
Andrew Gibiansky   ::   Math → [Code]
Blog (https://andrew.gibiansky.com)

Archive (https://andrew.gibiansky.com/archive.html)

About (https://andrew.gibiansky.com/pages/about.html)

Quadcopter Dynamics and Simulation
Friday, November 23, 2012

Introduction
A helicopter is a flying vehicle which uses rapidly spinning rotors to push air downwards, thus creating a thrust force
keeping the helicopter aloft. Conventional helicopters have two rotors. These can be arranged as two coplanar rotors both
providing upwards thrust, but spinning in opposite directions (in order to balance the torques exerted upon the body of
the helicopter). The two rotors can also be arranged with one main rotor providing thrust and a smaller side rotor oriented
laterally and counteracting the torque produced by the main rotor. However, these configurations require complicated
machinery to control the direction of motion; a swashplate is used to change the angle of attack on the main rotors. In
order to produce a torque the angle of attack is modulated by the location of each rotor in each stroke, such that more
thrust is produced on one side of the rotor plane than the other. The complicated design of the rotor and swashplate
mechanism presents some problems, increasing construction costs and design complexity.

A quadrotor helicopter (quadcopter) is a helicopter which has four equally spaced rotors, usually arranged at the corners
of a square body. With four independent rotors, the need for a swashplate mechanism is alleviated. The swashplate
mechanism was needed to allow the helicopter to utilize more degrees of freedom, but the same level of control can be
obtained by adding two more rotors.

The development of quadcopters has stalled until very recently, because controlling four independent rotors has proven to
be incredibly difficult and impossible without electronic assistance. The decreasing cost of modern microprocessors has
made electronic and even completely autonomous control of quadcopters feasible for commercial, military, and even
hobbyist purposes.

Quadcopter control is a fundamentally difficult and interesting problem. With six degrees of freedom (three translational
and three rotational) and only four independent inputs (rotor speeds), quadcopters are severely underactuated. In order to
achieve six degrees of freedom, rotational and translational motion are coupled. The resulting dynamics are highly
nonlinear, especially after accounting for the complicated aerodynamic effects. Finally, unlike ground vehicles,
helicopters have very little friction to prevent their motion, so they must provide their own damping in order to stop
moving and remain stable. Together, these factors create a very interesting control problem. We will present a very
simplified model of quadcopter dynamics and design controllers for our dynamics to follow a designated trajectory. We
will then test our controllers with a numerical simulation of a quadcopter in flight.



Quadcopter Dynamics
We will start deriving quadcopter dynamics by introducing the two frames in which will operate. The inertial frame is
defined by the ground, with gravity pointing in the negative  direction. The body frame is defined by the orientation of
the quadcopter, with the rotor axes pointing in the positive  direction and the arms pointing in the  and  directions.

Quadcopter Body Frame and Inertial Frame

Kinematics
Before delving into the physics of quadcopter motion, let us formalize the kinematics in the body and inertial frames. We
define the position and velocity of the quadcopter in the inertial frame as  and ,
respectively. Similarly, we define the roll, pitch, and yaw angles in the body frame as , with

corresponding angular velocities equal to . However, note that the angular velocity vector . The
angular velocity is a vector pointing along the axis of rotation, while  is just the time derivative of yaw, pitch, and roll.
In order to convert these angular velocities into the angular velocity vector, we can use the following relation:

where  is the angular velocity vector in the body frame.

z
z x y

x = (x, y, z)T = ( , ,ẋ ẋ ẏ ż)T

θ = (ϕ, θ, ψ)T

= ( , ,θ̇ ϕ̇ θ̇ ψ̇)T ω ≠ θ̇
θ̇

ω =
⎡

⎣
⎢⎢⎢

1
0
0

0
cϕ

−sϕ

−sθ

cθsϕ

cθcϕ

⎤

⎦
⎥⎥⎥θ̇

ω



We can relate the body and inertial frame by a rotation matrix  which goes from the body frame to the inertial frame.
This matrix is derived by using the ZYZ Euler angle conventions and successively “undoing” the yaw, pitch, and roll.

For a given vector  in the body frame, the corresponding vector is given by  in the inertial frame.

Physics
In order to properly model the dynamics of the system, we need an understanding of the physical properties that govern
it. We will begin with a description of the motors being used for our quadcopter, and then use energy considerations to
derive the forces and thrusts that these motors produce on the entire quadcopter. All motors on the quadcopter are
identical, so we can analyze a single one without loss of generality. Note that adjacent propellers, however, are oriented
opposite each other; if a propeller is spinning “clockwise”, then the two adjacent ones will be spinning “counter-
clockwise”, so that torques are balanced if all propellers are spinning at the same rate.

Motors
Brushless motors are used for all quadcopter applications. For our electric motors, the torque produced is given by

where  is the motor torque,  is the input current,  is the current when there is no load on the motor, and  is the
torque proportionality constant. The voltage across the motor is the sum of the back-EMF and some resistive loss:

where  is the voltage drop across the motor,  is the motor resistance,  is the angular velocity of the motor, and 
is a proportionality constant (indicating back-EMF generated per RPM). We can use this description of our motor to
calculate the power it consumes. The power is

For the purposes of our simple model, we will assume a negligible motor resistance. Then, the power becomes
proportional to the angular velocity:

Further simplifying our model, we assume that . This is not altogether unreasonable, since  is the current
when there is no load, and is thus rather small. In practice, this approximation holds well enough. Thus, we obtain our

R

R =

⎡

⎣
⎢⎢⎢

−cϕcψ cθsϕsψ

+cθcψ sϕ cϕsψ

sϕsθ

− −cψ sϕ cϕcθsψ

−cϕcθcψ sϕsψ

cϕsθ

sθsψ

−cψ sθ

cθ

⎤

⎦
⎥⎥⎥

v ⃗  Rv ⃗ 

τ = (I − )Kt I0

τ I I0 Kt

V = I + ωRm Kv

V Rm ω Kv

P = IV =
(τ + )( + τ + ω)KtI0 KtI0Rm Rm KtKv

Kt
2

P ≈
(τ + ) ωKtI0 Kv

Kt

≪ τKtI0 I0



final, simplified equation for power:

Forces
The power is used to keep the quadcopter aloft. By conservation of energy, we know that the energy the motor expends in
a given time period is equal to the force generated on the propeller times the distance that the air it displaces moves
( ). Equivalently, the power is equal to the thrust times the air velocity ( ).

We assume vehicle speeds are low, so  is the air velocity when hovering. We also assume that the free stream velocity,
, is zero (the air in the surrounding environment is stationary relative to the quadcopter). Momentum theory gives us

the equation for hover velocity as a function of thrust,

where  is the density of the surrounding air and  is the area swept out by the rotor. Using our simplified equation for
power, we can then write

Note that in the general case, ; in this case, the torque is proportional to the thrust  by some constant ratio
 determined by the blade configuration and parameters. Solving for the thrust magnitude , we obtain that thrust is

proportional to the square of angular velocity of the motor:

where  is some appropriately dimensioned constant. Summing over all the motors, we find that the total thrust on the
quadcopter (in the body frame) is given by

In addition to the thrust force, we will model friction as a force proportional to the linear velocity in each direction. This
is a highly simplified view of fluid friction, but will be sufficient for our modeling and simulation. Our global drag forces

P ≈ τω.
Kv

Kt

P ⋅ d t = F ⋅ d x P = F d x
d t

P = Tvh

vh

v∞

=vh
T

2ρA
‾ ‾‾‾‾

√
ρ A

P = τω = Tω = .
Kv

Kt

KvKτ

Kt

T
3
2

2ρA‾ ‾‾‾√

τ = ×r ⃗  F⃗  T
Kτ T

T = = k( ω)
KvKτ 2ρA‾ ‾‾‾√

Kt

2

ω2

k

= = k .TB ∑
i=1

4

Ti

⎡

⎣
⎢⎢⎢

0
0

∑ ωi
2

⎤

⎦
⎥⎥⎥



will be modeled by an additional force term

If additional precision is desired, the constant  can be separated into three separate friction constants, one for each
direction of motion. If we were to do this, we would want to model friction in the body frame rather than the inertial
frame.

Torques
Now that we have computed the forces on the quadcopter, we would also like to compute the torques. Each rotor
contributes some torque about the body  axis. This torque is the torque required to keep the propeller spinning and
providing thrust; it creates the instantaneous angular acceleration and overcomes the frictional drag forces. The drag
equation from fluid dynamics gives us the frictional force:

where  is the surrounding fluid density,  is the reference area (propeller cross-section, not area swept out by the
propeller), and  is a dimensionless constant. This, while only accurate in some in some cases, is good enough for our
purposes. This implies that the torque due to drag is given by

where  is the angular velocity of the propeller,  is the radius of the propeller, and  is some appropriately
dimensioned constant. Note that we’ve assumed that all the force is applied at the tip of the propeller, which is certainly
inaccurate; however, the only result that matters for our purposes is that the drag torque is proportional to the square of
the angular velocity. We can then write the complete torque about the  axis for the th motor:

where  is the moment of inertia about the motor  axis,  is the angular acceleration of the propeller, and  is our drag
coefficient. Note that in steady state flight (i.e. not takeoff or landing), , since most of the time the propellers will
be maintaining a constant (or almost constant) thrust and won’t be accelerating. Thus, we ignore this term, simplifying
the entire expression to

where the  term is positive for the th propeller if the propeller is spinning clockwise and negative if it is
spinning counterclockwise. The total torque about the  axis is given by the sum of all the torques from each propeller:

=FD

⎡

⎣
⎢
⎢

−kd ẋ
−kd ẏ
−kd ż

⎤

⎦
⎥
⎥

kd

z

= ρ A .FD
1
2

CD v2

ρ A
CD

= Rρ A = Rρ A(ωR = bτD
1
2

CD v2 1
2

CD )2 ω2

ω R b

z i

= b +τz ω2 IM ω̇

IM z ω̇ b
≈ 0ω̇

= (−1 b .τz )i+1 ωi
2

(−1)i+1 i
z



The roll and pitch torques are derived from standard mechanics. We can arbitrarily choose the  and  motors
to be on the roll axis, so

Correspondingly, the pitch torque is given by a similar expression

where  is the distance from the center of the quadcopter to any of the propellers. All together, we find that the torques in
the body frame are

The model we’ve derived so far is highly simplified. We ignore a multitude of advanced effects that contribute to the
highly nonlinear dynamics of a quadcopter. We ignore rotational drag forces (our rotational velocities are relatively low),
blade flapping (deformation of propeller blades due to high velocities and flexible materials), surrounding fluid velocities
(wind), etc. With that said, we now have all the parts necessary to write out the dynamics of our quadcopter.

Equations of Motion
In the inertial frame, the acceleration of the quadcopter is due to thrust, gravity, and linear friction. We can obtain the
thrust vector in the inertial frame by using our rotation matrix  to map the thrust vector from the body frame to the
inertial frame. Thus, the linear motion can be summarized as

where  is the position of the quadcopter,  is the acceleration due to gravity,  is the drag force, and  is the thrust
vector in the body frame. While it is convenient to have the linear equations of motion in the inertial frame, the rotational
equations of motion are useful to us in the body frame, so that we can express rotations about the center of the
quadcopter instead of about our inertial center. We derive the rotational equations of motion from Euler’s equations for
rigid body dynamics. Expressed in vector form, Euler’s equations are written as

where  is the angular velocity vector,  is the inertia matrix, and  is a vector of external torques. We can rewrite this as

= b ( − + − )τψ ω1
2 ω2

2 ω3
2 ω4

2

i = 1 i = 3

= ∑ r × T = L(k − k ) = Lk( − )τϕ ω1
2 ω3

2 ω1
2 ω3

2

= Lk( − )τθ ω2
2 ω4

2

L

=τB

⎡

⎣
⎢⎢⎢

Lk( − )ω1
2 ω3

2

Lk( − )ω2
2 ω4

2

b ( − + − )ω1
2 ω2

2 ω3
2 ω4

2

⎤

⎦
⎥⎥⎥

R

m = + R +ẍ
⎡

⎣
⎢
⎢

0
0

−mg

⎤

⎦
⎥
⎥ TB FD

x ⃗  g FD TB

I + ω × (Iω) = τω̇

ω I τ



We can model our quadcopter as two thin uniform rods crossed at the origin with a point mass (motor) at the end of each.
With this in mind, it’s clear that the symmetries result in a diagonal inertia matrix of the form

Therefore, we obtain our final result for the body frame rotational equations of motion

Simulation
Now that we have complete equations of motion describing the dynamics of the system, we can create a simulation
environment in which to test and view the results of various inputs and controllers. Although more advanced methods are
available, we can quickly write a simulator which utilizes Euler’s method for solving differential equations to evolve the
system state. In MATLAB, this simulator would be written as follows.

= = (τ − ω × (Iω)) .ω̇
⎡

⎣
⎢⎢⎢

ω̇x

ω̇y

ω̇z

⎤

⎦
⎥⎥⎥ I −1

I = .
⎡

⎣
⎢⎢⎢

Ixx

0
0

0
Iyy

0

0
0
Izz

⎤

⎦
⎥⎥⎥

= −ω̇

⎡

⎣

⎢⎢⎢
τϕIxx

−1

τθIyy
−1

τψ Izz
−1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

−Iyy Izz

Ixx
ωyωz

−Izz Ixx
Iyy

ωxωz

−Ixx Iyy

Izz
ωxωy

⎤

⎦

⎥⎥⎥⎥



% Simulation times, in seconds.
start_time = 0;
end_time = 10;
dt = 0.005;
times = start_time:dt:end_time;

% Number of points in the simulation.
N = numel(times);

% Initial simulation state.
x = [0; 0; 10];
xdot = zeros(3, 1);
theta = zeros(3, 1);

% Simulate some disturbance in the angular velocity.
% The magnitude of the deviation is in radians / second.
deviation = 100;
thetadot = deg2rad(2 * deviation * rand(3, 1) - deviation);

% Step through the simulation, updating the state.
for t = times

% Take input from our controller.
    i = input(t);

    omega = thetadot2omega(thetadot, theta);

% Compute linear and angular accelerations.
    a = acceleration(i, theta, xdot, m, g, k, kd);
    omegadot = angular_acceleration(i, omega, I, L, b, k);

    omega = omega + dt * omegadot;
    thetadot = omega2thetadot(omega, theta); 
    theta = theta + dt * thetadot;
    xdot = xdot + dt * a;
    x = x + dt * xdot;
end

We would then need functions to compute all of the physical forces and torques.



% Compute thrust given current inputs and thrust coefficient.
function T = thrust(inputs, k)

% Inputs are values for ${\omega_i}^2$
    T = [0; 0; k * sum(inputs)];
end

% Compute torques, given current inputs, length, drag coefficient, and thrust 
coefficient.
function tau = torques(inputs, L, b, k)

% Inputs are values for ${\omega_i}^2$
    tau = [
        L * k * (inputs(1) - inputs(3))
        L * k * (inputs(2) - inputs(4))
        b * (inputs(1) - inputs(2) + inputs(3) - inputs(4))
    ];
end

function a = acceleration(inputs, angles, xdot, m, g, k, kd)
    gravity = [0; 0; -g];
    R = rotation(angles);
    T = R * thrust(inputs, k);
    Fd = -kd * xdot;
    a = gravity + 1 / m * T + Fd;
end

function omegadot = angular_acceleration(inputs, omega, I, L, b, k)
    tau = torques(inputs, L, b, k);
    omegaddot = inv(I) * (tau - cross(omega, I * omega));
end

We would also need values for all of our physical constants, a function to compute the rotation matrix , and functions to
convert from an angular velocity vector  to the derivatives of roll, pitch, and yaw and vice-versa. These are not shown.
We can then draw the quadcopter in a three-dimensional visualization which is updated as the simulation is running.

R
ω



Quadcopter Simulation. Bars above each propeller represent, roughly, relative thrust magnitudes.

Control
The purpose of deriving a mathematical model of a quadcopter is to assist in developing controllers for physical
quadcopters. The inputs to our system consist of the angular velocities of each rotor, since all we can control is the
voltages across the motors. Note that in our simplified model, we only use the square of the angular velocities, , and
never the angular velocity itself, . For notational simplicity, let us introduce the inputs . Since we can set ,
we can clearly set  as well. With this, we can write our system as a first order differential equation in state space. Let

 be the position in space of the quadcopter,  be the quadcopter linear velocity,  be the roll, pitch, and yaw angles,
and  be the angular velocity vector. (Note that all of these are 3-vectors.) With these being our state, we can write the
state space equations for the evolution of our state.

ωi
2

ωi =γi ωi
2 ωi

γi

x1 x2 x3

x4



Note that our inputs are not used in these equations directly. However, as we will see, we can choose values for  and ,
and then solve for values of .

PD Control
In order to control the quadcopter, we will use a PD control, with a component proportional to the error between our
desired trajectory and the observed trajectory, and a component proportional to the derivative of the error. Our quadcopter

will only have a gyro, so we will only be able to use the angle derivatives , , and  in our controller; these measured
values will give us the derivative of our error, and their integral will provide us with the actual error. We would like to
stabilize the helicopter in a horizontal position, so our desired velocities and angles will all be zero. Torques are related to
our angular velocities by , so we would like to set the torques proportional to the output of our controller, with

. Thus,

We have previously derived the relationship between torque and our inputs, so we know that

This gives us a set of three equations with four unknowns. We can constrain this by enforcing the constraint that our

x1̇

x2̇

x3̇

x4̇

= x2

= + R +
⎡

⎣
⎢
⎢

0
0

−g

⎤

⎦
⎥
⎥

1
m

TB
1
m

FD

=
⎡

⎣
⎢⎢⎢

1
0
0

0
cϕ

−sϕ

−sθ

cθsϕ

cθcϕ

⎤

⎦
⎥⎥⎥

−1

x4

= −

⎡

⎣

⎢⎢⎢
τϕIxx

−1

τθIyy
−1

τψ Izz
−1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

−Iyy Izz

Ixx
ωyωz

−Izz Ixx
Iyy

ωxωz

−Ixx Iyy

Izz
ωxωy

⎤

⎦

⎥⎥⎥⎥

τ T
γi

ϕ̇ θ̇ ψ̇

τ = Iθ̈
τ = Iu(t)

=
⎡

⎣
⎢⎢⎢

τϕ

τθ

τψ

⎤

⎦
⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

− ( + d t)Ixx Kd ϕ̇ Kp ∫ T
0 ϕ̇

− ( + d t)Iyy Kd θ̇ Kp ∫ T
0 θ̇

− ( + d t)Izz Kd ψ̇ Kp ∫ T
0 ψ̇

⎤

⎦

⎥⎥⎥⎥⎥

= =τB

⎡

⎣
⎢
⎢

Lk( − )γ1 γ3

Lk( − )γ2 γ4

b ( − + − )γ1 γ2 γ3 γ4

⎤

⎦
⎥
⎥

⎡

⎣

⎢⎢⎢⎢⎢

− ( + d t)Ixx Kd ϕ̇ Kp ∫ T
0 ϕ̇

− ( + d t)Iyy Kd θ̇ Kp ∫ T
0 θ̇

− ( + d t)Izz Kd ψ̇ Kp ∫ T
0 ψ̇

⎤

⎦

⎥⎥⎥⎥⎥



inputs must keep the quadcopter aloft:

Note that this equation ignores the fact that the thrust will not be pointed directly up. This will limit the applicability of
our controller, but should not cause major problems for small deviations from stability. If we had a way of determining
the current angle accurately, we could compensate. If our gyro is precise enough, we can integrate the values obtained
from the gyro to get the angles  and . In this case, we can calculate the thrust necessary to keep the quadcopter aloft
by projecting the thrust  onto the inertial  axis. We find that

Therefore, with a precise angle measurement, we can instead enforce the requirement that the thrust be equal to

in which case the component of the thrust pointing along the positive  axis will be equal to . We know that the thrust
is proportional to a weighted sum of the inputs:

With this extra constraint, we have a set of four linear equations with four unknowns . We can then solve for each ,
and obtain the following input values:

This is a complete specification for our PD controller. We can simulate this controller using our simulation environment.
The controller drives the angular velocities and angles to zero.

T = mg.

θ ϕ
mg z

= mg cos θ cos ϕTproj

T =
mg

cos θ cos ϕ

z mg

T = = k ∑ ⟹ ∑ =
mg

cos θ cos ϕ
γi γi

mg
k cos θ cos ϕ

γi γi

γ1

γ2

γ3

γ4

= −
mg

4k cos θ cos ϕ
2b + kLeϕIxx eψ Izz

4bkL

= + −
mg

4k cos θ cos ϕ
eψ Izz

4b
eθIyy

2kL

= −
mg

4k cos θ cos ϕ
−2b + kLeϕIxx eψ Izz

4bkL

= + +
mg

4k cos θ cos ϕ
eψ Izz

4b
eθIyy

2kL



Left: Angular velocities. Right: angular displacements. , ,  are coded as red, green, and blue.

However, note that the angles are not completely driven to zero. The average steady state error (error after 10 seconds of
simulation) is approximately 0.3 . This is a common problem with using PD controllers for mechanical systems, and can
be partially alleviated with a PID controller, as we will discuss in the next section.

In addition, note that since we are only controlling angular velocities, our positions and linear velocities do not converge
to zero. However, the  position will remain constant, because we have constrained the total vertical thrust to be such that
it keeps the quadcopter perfectly aloft, without ascending or descending. However, this is really nothing more than a
curiosity. With the limited sensing that we have available to us, there is nothing we can do to control the linear position
and velocity of the quadcopter. While in theory we could compute the linear velocities and positions from the angular
velocities, in practice the values will be so noisy as to be completely useless. Thus, we will restrict ourselves to just
stabilizing the quadcopter angle and angular velocity. (Traditionally, navigation is done by a human, and stabilization is

ϕ θ ψ

∘

z



there simply to make control easier for the human operator.)

We have implemented this PD control for use in our simulation. The controller is implemented as a function which is
given some state (corresponding to controller state, not system state) and the sensor inputs, and must compute the inputs

 and the updated state. The code for a PD control follows.

% Compute system inputs and updated state.
% Note that input = [$\gamma_1$, $\ldots$, $\gamma_4$]
function [input, state] = pd_controller(state, thetadot)

% Controller gains, tuned by hand and intuition.
    Kd = 4;
    Kp = 3;

% Initialize the integral if necessary.
    if ~isfield(state, 'integral')
        params.integral = zeros(3, 1);
    end

% Compute total thrust
    total = state.m * state.g / state.k / (cos(state.integral(1)) * 
cos(state.integral(2)));

% Compute errors
    e = Kd * thetadot + Kp * params.integral;

% Solve for the inputs, $\gamma_i$
    input = error2inputs(params, accels, total);

% Update the state
    params.integral = params.integral + params.dt .* thetadot;
end

PID Control
PD controllers are nice in their simplicity and ease of implementation, but they are often inadequate for controlling
mechanical systems. Especially in the presence of noise and disturbances, PD controllers will often lead to steady state
error. A PID control is a PD control with another term added, which is proportional to the integral of the process variable.
Adding an integral term causes any remaining steady-state error to build up and enact a change, so a PID controller
should be able to track our trajectory (and stabilize the quadcopter) with a significantly smaller steady-state error. The
equations remain identical to the ones presented in the PD case, but with an additional term in the error:

γi



However, PID controls come with their own shortcomings. One problem that commonly occurs with a PID control is
known as integral windup.

In some cases, integral wind-up can cause lengthy oscillations instead of settling. In other cases, wind-up may actually
cause the system to become unstable, instead of taking longer to reach a steady state.

If there is a large disturbance in the process variable, this large disturbance is integrated over time, becoming a still larger

eϕ

eθ

eψ

= + d t + d td tKd ϕ̇ Kp ∫
T

0
ϕ̇ Ki ∫

T

0 ∫
T

0
ϕ̇

= + d t + d td tKd θ̇ Kp ∫
T

0
θ̇ Ki ∫

T

0 ∫
T

0
θ̇

= + d t + d td tKd ψ̇ Kp ∫
T

0
ψ̇ Ki ∫

T

0 ∫
T

0
ψ̇



control signal (due to the integral term). However, even once the system stabilizes, the integral is still large, thus causing
the controller to overshoot its target. It may then begin a series of dieing down oscillations, become unstable, or simply
take an incredibly long time to reach a steady state. In order to avoid this, we disable the integral function until we reach
something close to the steady state. Once we are in a controllable region near the desired steady state, we turn on the
integral function, which pushes the system towards a low steady-state error.

With a properly implemented PID, we achieve an error of approximately 0.06  after 10 seconds.

We have implemented this PID control for use in simulation, in the same way as with the PD controller shown earlier.
Note that there is an additional parameter to tune in a PID. The disturbances used for all the test cases are identical,
shown to compare the controllers.

∘



% Compute system inputs and updated state.
% Note that input = [$\gamma_1$, $\ldots$, $\gamma_4$]
function [input, state] = pid_controller(state, thetadot)

% Controller gains, tuned by hand and intuition.
    Kd = 4;
    Kp = 3;
    Ki = 5.5;

% Initialize the integral if necessary.
    if ~isfield(state, 'integral')
        params.integral = zeros(3, 1);
        params.integral2 = zeros(3, 1);
    end

% Prevent wind-up
    if max(abs(params.integral2)) > 0.01
        params.integral2(:) = 0;
    end

% Compute total thrust
    total = state.m * state.g / state.k / (cos(state.integral(1)) * 
cos(state.integral(2)));

% Compute errors
    e = Kd * thetadot + Kp * params.integral - Ki * params.integral2;

% Solve for the inputs, $\gamma_i$
    input = error2inputs(params, accels, total);

% Update the state
    params.integral = params.integral + params.dt .* thetadot;
    params.integral2 = params.integral2 + params.dt .* params.integral;
end

Automatic PID Tuning
Although PID control has the potential to perform very well, it turns out that the quality of the controller is highly
dependent on the gain parameters. Tuning the parameters by hand may be quite difficult, as the ratios of the parameters is
as important as the magnitudes of the parameters themselves; often, tuning parameters requires detailed knowledge of the
system and an understanding of the conditions in which the PID control will be used. The parameters we chose
previously were tuned by hand for good performance, simply by running simulations with many possibly disturbances
and parameter values, and choosing something that worked reasonably well. This method is clearly suboptimal, not only



because it can be very difficult and labor-intensive (and sometimes more or less impossible) but also because the
resulting gains are not in any way guaranteed to be optimal or even close to optimal.

Ideally, we would be able to use an algorithm to analyze a system and output the “optimal” PID gains, for some
reasonable definition of optimal. This problem has been studied in depth, and many methods have been proposed. Many
of these methods require detailed knowledge of the system being modeled, and some rely on properties of the system,
such as stability or linearity. The method we will use for choosing our PID parameters is a method known as extremum
seeking.

Extremum seeking works exactly as the name implies. We define the “optimal” set of parameters as some vector

 which minimizes some cost function . In our case, we would like to define a cost function that
penalizes high error and error over extended durations of time. One candidate cost function is given by

where  is the error in following some reference trajectory with some initial disturbance using a set of parameters

. Suppose we were able to somehow compute the gradient of this cost function, . In that case, we could
iteratively improve our parameter vector by defining a parameter update rule

where  is the parameter vector after  iterations and  is some step size which dictates how much we adjust our

parameter vector at each step of the iteration. As , the cost function  will approach a local minimum in the
space of PID parameters.

The question remains as to how we can estimate . By definition,

We know how to compute . Using this, we can approximate the derivative with respect to any of the gains
numerically, simply by computing

where  is the unit vector in the  direction. As , this approximation becomes better. Using this approximation,
we can minimize our cost function and achieve locally optimal PID parameters. We can start with randomly initialized

positive weights, disturb the system in some set manner, evaluate  by simulating the system for different PID

= ( , , )θ ⃗  Kp Ki Kd J( )θ ⃗ 

J( ) = e(t, d tθ ⃗  1
−tf to ∫

tf

t0
θ ⃗ )2

e(t, )θ ⃗ 

θ ⃗  ∇J( )θ ⃗ 

(k + 1) = (k) − α∇J( )θ ⃗  θ ⃗  θ ⃗ 

(k)θ ⃗  k α
k → ∞ J( )θ ⃗ 

∇J( )θ ⃗ 

∇J( ) = ( J( ), J( ), J( )) .θ ⃗  ∂
∂Kp

θ ⃗  ∂
∂Ki

θ ⃗  ∂
∂Kd

θ ⃗ 

J( )θ ⃗ 

J( ) ≈
∂

∂K
θ ⃗  J( + δ ⋅ ) − J( − δ ⋅ )θ ⃗  û K θ ⃗  û K

2δ

û K K δ → 0

J( )θ ⃗ 



parameters, and then compute the gradient. Then, using the method of gradient descent, we can iteratively oprtimize our
gains until we have some form of convergence.

The gradient descent method does, however, have several problems. First of all, although it finds a local minimum, that
minimum is only guaranteed to be a local minimum - there may be other minima which are better global minima. In
order to avoid choosing suboptimal local minima in the cost function, we repeat our optimization several times, and
choose the best result. We initialize our PID parameters randomly, so each time we run the optimization we will get a
different result. In addition, instead of choosing disturbance and then optimizing the response to that disturbance, we use
several random disturbances at each iteration and use the average response to compute costs and gradients. This ensures
that our parameters are general and not optimized for a specific disturbance. In addition, we vary the step size and the
number of disturbances to try per iteration, in order to increase the sensitivity of our results as our iteration continues. We
stop iterations when we detect a steady state, which we do by computing a linear regression on the most recent costs and
iterating until the slope is statistically indistinguishable from zero using a 99% confidence interval.

Using our quadcopter simulation, we can define a function that computes the cost for a given set of PID parameters.

function J = cost(theta)
% Create a controller using the given gains.

    control = controller('pid', theta(1), theta(2), theta(3));

% Perform a simulation.
    data = simulate(control);

% Compute the integral, $\frac{1}{t_f - t_0} \int_{t_0}^{t_f} e(t)^2 dt$
    t0 = 0;
    tf = 1;
    J = 1/(tf - t0) * sum(data.theta(data.t >= t0 & data.t <= tf) .^ 2) * 
data.dt;
end

We can use this function to approximate a derivative with respect to a gain:

% Compute derivative with respect to first parameter.
delta = 0.01;
var = [1, 0, 0];
derivative = (cost(theta + delta * var) - cost(theta - delta * var)) / (2 * 
delta);

We can then use our gradient descent method (with all modifications described above) to minimize the cost function and
obtain a good set of PID parameters. We can verify that our tuning method is working by visualizing the cost function
versus the iteration number, and seeing that the cost function is indeed going down and stabilizing at a local minimum.



Cost function plotted as a function of iteration number, along with moving average. Tuning stops when the slope of the
moving average becomes statistically indistinguishable from zero with a 99% confidence interval.

We can compare the manually-chosen PID parameters with those designed by the algorithm.



Top: Angular velocities and angular displacements, using manually tuned PID controller. Bottom: Angular velocities and
angular displacements, using automatically tuned PID controller.

The automatically-chosen PID parameters do significantly better overall. They have significantly smaller swings in
value, overshoot significantly less, and converge faster. However, the error in the angular displacement takes longer to
converge to zero with the automatically tuned parameters than with the manually turned parameters, although the initial
convergence is much better when the parameters are chosen via gradient descent. This is due to the fact that our cost
function emphasizes squared error, and thus gives priority to minimizing overall error magnitude rather than long-term
convergence. We could easily modify our cost function to give higher priority to long-term error, in which case the
automatically-tuned parameters are likely to do better.

Conclusion
We derived equations of motion for a quadcopter, starting with the voltage-torque relation for the brushless motors and
working through the quadcopter kinematics and dynamics. We ignored aerodynamical effects such as blade-flapping and



« The Digital State (https://andrew.gibiansky.com/blog/electrical-engineering/the-digital-state)

Digital Design Tools: Verilog and HDLs »
(https://andrew.gibiansky.com/blog/electrical-engineering/digital-design-tools-verilog-and-hdls)

non-zero free stream velocity, but included air friction as a linear drag force in all directions. We used the equations of
motion to create a simulator in which to test and visualize quadcopter control mechanisms.

We began with a simple PD controller. Although the PD controller worked, it left a significant steady-state error. In order
to decrease the steady-state error, we added an integral term in order to create a PID controller. We tested the PID
controller (with minor modifications to prevent integral wind-up) and found that it was better at preventing steady-state
error than the PD controller when presented with the same disturbances and using the same proportional and derivative
gains. We also found that tuning the PID controller was difficult, and would often lead to an unstable system for
unknown reasons. In order to avoid the difficulty of PID tuning and find the optimal set of parameters, we used a
gradient-descent based extremum seeking method in order to numerically estimate gradients of a cost function in PID-
parameter space and iteratively choose a set of parameters to minimize the cost function. We found that the resulting
controller was significantly better than the one using manually turned parameters.

Friday, November 23, 2012 - Posted in physics (https://andrew.gibiansky.com/blog/categories/physics), simulations
(https://andrew.gibiansky.com/blog/categories/simulations)

Contact
If you've got questions, comments, suggestions, or just want to talk, feel free to email me at andrew.gibiansky on Gmail.

Recent Posts (RSS)
Bringing HPC Techniques to Deep Learning (https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce)

NRAM: Theano Implementation (https://andrew.gibiansky.com/blog/machine-learning/nram-2)

NRAM: Neural Random Access Memory (https://andrew.gibiansky.com/blog/machine-learning/nram-1)

jq Primer: Munging JSON Data (https://andrew.gibiansky.com/blog/command-line/jq-primer)

Creating a Culture of Good Engineering (https://andrew.gibiansky.com/blog/thoughts/engineering-practices)

Common Techniques in Molecular Biology (https://andrew.gibiansky.com/blog/genetics/technique-primers)



CRISPR Gene Editing (https://andrew.gibiansky.com/blog/genetics/crispr)

Quick Coding Intro to Neural Networks (https://andrew.gibiansky.com/blog/machine-learning/coding-intro-to-nns)

Writing a SAT Solver (https://andrew.gibiansky.com/blog/verification/writing-a-sat-solver)

Lattice Boltzmann Method (https://andrew.gibiansky.com/blog/physics/lattice-boltzmann-method)

Finger Trees (https://andrew.gibiansky.com/blog/haskell/finger-trees)

Abstraction in Haskell (Monoids, Functors, Monads) (https://andrew.gibiansky.com/blog/haskell/haskell-abstractions)

Typeclasses: Polymorphism in Haskell (https://andrew.gibiansky.com/blog/haskell/haskell-typeclasses)

Your First Haskell Application (with Gloss) (https://andrew.gibiansky.com/blog/haskell/haskell-gloss)

Intro to Haskell Syntax (https://andrew.gibiansky.com/blog/haskell/haskell-syntax)

Linguistics and Syntax (https://andrew.gibiansky.com/blog/linguistics/why-syntax)

Speech Recognition with Neural Networks
(https://andrew.gibiansky.com/blog/machine-learning/speech-recognition-neural-networks)

Matrix Multiplication (https://andrew.gibiansky.com/blog/mathematics/matrix-multiplication)

Recurrent Neural Networks (https://andrew.gibiansky.com/blog/machine-learning/recurrent-neural-networks)

Gauss Newton Matrix (https://andrew.gibiansky.com/blog/machine-learning/gauss-newton-matrix)

Convolutional Neural Networks (https://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks)

Fully Connected Neural Network Algorithms
(https://andrew.gibiansky.com/blog/machine-learning/fully-connected-neural-networks)

Hessian Free Optimization (https://andrew.gibiansky.com/blog/machine-learning/hessian-free-optimization)

Conjugate Gradient (https://andrew.gibiansky.com/blog/machine-learning/conjugate-gradient)

Gradient Descent Typeclasses in Haskell (https://andrew.gibiansky.com/blog/machine-learning/gradient-descent)

Homophony Groups in Haskell (https://andrew.gibiansky.com/blog/linguistics/homophony-groups)

Creating Language Kernels for IPython (https://andrew.gibiansky.com/blog/ipython/ipython-kernels)

Detecting Genetic Copynumber with Gaussian Mixture Models
(https://andrew.gibiansky.com/blog/machine-learning/qpcr-blog-post)

K Nearest Neighbors: Simplest Machine Learning
(https://andrew.gibiansky.com/blog/machine-learning/k-nearest-neighbors-simplest-machine-learning)

Cool Linear Algebra: Singular Value Decomposition
(https://andrew.gibiansky.com/blog/mathematics/cool-linear-algebra-singular-value-decomposition)

Accelerating Options Pricing via Fourier Transforms
(https://andrew.gibiansky.com/blog/economics/accelerating-options-pricing-via-fourier-transforms)

Pricing Stock Options via the Binomial Model
(https://andrew.gibiansky.com/blog/economics/binomial-options-pricing-model)

Your Very First Microprocessor (https://andrew.gibiansky.com/blog/electrical-engineering/your-very-first-microprocessor)

Circuits and Arithmetic (https://andrew.gibiansky.com/blog/electrical-engineering/circuits-and-arithmetic)

Digital Design Tools: Verilog and HDLs
(https://andrew.gibiansky.com/blog/electrical-engineering/digital-design-tools-verilog-and-hdls)



Quadcopter Dynamics and Simulation (https://andrew.gibiansky.com/blog/physics/quadcopter-dynamics)

The Digital State (https://andrew.gibiansky.com/blog/electrical-engineering/the-digital-state)

Computing with Transistors (https://andrew.gibiansky.com/blog/electrical-engineering/computing-with-transistors)

Machine Learning: Neural Networks
(https://andrew.gibiansky.com/blog/machine-learning/machine-learning-neural-networks)

Machine Learning: the Basics (https://andrew.gibiansky.com/blog/machine-learning/machine-learning-the-basics)

Iranian Political Embargoes, and their Non-Existent Impact on Gasoline Prices
(https://andrew.gibiansky.com/blog/economics/iranian-political-embargoes-and-their-non-existent-impact-on-gasoline-prices)

Computational Fluid Dynamics (https://andrew.gibiansky.com/blog/physics/computational-fluid-dynamics)

Fluid Dynamics: The Navier-Stokes Equations
(https://andrew.gibiansky.com/blog/physics/fluid-dynamics-the-navier-stokes-equations)

Image Morphing (https://andrew.gibiansky.com/blog/image-processing/image-morphing)

The content on this blog is licensed under the CC-BY-SA license (https://creativecommons.org/licenses/by-sa/2.0/).


