Skip to content


Subversion checkout URL

You can clone with
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

308 lines (226 sloc) 11 KB

Testing Flask Applications

Something that is untested is broken.

The origin of this quote is unknown and while it is not entirely correct, it is also not far from the truth. Untested applications make it hard to improve existing code and developers of untested applications tend to become pretty paranoid. If an application has automated tests, you can safely make changes and instantly know if anything breaks.

Flask provides a way to test your application by exposing the Werkzeug test :class:`~werkzeug.test.Client` and handling the context locals for you. You can then use that with your favourite testing solution. In this documentation we will use the :mod:`unittest` package that comes pre-installed with Python.

The Application

First, we need an application to test; we will use the application from the :ref:`tutorial`. If you don't have that application yet, get the sources from the examples.

The Testing Skeleton

In order to test the application, we add a second module ( and create a unittest skeleton there:

import os
import flaskr
import unittest
import tempfile

class FlaskrTestCase(unittest.TestCase):

    def setUp(self):
        self.db_fd,['DATABASE'] = tempfile.mkstemp()['TESTING'] = True =

    def tearDown(self):

if __name__ == '__main__':

The code in the :meth:`~unittest.TestCase.setUp` method creates a new test client and initializes a new database. This function is called before each individual test function is run. To delete the database after the test, we close the file and remove it from the filesystem in the :meth:`~unittest.TestCase.tearDown` method. Additionally during setup the TESTING config flag is activated. What it does is disabling the error catching during request handling so that you get better error reports when performing test requests against the application.

This test client will give us a simple interface to the application. We can trigger test requests to the application, and the client will also keep track of cookies for us.

Because SQLite3 is filesystem-based we can easily use the tempfile module to create a temporary database and initialize it. The :func:`~tempfile.mkstemp` function does two things for us: it returns a low-level file handle and a random file name, the latter we use as database name. We just have to keep the db_fd around so that we can use the :func:`os.close` function to close the file.

If we now run the test suite, we should see the following output:

$ python

Ran 0 tests in 0.000s


Even though it did not run any actual tests, we already know that our flaskr application is syntactically valid, otherwise the import would have died with an exception.

The First Test

Now it's time to start testing the functionality of the application. Let's check that the application shows "No entries here so far" if we access the root of the application (/). To do this, we add a new test method to our class, like this:

class FlaskrTestCase(unittest.TestCase):

    def setUp(self):
        self.db_fd,['DATABASE'] = tempfile.mkstemp() =

    def tearDown(self):

    def test_empty_db(self):
        rv ='/')
        assert 'No entries here so far' in

Notice that our test functions begin with the word test; this allows :mod:`unittest` to automatically identify the method as a test to run.

By using we can send an HTTP GET request to the application with the given path. The return value will be a :class:`~flask.Flask.response_class` object. We can now use the :attr:`` attribute to inspect the return value (as string) from the application. In this case, we ensure that 'No entries here so far' is part of the output.

Run it again and you should see one passing test:

$ python
Ran 1 test in 0.034s


Logging In and Out

The majority of the functionality of our application is only available for the administrative user, so we need a way to log our test client in and out of the application. To do this, we fire some requests to the login and logout pages with the required form data (username and password). And because the login and logout pages redirect, we tell the client to follow_redirects.

Add the following two methods to your FlaskrTestCase class:

def login(self, username, password):
    return'/login', data=dict(
    ), follow_redirects=True)

def logout(self):
    return'/logout', follow_redirects=True)

Now we can easily test that logging in and out works and that it fails with invalid credentials. Add this new test to the class:

def test_login_logout(self):
    rv = self.login('admin', 'default')
    assert 'You were logged in' in
    rv = self.logout()
    assert 'You were logged out' in
    rv = self.login('adminx', 'default')
    assert 'Invalid username' in
    rv = self.login('admin', 'defaultx')
    assert 'Invalid password' in

Test Adding Messages

We should also test that adding messages works. Add a new test method like this:

def test_messages(self):
    self.login('admin', 'default')
    rv ='/add', data=dict(
        text='<strong>HTML</strong> allowed here'
    ), follow_redirects=True)
    assert 'No entries here so far' not in
    assert '&lt;Hello&gt;' in
    assert '<strong>HTML</strong> allowed here' in

Here we check that HTML is allowed in the text but not in the title, which is the intended behavior.

Running that should now give us three passing tests:

$ python
Ran 3 tests in 0.332s


For more complex tests with headers and status codes, check out the MiniTwit Example from the sources which contains a larger test suite.

Other Testing Tricks

Besides using the test client as shown above, there is also the :meth:`~flask.Flask.test_request_context` method that can be used in combination with the with statement to activate a request context temporarily. With this you can access the :class:`~flask.request`, :class:`~flask.g` and :class:`~flask.session` objects like in view functions. Here is a full example that demonstrates this approach:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
    assert flask.request.path == '/'
    assert flask.request.args['name'] == 'Peter'

All the other objects that are context bound can be used in the same way.

If you want to test your application with different configurations and there does not seem to be a good way to do that, consider switching to application factories (see :ref:`app-factories`).

Note however that if you are using a test request context, the :meth:`~flask.Flask.before_request` functions are not automatically called same for :meth:`~flask.Flask.after_request` functions. However :meth:`~flask.Flask.teardown_request` functions are indeed executed when the test request context leaves the with block. If you do want the :meth:`~flask.Flask.before_request` functions to be called as well, you need to call :meth:`~flask.Flask.preprocess_request` yourself:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):

This can be necessary to open database connections or something similar depending on how your application was designed.

If you want to call the :meth:`~flask.Flask.after_request` functions you need to call into :meth:`~flask.Flask.process_response` which however requires that you pass it a response object:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
    resp = Response('...')
    resp = app.process_response(resp)

This in general is less useful because at that point you can directly start using the test client.

Keeping the Context Around

Sometimes it is helpful to trigger a regular request but still keep the context around for a little longer so that additional introspection can happen. With Flask 0.4 this is possible by using the :meth:`~flask.Flask.test_client` with a with block:

app = flask.Flask(__name__)

with app.test_client() as c:
    rv = c.get('/?tequila=42')
    assert request.args['tequila'] == '42'

If you were to use just the :meth:`~flask.Flask.test_client` without the with block, the assert would fail with an error because request is no longer available (because you are trying to use it outside of the actual request). However, keep in mind that any :meth:`~flask.Flask.after_request` functions are already called at this point so your database connection and everything involved is probably already closed down.

Accessing and Modifying Sessions

Sometimes it can be very helpful to access or modify the sessions from the test client. Generally there are two ways for this. If you just want to ensure that a session has certain keys set to certain values you can just keep the context around and access :data:`flask.session`:

with app.test_client() as c:
    rv = c.get('/')
    assert flask.session['foo'] == 42

This however does not make it possible to also modify the session or to access the session before a request was fired. Starting with Flask 0.8 we provide a so called “session transaction” which simulates the appropriate calls to open a session in the context of the test client and to modify it. At the end of the transaction the session is stored. This works independently of the session backend used:

with app.test_client() as c:
    with c.session_transaction() as sess:
        sess['a_key'] = 'a value'

    # once this is reached the session was stored

Note that in this case you have to use the sess object instead of the :data:`flask.session` proxy. The object however itself will provide the same interface.

Jump to Line
Something went wrong with that request. Please try again.