

Nonlinear Control and Planning in Robotics

Final Project

Planning and control of a quadrotor

in 3-D among obstacles

Soowon Kim, Hyungmu Lee

Johns Hopkins University

Abstract
In case of catastrophes such as earthquake, flood, it is

difficult to reach out to find people quickly due to the

uncertainty of the environment. Recently, quad-helicopter

is more researched, and it is getting an alternative way to

use it in catastrophes. In this project, we present planning

and control of a quadrotor in 3-D among obstacles.

Initializing starting point and destination point, we utilize

Dijkstra and A* algorithm to find the shortest path in a

map. On top of that, we also use the minimum snap-

trajectory which is used to 9th polynomial and 4th

derivative cost minimization. In this trajectory process,

we emulate the time allocation by using gradient descent

and add a task about collision test so that we are able to

obtain an optimized path with lowest energy cost. Within

geometric tracking control of a quadrotor UAV on SE(3)

by Taeyoung Lee, we design a controller to track our

desired-trajectory perfectly. This project demonstrates the

possibility of use of quadrotors based on an optimized

way to design a trajectory and track it under low-energy

cost.

Introduction
Reconnaissance, monitoring, and gathering other

information in a disaster scene is crucial and must be done

in the timeliest manner possible. Often, the physicality of

a quadrotor for this scenario is also limited due to the

cluttered and dense environments. Therefore, from

mapping, trajectory generation, to execution using robust

controller must be done in a matter of seconds only using

onboard computer. Among these challenges, the

trajectory planning can be addressed by exploiting the fact

that the system, in this case, a quadrotor, has the property

of differential flatness, in other words, the state and input

space of the dynamical system can be mapped into a set

of flat output variables and their derivatives. In

conjunction with utilizing polynomial basis functions, it

enables fast algebraic calculation of the trajectory and the

control inputs. Additionally, since polynomial trajectories

are differentiable, the continuity of derivatives between

two connected trajectories is obtainable. This fact is

especially important since a non-smooth, or

discontinuous trajectories can require the control inputs to

be unnecessarily high. This trajectory planning technique

is used in the work of Bry, A. et al [1], and Mellinger and

Kumar [2].

The geometric controller which is utilizing geometric

manifold, special Euclidean group, SE(3) can be used for

the trajectory tracking. This approach demonstrated an

acrobatic maneuver of a quadrotor with exponential

stability when the attitude error is less than 90° [3].

Feedback linearization and robust back-stepping will be

explored as well.

Method
A. Dijkstra and A* algorithm

Dijkstra's original variant found the shortest path between

two nodes, but a more common variant fixes a single node

as the "source" node and finds shortest paths from the

source to all other nodes in the graph, producing a

shortest-path tree. Moreover, Dijkstra's algorithm uses a

heuristic identically equal to zero [4].

The A* algorithm is a generalization of Dijkstra's

algorithm that cuts down on the size of the subgraph that

must be explored, if additional information is available

that provides a lower bound on the "distance" to the target

[5].

Here, we modified path route to more optimized route by

decreasing points when there is no collision in between 2

nodes.

B. Minimum snap polynomial trajectory optimization

Consider a polynomial P of degree 9 such that

P(t) = 𝑝9𝑡9 + 𝑝8𝑡8 + ⋯ + 𝑝1𝑡 + 𝑝0

Since input u2 and u3 have up to 4th derivative (snap) of

the positions, we are interested in optimizing P by

minimizing snap. Cost function J can be written as

J = ∫ 𝑃(4)(𝑡)2𝑑𝑡
𝜏

0

= 𝐩𝑇𝐐𝐩

Where 𝐩 is a column vector of the coefficients of the

polynomial and 𝐐 is a cost matrix. Now we present

equality constraints in a form of

𝐀𝐩 = 𝐛, 𝐛 = [𝑥0, 𝑥̇0, 𝑥̈0, 𝑥0, 𝑥0
(4)

 | 𝑥𝜏, 𝑥̇𝜏, 𝑥̈𝜏, 𝑥𝜏, 𝑥𝜏
(4)

]

Now we have a standard quadratic programming (QP).

C. Piecewise polynomial joint optimization

In general, multiple segments of the trajectory will be

need. We will jointly optimize all polynomial segments at

once by minimizing total sum of all cost function.

Jtot = 𝐽1 + ⋯ + 𝐽𝐾 = [

𝐩𝟏

⋮
𝐩𝐊

]

𝐓

[
𝐐𝟏

⋱
𝐐𝐊

] [

𝐩𝟏

⋮
𝐩𝐊

]

With equality constraints

[
𝐀𝟏

⋱
𝐀𝐊

] [

𝐩𝟏

⋮
𝐩𝐊

] = [
𝐛𝟏

⋮
𝐛𝐊

]

In general, the positions and derivative terms are give at

the start and end points. Only the positions are given at

each waypoint, derivative terms are subjected to be

optimized while ensuing the continuity so that all inputs

are guaranteed to be continuous.

Constrained QP is prone to be ill conditioned when the

dimension of a cost matrix gets large. Here, the dimension

is 10K. To avoid this problem, we use an unconstrained

QP by replacing 𝐩 in the cost function with equality

constraints, 𝐀−𝟏𝐛.

𝐽𝑡𝑜𝑡 = [
𝐛𝟏

⋮
𝐛𝐊

]

𝑇

[
𝐀𝟏

⋱
𝐀𝐊

]

−𝑇

[
𝐐𝟏

⋱
𝐐𝐊

] [
𝐀𝟏

⋱
𝐀𝐊

]

−1

[
𝐛𝟏

⋮
𝐛𝐊

]

Now the decision variables are derivatives, where we

already know some of elements including the positions

(a) Initial guess of τ

(b) Time allocation with cτ = 50

(c) Time allocation with cτ = 5000

Fig. 1 Path with 9 segments is generated randomly (from

0 to 1), as well as time interval, τ (from 1sec to 3sec).

at each waypoint and continuity. This fact can be

exploited by rearranging the cost matrix so that known

terms and unknown terms are separated.

𝐽𝑡𝑜𝑡 = [
𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
]

𝑇

𝐶𝐴−𝑇𝑄𝐴−1𝐶𝑇 [
𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
] = [

𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
]

𝑇

[
𝑅11 𝑅12

𝑅21 𝑅22
] [

𝑏𝑓𝑖𝑥

𝑏𝑓𝑟𝑒𝑒
]

By taking derivative of 𝐽𝑡𝑜𝑡 and set it equal to zero gives

us minimum value, i.e. optimized 𝑏𝑓𝑟𝑒𝑒.

𝑏𝑓𝑟𝑒𝑒
∗ = −R22

−1𝑅12
𝑇 𝑏𝑓𝑖𝑥

Optimized derivatives are reordered by applying 𝐂−1 ,

then mapped back to get 𝐩. Constrained QP rendered 0%

success rate with more than 5 segments in our case. Using

an unconstrained QP successfully generated optimized

values with even more than 30 segments.

C. Time allocation

Time interval on each segment will be optimized as well

since we do not know the proper time to reach to the

destination. This can be done by penalizing the total time,

adding this penalty to the cost function.

Jtot = 𝑝𝑇𝑄𝑝 + 𝑐𝜏 ∑ 𝜏𝑖

𝐾

𝑖=1

Now we use gradient descent method to update τ until it

reaches to the minimum Jtot. In figure, initial guess of

Fig. 2 Left trajectory intersects with an obstacle. After

adding mid-way point, the trajectory becomes collision

free (Right)

Fig. 3 The overall algorithm structure

time interval causes overshoot between two end points of

each segment. After using time allocation, none of the

segments overshoot between their two end points. Since

penalty cτ only penalizes the total time, the ratio of

optimized each time interval remains the same as shown

in fig. 1.

D. Collision free trajectory

If a certain segment intersects with an obstacle, a mid-way

point is added, then new trajectory is made. fig. 2. shows

the demonstration of adding new waypoints.

Dynamics
Complete state consists of the position and velocity of the

center of mass and the orientation, which are

parameterized by Euler angles, and the body angular

velocity, 𝜔𝑏.

𝐱 = [𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇, 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟]
Newton’s equations of motion and Euler equation are

𝒙̇ = 𝒗

𝑚𝒗̇ = −𝑚𝑔𝒛𝑤 + 𝑢1𝒛𝑏

𝑅̇ = 𝑅𝜔̂𝑏

𝐼𝜔̇𝑏 = −𝜔𝑏 × 𝐼𝜔𝑏 + 𝑀

Thrust force generated by each rotor always have the

direction same as body z-axis, 𝒛𝑏. 𝑅(𝜙, 𝜃, 𝜓) is a

Fig. 4 Controller structure

rotation matrix with Z-X-Y Euler angles, yaw, pitch, and

roll. We will use a geometric controller [3] since the

attitude error function is defined within SO(3), avoiding

singularities of Euler angles and ambiguities presented in

quaternion. The overall controller structure is illustrated

in fig. 4.

Desired position trajectories that are generated from

previous section is fed into the trajectory tracking

controller to track positions and compute 𝒛𝑏,𝑑𝑒𝑠 . Then

𝒛𝑏,𝑑𝑒𝑠 and 𝜓𝑑 are used to track attitude.

First, we define position and velocity error as

𝐞p = 𝒙 − 𝒙𝑑

𝐞v = 𝒙̇ − 𝒙̇𝑑

Then desired force vector is defined as

𝑭𝑑𝑒𝑠 = −𝑘𝑝𝒆𝑝 − 𝑘𝑣𝒆𝑣 + 𝑚𝑔𝒛𝑤 + 𝑚𝒙̈𝑑

The desired direction of the force is desired body z-axis.

𝒛𝑏,𝑑𝑒𝑠 =
𝑭𝑑𝑒𝑠

‖𝑭𝑑𝑒𝑠‖

Using the fact that the first input 𝑢1 is always aligned with

𝑧𝑏, we can compute 𝑢1.

𝑢1 = 𝑭𝑑𝑒𝑠 ∙ 𝒛𝑏

Desired body x and y-axis can be computed by knowing

desired yaw angle and 𝒛𝑏,𝑑𝑒𝑠.

𝒙𝑐,𝑑𝑒𝑠 = [𝑐𝜓 𝑠𝜓 0]𝑇

𝒚𝑏,𝑑𝑒𝑠 =
𝒛𝑏,𝑑𝑒𝑠 × 𝒙𝑐,𝑑𝑒𝑠

‖𝒛𝑏,𝑑𝑒𝑠 × 𝒙𝑐,𝑑𝑒𝑠‖
, 𝒙𝑏,𝑑𝑒𝑠 = 𝒚𝑏,𝑑𝑒𝑠 × 𝒛𝑏,𝑑𝑒𝑠

Then the desired rotation matrix can be simply given by

𝑅𝑑𝑒𝑠 = [𝒙𝑐,𝑑𝑒𝑠, 𝒚𝑏,𝑑𝑒𝑠, 𝒛𝑏,𝑑𝑒𝑠]
The error function is defined as

Ψ(𝑅, 𝑅𝑑𝑒𝑠) =
1

2
tr(𝐼3 − 𝑅𝑑𝑒𝑠

𝑇 𝑅)

Then the attitude tracking error 𝑒𝑅 is chosen to be

𝑒𝑅 =
1

2
(𝑅𝑑𝑒𝑠

𝑇 𝑅 − 𝑅𝑇𝑅𝑑𝑒𝑠)
∨

To define the angular velocity error, they must be

compared in the same tangent plane in SO(3).

𝑒𝜔 = 𝜔𝑏 − 𝑅𝑇𝑅𝑑𝑒𝑠𝜔𝑑𝑒𝑠
𝑏

The control input M is chosen as

𝑀 = −𝑘𝑅𝑒𝑅 − 𝑘𝜔𝑒𝜔 + 𝜔𝑏 × 𝐼𝜔𝑏

− 𝐼(𝜔̂𝑏𝑅𝑇𝑅𝑑𝑒𝑠𝜔𝑑𝑒𝑠
𝑏 − 𝑅𝑇𝑅𝑑𝑒𝑠𝜔̇𝑑𝑒𝑠

𝑏)

Where

𝜔𝑑𝑒𝑠
𝑏 = (𝑅𝑑𝑒𝑠

𝑇 𝑅̇𝑑𝑒𝑠)
∨

𝜔̇𝑑𝑒𝑠
𝑏 = (𝑅̇𝑑𝑒𝑠

𝑇 𝑅̇𝑑𝑒𝑠 + 𝑅𝑑𝑒𝑠
𝑇 𝑅̈𝑑𝑒𝑠)

∨

Fig. 5 Quadrotor model

Fig. 6 3D structure of multiple obstacles

Using this controller guarantees asymptotic stability when

the gain values are properly chosen. Details about proof

can be found in [3].

Implementation
A platform to create 3D environment with obstacles [6] is

used to create a dense terrain including a small window

with shallow depth, three wide blocks standing in zigzag

pattern, and a small window with deep depth as shown in

fig. 6. We used Dijkstra algorithm, given by [6], to

generate shortest opened waypoints once we feed start

and end points into the algorithm. Start and end points are

given as

start = [5.0 -1 3.5]; stop = [5.0 19.0 .5];

We first reduce the number of waypoints by discarding

intermediate points which do not intersect with an

obstacle.

With given path (start, way, and end points) polynomial

optimization algorithm, which is directly implemented

using the method in [1],[2], is initialized by initial guess

of τ by randomly choosing the value ranging from 1 sec

𝒙c

𝒚c
𝜓

(a) Position error, ep (m) and attitude error function, Ψ

(b) Thrust of each rotor (N)

Fig. 7 Case 1. without external force.

to 3 sec. Then time allocation algorithm is used to update

τ using gradient descent in a way that

τnew = 𝜏𝑜𝑙𝑑 − 𝛼2𝑚−1
∇J

‖∇J‖
 , α = 10−6

Positive integer m is increased while 𝐽𝜏𝑛𝑒𝑤
< 𝐽𝜏𝑜𝑙𝑑

. The

stopping criteria is when the difference of 5 latest costs

are less than 1% of the latest cost.

Once time is optimized, it checks collisions, which the

algorithm is provided from [6] and iterates until the

(a) Position error, ep (m) and attitude error function, Ψ

(b) Thrust of each rotor (N)

Fig. 8 Case 2. with external force.

trajectory is collision free. Specifically, we use so called

inflated map, where the obstacles are inflated so that it

takes into account of the volume of the quadrotor. The

resulting margin is 25 cm on xy direction and 15 cm on z

direction.

The dynamics and the controller is directly implemented

with the method in [3]. We need a mapping to get

derivatives of Euler angles to have a complete differential

equation of the current state.

[

𝜙̇

𝜃̇
𝜓̇

] = [

𝑐𝜃 0 −𝑐𝜙𝑠𝜃
0 1 𝑠𝜙

𝑠𝜃 0 𝑐𝜙𝑐𝜃
]

−1

[
𝑝
𝑞
𝑟

]

Result
The physical parameters of the quadrotors are given

m = 1.477 kg, 𝑑 = 0.263 m, c𝜏𝑓 = 8.004 × 10−4𝑚

𝐼 = [0.01152; 0.01152; 0.0218] kgm2

The gain values and time penalty are chosen as

kp = 11.9, kv = 4.443, kR = 10, kω = 6, cτ = 50

Initial conditions are chosen including initial disturbances

x0 = [5.0 − 1 3.5] + [.1 .05 .15]
ẋ0 = [0 0 0] + [.01 .01 .02]

[ϕ0 𝜃0 𝜓0] = [0 0 0] + [
𝜋

18

𝜋

18

𝜋

18
]

ω0
b = [0 0 0]

Simulation results are presented in fig. 7, fig. 8.

Without disturbances, as shown in fig. 7, after escaping

initial disturbances, the maximum position error is less

than 5 cm and with attitude error function, they go to zero.

Maximum attitude error was less than 0.05. Even with

external force disturbances, both position and attitude

error reduced to zero as shown in fig. 8. External forces

are chosen as

17.7 sec < t < 20 sec, f1 = [0 0 − 6] (N)

24.8 sec < t < 26.5 sec, f2 = [3 0 3] (N)

32 sec < t < 34 sec, f3 = [−3 − 1.5 0] (N)

Reference

[1] Bry, A., Richter, C., Bachrach, A., & Roy, N.

(2015). Aggressive flight of fixed-wing and quadrotor

aircraft in dense indoor environments. The International

Journal of Robotics Research,34(7), 969-1002.

[2] Mellinger, D., & Kumar, V. (2011). Minimum

snap trajectory generation and control for quadrotors.

2011 IEEE International Conference on Robotics and

Automation.

[3] Lee, T., Leok, M., & Mcclamroch, N. H. (2010).

Geometric tracking control of a quadrotor UAV on SE(3).

49th IEEE Conference on Decision and Control (CDC).

[4] Fredman, Michael Lawrence; Tarjan, Robert E. (1984).

Fibonacci heaps and their uses in

improved network optimization algorithms. 25th Annual

Symposium on Foundations of

Computer Science. IEEE. pp. 338–346

[5] Wikipedia Dijkstra’s Algorithm,

https://en.wikipedia.org/wiki_Dijkstra%27s

algorithm#cite note-Dijkstra1959-3

[6] S. (n.d.). Stormmax/quadrotor. Retrieved from

https://github.com/stormmax/quadrotor

[7] T. (2017, March 05). Tu-darmstadt-ros-

pkg/hector_quadrotor. Retrieved from

https://github.com/tu-darmstadt-ros-

pkg/hector_quadrotor

[8] Sreenath, K., Lee, T., & Kumar, V. (2013). Geometric

control and differential flatness of a quadrotor UAV with

a cable-suspended load. 52nd IEEE Conference on

Decision and Control.

[9] Murray, R. M. (2017). Mathematical introduction to

robotic manipulation. Taylor & Francis.

https://github.com/stormmax/quadrotor
https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor
https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor

