18.303 - Linear PDEs course
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.
lecture_notes update problem sets and lecture notes Feb 20, 2019
problem_sets update problem sets and lecture notes Feb 20, 2019
README.md add Problem Set 2 to the README Feb 20, 2019


18.303: Linear Partial Differential Equations: Analysis and Numerics

Fall 2019, Dr. Chris Rackauckas, Dept. of Mathematics.


This is the home page for the 18.303 course at MIT in Spring 2019, where the syllabus, lecture materials, problem sets, and other miscellanea are posted.

Course description

Provides students with the basic analytical and computational tools of linear partial differential equations (PDEs) for practical applications in science engineering, including heat/diffusion, wave, and Poisson equations. Analytics emphasize the viewpoint of linear algebra and the analogy with finite matrix problems. Studies operator adjoints and eigenproblems, series solutions, Green's functions, and separation of variables. Numerics focus on finite-difference and finite-element techniques to reduce PDEs to matrix problems, including stability and convergence analysis and implicit/explicit timestepping. Julia (a Matlab-like environment) is introduced and used in homework for simple examples.

Prerequisite: linear algebra (18.06, 18.700, or equivalent).


Lectures: MWF 1–2pm (2-146). Office Hours: Wednesday 2–3pm (2-347).

Grading: 45% homework, 25% mid-term (March 20th), 30% final project (due the last day of class). Problem sets are due in class on the due date. The lowest problem set score will be dropped at the end of the term. Missed midterms require a letter from Student Support Services or Student Disabilities Services to justify accommodations. Legitimate excuses include sports, professional obligations, or illness. In the event of a justified absence, an alternative make-up project will be assigned.

Collaboration policy: Make an effort to solve the problem on your own before discussing with any classmates. When collaborating, write up the solution on your own and acknowledge your collaborators.

Books: Introduction to Partial Differential Equations by Olver.

Final project: There is a final project instead of a final exam. In your project, you should consider a PDE or possibly a numerical method not treated in class, and write a 5–10 page academic-style paper that includes:

Review: why is this PDE/method important, what is its history, and what are the important publications and references? (A comprehensive bibliography is expected: not just the sources you happened to consult, but a complete set of sources you would recommend that a reader consult to learn a fuller picture.) Analysis: what are the important general analytical properties? e.g. conservation laws, algebraic structure, nature of solutions (oscillatory, decaying, etcetera). Analytical solution of a simple problem. Numerics: what numerical method do you use, and what are its convergence properties (and stability, for timestepping)? Implement the method (e.g. in Julia) and demonstrate results for some test problems. Validate your solution (show that it converges in some known case).

You must submit a one-page proposal of your intended final-project topic, summarizing what you intend to do, by Wednesday, March. 13th. Some suggestions of possible projects will be given before then.

Tentative Schedule

  • Why PDEs are interesting.
  • The Fourier series and eigenfunction expansions for the Poisson equation
  • Optional: Julia Tutorial (5-7PM 32-141)
  • Spectral methods for numerically solving PDEs (Problem Set 1)
  • Finite difference discretizations
  • Properties of Hermitian operators (Problem Set 2)
  • (Semilinear) Heat : Equation
  • Basic time stepping methods
  • Method of Lines (MOL) Solutions (Problem Set 3)
  • Lax equivalence, stability, Von Neumann Analysis
  • Higher dimensional PDEs
  • Generalized boundary conditions (Problem Set 4)
  • Advection Equation
  • Upwinding operators, Lax-Wendorff
  • (Brief!) 1D conservation laws and Berger's Equation (Problem Set 5)
  • Separation of Variables
  • Wave Equation
  • Traveling waves and D'Alembert's solution
  • Numerical Dispersion
  • Sturm-Liouville Operators (Problem Set 6)
  • Distributions
  • Min-Max Theorem
  • Green's Functions (Problem Set 7)
  • Stochastic (Partial) Differential Equations and Diffusion-Advection Equations
  • Weak form and Galerkin expansions
  • Finite Element Methods

Lecture Summary

Lecture 1

In lecture one we reviewed linear algebra to build a perspective for infinite dimensional linear algebra. Topics like "What is a vector space?" were revisited and the abstraction away from real numbers to an algebraic structure was emphasized. Questions as to the difference between a matrix and a linear operator were settled. With this in mind, we introduced linear algebra on functions. The space of smooth functions forms a vector space. What are some linear operators for smooth functions? What is a basis for smooth functions? How do you write the infinite matrix for the derivative operator in the polynomial basis? We then used these ideas to solve the Poisson equation u_xx = f by diagonalizing the derivative operator and getting a solution in terms of sine functions.

Lecture 2

Lecture Notes || Problem Set 1

In this lecture we revisit Fourier series and make the ideas more concrete. We prove some properties of the Fourier series and transform and then write down the logic for how we solve the Poisson equation using operator notation. Using this formalism, we continue onto the Heat equation u_t = u_xx + f and show how to solve the Heat equation by using the eigenfunction basis of the Laplacian. Some simple facts about the Heat equation are then revealed by this solution and plotted.

Lecture 3

Lecture Notes

In this lecture some computational mathematics tools were demonstrated. Lyx, Jupyter notebooks, and Weave.jl were shown as options for writing mathematical documents and incorporating numerical results. A recap of the Heat equation was shown, and an emphasis on problem conversion was given. The same tools were then used to solve the Wave Equation. Then moved from global (spectral) bases to forming a discrete local basis. For this basis, we took evenly-spaced points at which to represent the function. The forward and central difference approximations were derived and order of convergence was discussed.

Lecture 4

Lecture Notes

In this lecture we continued our discussion of differencing operators, proving the second order convergence of the second derivative central differencing operator. Alternative derivations from polynomial interpolation and Fornberg's algorithm were discussed. From there, we looked at the properties of the discretization matrices and identified similarities with the Fourier case, leading to the idea of self-adjoint operators as a generalization of symmetric to infinite bases.

Lecture 5

Lecture Notes

In this lecture we continued the discussion of self-adjoint operators and found it to be a bit more nuanced than we thought. The issue, was boundary conditions. Thus, we worked to clarify the standard boundary conditions (Dirchlet, Neumann, Robin), and showed how this effects the properties of the linear operator.

Lecture 6

Problem Set 2

In this lecture we began to explore the convergence of numerical methods on the Heat Equation. First we derived the forward time centered space and backwards time centered space approximations by using our previous work on finite difference operators. We showed that we could alternatively think about the discretization of these PDEs as a two part problem: discretizing just space gives an ODE that can then be analyzed. From here, the Lax Equivalence Theorem was introduced, and the consistency of these methods was demonstrated. But are they stable?