propulsion system, such as a

Quadcopter Attitude Control

Mx = Motor direction Tx = Thrust force direction

Quadcopter Attitude Control

- Vary rotation speed of each motor
- Front Rotor (Mf) and Back Rotor (Mb) pair rotates in a clockwise direction
- Right Rotor (Mr) and Left Rotor (Ml) pair rotates in a counter-clockwise direction
 - Configuration to balance the drag created by each of the spinning rotor pairs

Four Maneuvers

Four Maneuvers

- Roll Angle:
 - Change relative speed of the right and left rotors
- Pitch Angle
 - Change relative speed of the front and back rotors
- Yaw Angle
 - Change speed of clockwise rotating pair and counterclockwise rotating pair
- Vertical
 - Increasing or decreasing the speeds of all four rotors simultaneously controls the collective thrust

Reference Frames

 $\begin{array}{c|c} \text{Inertial Frame} \\ F_i \\ F_i \\ y_i \\ y_i \\ z_i \end{array}$

Inertial Frame = earth-based origin at launch location Body frame = CoG of vehicle aligned along frame Vehicle Frame = earth-based origin at CoG of Vehicle aligned with Inertial axes

Reference Frames

- Inertial
 - earth-fixed coordinate system
 - origin located on the ground (e.g. base station)
 - Convention:
 - x-axis points towards the north
 - y-axis points towards the east
 - z-axis points towards the center of the earth.
- Body
 - origin located at the center of gravity (COG) of the quadrotor
 - axes aligned with the quadrotor structure
 - x-axis is along the arm with front motor
 - y-axis is along the arm with right motor
 - z-axis cross product of x and y
- Vehicle
 - inertial frame with the origin located at the COG of the quadrotor
 - Vehicle frame has two variations, Fφ and Fθ
 - F is the vehicle frame
 - $\,$ Fv, rotated about its z-axis by an angle ψ so that and are aligned with and , respectively.

Transforming Reference Frames

- Translation and rotation matrices are used to transform one coordinate reference frame into another desired frame of reference
 - Transformation from F_i to F_v provides the displacement vector from the origin of the Inertial frame to the center of gravity (COG) of the quadrotor Vehicle
 - Transformation from F_v to F_b is rotational in nature \rightarrow the roll, pitch and yaw angles.

Quadrotor Kinematics

- Quadrotor Position fro Frame F
- $P_{F}^{T} = [p_{x'}, p_{y'}, -p_{z}]$
- Quadrotor Orientation for Frame F
- $\Omega^{\mathsf{T}}_{\mathsf{F}} = [\Phi, \, \theta, \, \Psi]$

• Quadrotor Speed

$$\begin{bmatrix} R^{Fb} \\ Fv \end{bmatrix}^{T} = \text{Translational matrix } v \rightarrow b$$

Quadrotor Dynamics (Vertical Axis Only)

Total Thrust = Thrust front motor + Thrust back motor +

Thrust left motor + Thrust right motor

Weight (N) = mass (Kg) * gravitational constant (m/s²) = 9.8 Drag (N) = 0.5 * ρ * V² * C_D * Surface Area

Quadrotor Dynamics: Takeoff to Hover

ma = Σ F

<u>Hover</u>

 $a_z = 0$, $a_x = a_y = 0$ Sum forces in Body Z axis

0 = T - W 0 = T - mg T = mg Thrust required to hover = thrust to overcome weight <u>Vertical Takeoff (i.e. stationary to climb</u> <u>velocity</u> $a_z > 0, a_x = a_y = 0$ Sum forces in Body Z axis

 $ma_z = T - W - D$ $ma_z = T - mg - D$ $T = mg + ma_z + D$ Thrust required to takeoff = thrust to overcome weight + thrust to overcome inertia + thrust to overcome Drag

Drag = $0.5 \rho V^2 C_D$ Surface Area

Quadrotor Dynamics: Takeoff to Hover

ma = Σ F

Constant Speed Vertical Climb $a_z = 0, a_x = a_y = 0$ Sum forces in Body Z axis

0 = T - W -D 0 = T - mg - D T = mg +D Thrust required to climb at constant speed = thrust overcome weight +

thrust to overcome Drag

```
Drag = 0.5 \rho V<sup>2</sup> C<sub>D</sub> Surface Area
```

Accel in Z axis

Quadrotor Dynamics: Segments of Takeoff to Hover

Build Your Own Quadcopter Simulation

Spreadsheet columns

- Time (secs)
- Thrust (N)
- Weight (N)
- Drag (N)
- Sum of the Forces (N)
- Accel z (m/s²)
- Vertical Velocity (m/s)
- Vertical Position (m)

- 1. Insert the correct equations in each column
 - Time increments in seconds (0 to 50 seconds)
 - Thrust is user input
 - Weight is fixed (mass = 5kg)
 - Drag is function of Vertical Velocity (use previous second Velocity), $C_D = 0.5$, $S = 0.1m^2$
 - Vertical Velocity = Accel z from previous sec * 1 sec + Vertical Velocity from previous second (i.e. integral of Accel)
 - Vertical Position = Vertical Velocity from previous sec
 * 1 sec + Vertical Position from previous second (i.e. integral of Vertical Velocity)
- 2. Enter in Thrust Values to control the Quadcopter to takeoff, accelerate to Vertical Velocity 5 m/s and then level off to hover at 15m
- 3. Plot Thrust, Accel z, Vert Vel, Vert Pos vs Time (see previous slide)
- 4. Bonus: Enter in Thrust Values to Land Quadcopter with smooth gentle landing (i.e. Kinetic Energy at landing < 250 Joules)

How to Move Forwards

Pitch Forward Thrust is tilted forward Vertical Thrust = Weight

Accelerate Forward Vertical Thrust = Weight Horizontal Thrust = thrust to overcome horizontal inertia + horizontal Drag

How to Pitch Forward

- Pitching Torque
- $\mathsf{T}_{\theta} = \ell \left(\mathsf{T}_{\mathsf{f}} \text{-} \mathsf{T}_{\mathsf{b}} \right)$
- ℓ = length of boom (m)
- To pitch forward $T_b > T_f$

This diagram shows pitching backwards