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Abstract 
In case of catastrophes such as earthquake, flood, it is 

difficult to reach out to find people quickly due to the 

uncertainty of the environment. Recently, quad-helicopter 

is more researched, and it is getting an alternative way to 

use it in catastrophes. In this project, we present planning 

and control of a quadrotor in 3-D among obstacles. 

Initializing starting point and destination point, we utilize 

Dijkstra and A* algorithm to find the shortest path in a 

map. On top of that, we also use the minimum snap-

trajectory which is used to 9th polynomial and 4th 

derivative cost minimization. In this trajectory process, 

we emulate the time allocation by using gradient descent 

and add a task about collision test so that we are able to 

obtain an optimized path with lowest energy cost. Within 

geometric tracking control of a quadrotor UAV on SE(3) 

by Taeyoung Lee, we design a controller to track our 

desired-trajectory perfectly. This project demonstrates the 

possibility of use of quadrotors based on an optimized 

way to design a trajectory and track it under low-energy 

cost.  

Introduction 
Reconnaissance, monitoring, and gathering other 

information in a disaster scene is crucial and must be done 

in the timeliest manner possible. Often, the physicality of 

a quadrotor for this scenario is also limited due to the 

cluttered and dense environments. Therefore, from 

mapping, trajectory generation, to execution using robust 

controller must be done in a matter of seconds only using 

onboard computer. Among these challenges, the 

trajectory planning can be addressed by exploiting the fact 

that the system, in this case, a quadrotor, has the property 

of differential flatness, in other words, the state and input 

space of the dynamical system can be mapped into a set 

of flat output variables and their derivatives. In 

conjunction with utilizing polynomial basis functions, it 

enables fast algebraic calculation of the trajectory and the 

control inputs. Additionally, since polynomial trajectories 

are differentiable, the continuity of derivatives between 

two connected trajectories is obtainable. This fact is 

especially important since a non-smooth, or 

discontinuous trajectories can require the control inputs to 

be unnecessarily high. This trajectory planning technique 

is used in the work of Bry, A. et al [1], and Mellinger and 

Kumar [2]. 

The geometric controller which is utilizing geometric 

manifold, special Euclidean group, SE(3) can be used for 

the trajectory tracking. This approach demonstrated an 

acrobatic maneuver of a quadrotor with exponential 

stability when the attitude error is less than 90° [3]. 

Feedback linearization and robust back-stepping will be 

explored as well. 

Method 
A. Dijkstra and A* algorithm 

Dijkstra's original variant found the shortest path between 

two nodes, but a more common variant fixes a single node 

as the "source" node and finds shortest paths from the 

source to all other nodes in the graph, producing a 

shortest-path tree. Moreover, Dijkstra's algorithm uses a 

heuristic identically equal to zero [4]. 

The A* algorithm is a generalization of Dijkstra's 

algorithm that cuts down on the size of the subgraph that 

must be explored, if additional information is available 

that provides a lower bound on the "distance" to the target 

[5]. 

Here, we modified path route to more optimized route by 

decreasing points when there is no collision in between 2 

nodes. 

B. Minimum snap polynomial trajectory optimization 

Consider a polynomial P of degree 9 such that 

P(t) = 𝑝9𝑡9 + 𝑝8𝑡8 + ⋯ + 𝑝1𝑡 + 𝑝0 

Since input u2 and u3 have up to 4th derivative (snap) of 

the positions, we are interested in optimizing P by 

minimizing snap. Cost function J can be written as 

J = ∫ 𝑃(4)(𝑡)2𝑑𝑡
𝜏

0

= 𝐩𝑇𝐐𝐩 

Where 𝐩  is a column vector of the coefficients of the 

polynomial and 𝐐  is a cost matrix. Now we present 

equality constraints in a form of 

𝐀𝐩 = 𝐛, 𝐛 = [ 𝑥0, 𝑥̇0, 𝑥̈0, 𝑥0, 𝑥0
(4)

 | 𝑥𝜏, 𝑥̇𝜏, 𝑥̈𝜏, 𝑥𝜏, 𝑥𝜏
(4)

 ] 

Now we have a standard quadratic programming (QP). 

C. Piecewise polynomial joint optimization 

In general, multiple segments of the trajectory will be 

need. We will jointly optimize all polynomial segments at 

once by minimizing total sum of all cost function. 

Jtot = 𝐽1 + ⋯ + 𝐽𝐾 = [

𝐩𝟏

⋮
𝐩𝐊

 ]

𝐓

[
𝐐𝟏

⋱
𝐐𝐊

] [

𝐩𝟏

⋮
𝐩𝐊

 ] 

With equality constraints 

[
𝐀𝟏

⋱
𝐀𝐊

] [

𝐩𝟏

⋮
𝐩𝐊

 ] = [
𝐛𝟏

⋮
𝐛𝐊

 ] 

In general, the positions and derivative terms are give at 

the start and end points. Only the positions are given at 

each waypoint, derivative terms are subjected to be 

optimized while ensuing the continuity so that all inputs 

are guaranteed to be continuous. 

Constrained QP is prone to be ill conditioned when the 

dimension of a cost matrix gets large. Here, the dimension 

is 10K. To avoid this problem, we use an unconstrained 

QP by replacing 𝐩  in the cost function with equality 

constraints, 𝐀−𝟏𝐛. 

𝐽𝑡𝑜𝑡 = [
𝐛𝟏

⋮
𝐛𝐊

 ]

𝑇

[
𝐀𝟏

⋱
𝐀𝐊

]

−𝑇

[
𝐐𝟏

⋱
𝐐𝐊

] [
𝐀𝟏

⋱
𝐀𝐊

]

−1

[
𝐛𝟏

⋮
𝐛𝐊

 ] 

Now the decision variables are derivatives, where we 

already know some of elements including the positions  



 
(a) Initial guess of τ 

 
(b) Time allocation with cτ = 50 

 
(c) Time allocation with cτ = 5000 

Fig. 1 Path with 9 segments is generated randomly (from 

0 to 1), as well as time interval, τ (from 1sec to 3sec). 

 

at each waypoint and continuity. This fact can be 

exploited by rearranging the cost matrix so that known 

terms and unknown terms are separated. 

𝐽𝑡𝑜𝑡 = [
𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
]

𝑇

𝐶𝐴−𝑇𝑄𝐴−1𝐶𝑇 [
𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
] = [

𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
]

𝑇

[
𝑅11 𝑅12

𝑅21 𝑅22
] [

𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
] 

By taking derivative of 𝐽𝑡𝑜𝑡 and set it equal to zero gives 

us minimum value, i.e. optimized 𝑏𝑓𝑟𝑒𝑒. 

𝑏𝑓𝑟𝑒𝑒
∗ = −R22

−1𝑅12
𝑇 𝑏𝑓𝑖𝑥 

Optimized derivatives are reordered by applying 𝐂−1 , 

then mapped back to get 𝐩. Constrained QP rendered 0% 

success rate with more than 5 segments in our case. Using 

an unconstrained QP successfully generated optimized 

values with even more than 30 segments. 

C. Time allocation 

Time interval on each segment will be optimized as well 

since we do not know the proper time to reach to the 

destination. This can be done by penalizing the total time, 

adding this penalty to the cost function. 

Jtot = 𝑝𝑇𝑄𝑝 + 𝑐𝜏 ∑ 𝜏𝑖

𝐾

𝑖=1

 

Now we use gradient descent method to update τ until it 

reaches to the minimum Jtot. In figure, initial guess of  

 
Fig. 2 Left trajectory intersects with an obstacle. After 

adding mid-way point, the trajectory becomes collision 

free (Right) 

 

Fig. 3 The overall algorithm structure 

time interval causes overshoot between two end points of 

each segment. After using time allocation, none of the 

segments overshoot between their two end points. Since 

penalty cτ only penalizes the total time, the ratio of 

optimized each time interval remains the same as shown 

in fig. 1. 

D. Collision free trajectory 

If a certain segment intersects with an obstacle, a mid-way 

point is added, then new trajectory is made. fig. 2. shows 

the demonstration of adding new waypoints. 

Dynamics 
Complete state consists of the position and velocity of the 

center of mass and the orientation, which are 

parameterized by Euler angles, and the body angular 

velocity, 𝜔𝑏. 

𝐱 = [𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇, 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟] 
Newton’s equations of motion and Euler equation are  

𝒙̇ = 𝒗 

𝑚𝒗̇ = −𝑚𝑔𝒛𝑤 + 𝑢1𝒛𝑏 

𝑅̇ = 𝑅𝜔̂𝑏 

𝐼𝜔̇𝑏 = −𝜔𝑏 × 𝐼𝜔𝑏 + 𝑀 

Thrust force generated by each rotor always have the 

direction same as body z-axis, 𝒛𝑏. 𝑅(𝜙, 𝜃, 𝜓) is a  

 



 
Fig. 4 Controller structure 

rotation matrix with Z-X-Y Euler angles, yaw, pitch, and  

roll. We will use a geometric controller [3] since the 

attitude error function is defined within SO(3), avoiding 

singularities of Euler angles and ambiguities presented in 

quaternion. The overall controller structure is illustrated 

in fig. 4. 

 

Desired position trajectories that are generated from 

previous section is fed into the trajectory tracking 

controller to track positions and compute 𝒛𝑏,𝑑𝑒𝑠 . Then 

𝒛𝑏,𝑑𝑒𝑠 and 𝜓𝑑 are used to track attitude. 

First, we define position and velocity error as 

𝐞p = 𝒙 − 𝒙𝑑 

𝐞v = 𝒙̇ − 𝒙̇𝑑 

Then desired force vector is defined as 

𝑭𝑑𝑒𝑠 = −𝑘𝑝𝒆𝑝 − 𝑘𝑣𝒆𝑣 + 𝑚𝑔𝒛𝑤 + 𝑚𝒙̈𝑑 

The desired direction of the force is desired body z-axis. 

𝒛𝑏,𝑑𝑒𝑠 =
𝑭𝑑𝑒𝑠

‖𝑭𝑑𝑒𝑠‖
 

Using the fact that the first input 𝑢1 is always aligned with 

𝑧𝑏, we can compute 𝑢1. 

𝑢1 = 𝑭𝑑𝑒𝑠 ∙ 𝒛𝑏 

Desired body x and y-axis can be computed by knowing 

desired yaw angle and 𝒛𝑏,𝑑𝑒𝑠. 

𝒙𝑐,𝑑𝑒𝑠 = [𝑐𝜓 𝑠𝜓 0]𝑇 

𝒚𝑏,𝑑𝑒𝑠 =
𝒛𝑏,𝑑𝑒𝑠 × 𝒙𝑐,𝑑𝑒𝑠

‖𝒛𝑏,𝑑𝑒𝑠 × 𝒙𝑐,𝑑𝑒𝑠‖
, 𝒙𝑏,𝑑𝑒𝑠 = 𝒚𝑏,𝑑𝑒𝑠 × 𝒛𝑏,𝑑𝑒𝑠 

Then the desired rotation matrix can be simply given by 

𝑅𝑑𝑒𝑠 = [𝒙𝑐,𝑑𝑒𝑠, 𝒚𝑏,𝑑𝑒𝑠, 𝒛𝑏,𝑑𝑒𝑠] 
The error function is defined as 

Ψ(𝑅, 𝑅𝑑𝑒𝑠) =
1

2
tr(𝐼3 − 𝑅𝑑𝑒𝑠

𝑇 𝑅) 

Then the attitude tracking error 𝑒𝑅 is chosen to be 

𝑒𝑅 =
1

2
(𝑅𝑑𝑒𝑠

𝑇 𝑅 − 𝑅𝑇𝑅𝑑𝑒𝑠)
∨
 

To define the angular velocity error, they must be 

compared in the same tangent plane in SO(3). 

𝑒𝜔 = 𝜔𝑏 − 𝑅𝑇𝑅𝑑𝑒𝑠𝜔𝑑𝑒𝑠
𝑏  

The control input M is chosen as 

𝑀 = −𝑘𝑅𝑒𝑅 − 𝑘𝜔𝑒𝜔 + 𝜔𝑏 × 𝐼𝜔𝑏

− 𝐼(𝜔̂𝑏𝑅𝑇𝑅𝑑𝑒𝑠𝜔𝑑𝑒𝑠
𝑏 − 𝑅𝑇𝑅𝑑𝑒𝑠𝜔̇𝑑𝑒𝑠

𝑏 ) 

Where 

𝜔𝑑𝑒𝑠
𝑏 = (𝑅𝑑𝑒𝑠

𝑇 𝑅̇𝑑𝑒𝑠)
∨
 

𝜔̇𝑑𝑒𝑠
𝑏 = (𝑅̇𝑑𝑒𝑠

𝑇 𝑅̇𝑑𝑒𝑠 + 𝑅𝑑𝑒𝑠
𝑇 𝑅̈𝑑𝑒𝑠)

∨
 

 

 

 

 
Fig. 5 Quadrotor model 

 
Fig. 6 3D structure of multiple obstacles 

Using this controller guarantees asymptotic stability when 

the gain values are properly chosen. Details about proof 

can be found in [3]. 

Implementation 
A platform to create 3D environment with obstacles [6] is 

used to create a dense terrain including a small window 

with shallow depth, three wide blocks standing in zigzag 

pattern, and a small window with deep depth as shown in 

fig. 6. We used Dijkstra algorithm, given by [6], to 

generate shortest opened waypoints once we feed start 

and end points into the algorithm. Start and end points are 

given as 

start = [5.0 -1 3.5]; stop = [5.0 19.0 .5]; 

We first reduce the number of waypoints by discarding 

intermediate points which do not intersect with an 

obstacle. 

With given path (start, way, and end points) polynomial 

optimization algorithm, which is directly implemented 

using the method in [1],[2], is initialized by initial guess 

of τ by randomly choosing the value ranging from 1 sec  

𝒙c 

𝒚c 
𝜓 



 
(a) Position error, ep (m) and attitude error function, Ψ 

 
(b) Thrust of each rotor (N) 

Fig. 7 Case 1. without external force. 

to 3 sec. Then time allocation algorithm is used to update 

τ using gradient descent in a way that 

τnew = 𝜏𝑜𝑙𝑑 − 𝛼2𝑚−1
∇J

‖∇J‖
 , α = 10−6 

Positive integer m is increased while 𝐽𝜏𝑛𝑒𝑤
< 𝐽𝜏𝑜𝑙𝑑

. The 

stopping criteria is when the difference of 5 latest costs 

are less than 1% of the latest cost. 

Once time is optimized, it checks collisions, which the 

algorithm is provided from [6] and iterates until the  

 
(a) Position error, ep (m) and attitude error function, Ψ 

 

(b) Thrust of each rotor (N) 

Fig. 8 Case 2. with external force. 

trajectory is collision free. Specifically, we use so called 

inflated map, where the obstacles are inflated so that it 

takes into account of the volume of the quadrotor. The 

resulting margin is 25 cm on xy direction and 15 cm on z 

direction. 

The dynamics and the controller is directly implemented 

with the method in [3]. We need a mapping to get 

derivatives of Euler angles to have a complete differential 

equation of the current state. 



[

𝜙̇

𝜃̇
𝜓̇

] = [

𝑐𝜃 0 −𝑐𝜙𝑠𝜃
0 1 𝑠𝜙

𝑠𝜃 0 𝑐𝜙𝑐𝜃
]

−1

[
𝑝
𝑞
𝑟

] 

 

Result 
The physical parameters of the quadrotors are given 

m = 1.477 kg, 𝑑 = 0.263 m, c𝜏𝑓 = 8.004 × 10−4𝑚 

𝐼 = [0.01152;  0.01152;  0.0218] kgm2 

The gain values and time penalty are chosen as 

kp = 11.9, kv = 4.443, kR = 10, kω = 6, cτ = 50 

Initial conditions are chosen including initial disturbances 

x0 = [5.0 − 1 3.5] + [.1 .05 .15] 
ẋ0 = [0 0 0] + [.01 .01 .02] 

[ϕ0 𝜃0 𝜓0] = [0 0 0] + [
𝜋

18
 

𝜋

18
 

𝜋

18
] 

ω0
b = [0 0 0] 

Simulation results are presented in fig. 7, fig. 8. 

Without disturbances, as shown in fig. 7, after escaping 

initial disturbances, the maximum position error is less 

than 5 cm and with attitude error function, they go to zero. 

Maximum attitude error was less than 0.05. Even with 

external force disturbances, both position and attitude 

error reduced to zero as shown in fig. 8. External forces 

are chosen as 

17.7 sec < t < 20 sec, f1 = [0 0 − 6] (N) 

24.8 sec < t < 26.5 sec, f2 = [3 0 3] (N) 

32 sec < t < 34 sec, f3 = [−3 − 1.5 0] (N) 
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