
Tutorial on the snha package

Detlef Groth, University of Potsdam, Germany

2023-03-05

Tutorial on the snha package
Detlef Groth, University of Potsdam, Germany

2023-03-05 Abstract

The snha package provides easy to use R functions to apply the St. Nicolas
House Analysis to your data. The algorithm traces associations chains between
interactiving variables. The algorithm was described recently by Groth et.
al. (2019)1 and more detailed by Hermanussen et. al. (2021)2. In this package
vignette the basic workflow for analyzing your and raw data and as well for
analysing precomputed correlation matrices is demonstrated.

• Introduction
• Decathlon data
• Swiss dataset example
• Plotting
• Log-Likelihood
• Bootstrapping
• Creating your own data
• Installation
• Background Details and Concept
• Simple association chain
• Summary
• Build information
• References

Introduction
The package snha explores interacting variables by searching association chains
where correlation coefficients between variables drop in a regular order between
a set of variables. The package can be used by calling the function snha with
your data, where the columns must be your variables. The return value is an
object of class snha which can be visualized using a plot function. The details
of the analysis can be inspected by looking at the internal variables of this

1

object. Below follows a minimal analysis for the birthwt data from the MASS
R package. The variables are:

• age - mother’s age in years.
• lwt - mother’s weight in pounds at last menstrual period.
• race - mother’s race (1 = white, 2 = black, 3 = other).
• smoke - smoking status during pregnancy (0 = no, 1 = yes).
• ptl - number of previous premature labours.
• ht - history of hypertension (0 = no, 1 = yes).
• ui - presence of uterine irritability (0 = no, 1 = yes).
• ftv - number of physician visits during the first trimester.
• bwt - birth weight of child in grams.

Let’s start with the data preparation. For illustrative purposes we add a random
data vector as well:

set.seed(125)
retrieve the data
library(MASS)
data(birthwt)
birthwt$low=NULL
remove column for the low indicator
which is 1 i a child has low birtwt
rnd=round(rnorm(nrow(birthwt),mean=10,sd=2),2)
rnd just contains random data
birthwt=cbind(birthwt,rnd=rnd) # adding it
head(birthwt)

age lwt race smoke ptl ht ui ftv bwt rnd
85 19 182 2 0 0 0 1 0 2523 11.87
86 33 155 3 0 0 0 0 3 2551 8.95
87 20 105 1 1 0 0 0 1 2557 13.63
88 21 108 1 1 0 0 1 2 2594 10.17
89 18 107 1 1 0 0 1 0 2600 10.79
91 21 124 3 0 0 0 0 0 2622 5.61

OK, we are ready to go: We added the random data column rnd and removed
the redundant column low which indicated low birth weight, for this we have
the bwt column in the data set. So we do not need a redundant variable.

Let’s now first start for illustrative purposes with a PCA and then with our
SNHA method where we use Spearman correlation as it is more robust against
outliers than Pearson correlation, we set the p-value threshold, alpha to 0.1 as
the algorithm is very resistant against the detection of spurious correlations.

par(mfrow=c(1,2),mai=c(0.8,0.8,0.1,0.2))
library(snha)
retrieve some data
pca=prcomp(t(scale(birthwt)))

2

summary(pca)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 6.1327 5.4004 5.0449 4.5524 4.4129 4.13882 4.05837
Proportion of Variance 0.1972 0.1529 0.1335 0.1087 0.1021 0.08982 0.08636
Cumulative Proportion 0.1972 0.3501 0.4836 0.5922 0.6943 0.78416 0.87052
PC8 PC9 PC10
Standard deviation 3.56093 3.466 1.602e-15
Proportion of Variance 0.06649 0.063 0.000e+00
Cumulative Proportion 0.93700 1.000 1.000e+00

plot(pca$x[,1:2],xlab='PC1', ylab='PC2',pch=19,cex=5,col='salmon')
text(pca$x[,1:2],colnames(birthwt))
text(-5,-10,"PCA",cex=2)
as=snha(birthwt,method="spearman",alpha=0.1)
par(mai=c(0.8,0.2,0.1,0.2))
plot(as,layout="sam",vertex.size=7,lwd=3,edge.width=3)

[1] "directed: FALSE"

text(-1.5,-1.8,"SNHA",cex=2)
box()

Birth weight data variable interactions

In the PCA plot on the left, the most import variables, having high values in
the first component, are on the left and right borders of the plot, unimportant
variables are in the center, negatively associated deeply interacting variables such
as birthweight (bwt) and premature labours (ptl) are on opposite sides of the plot.
These characteristics of the PCA plot make it hart to follow the variable relations.
In contrast the variables in the SNHA graph on the right show immediately
logical interactions, the birth weight is positively associated to mothers last

3

weight, and negatively to smoking, premature labours and uterine irritability,
white people smoke more and white mothers visit more often physicians . . . The
older the mother the more visits at physicians and hypertension is positively
associated with weight of the mother.

What are the R-square values, the prediction power for every node based on
linear models and what are the connections between the variables stored in the
adjacency matrix ‘theta’:

round(snha_rsquare(as),2)

age lwt race smoke ptl ht ui ftv bwt rnd
0.05 0.12 0.15 0.18 0.02 0.06 0.08 0.05 0.13 0.00

as$theta

age lwt race smoke ptl ht ui ftv bwt rnd
age 0 0 0 0 0 0 0 1 0 0
lwt 0 0 1 0 0 1 0 0 1 0
race 0 1 0 1 0 0 0 1 0 0
smoke 0 0 1 0 0 0 0 0 1 0
ptl 0 0 0 0 0 0 0 0 1 0
ht 0 1 0 0 0 0 0 0 0 0
ui 0 0 0 0 0 0 0 0 1 0
ftv 1 0 1 0 0 0 0 0 0 0
bwt 0 1 0 1 1 0 1 0 0 0
rnd 0 0 0 0 0 0 0 0 0 0

It can be seen that the overall strength of the association is very small, largest
r-square value is 0.18 for smoke, 0.13 for birthweight (bwt) but still the analysis
show reasonable results without having the necessity of finding some optimal
threshold.

Decathlon data
Here is an other example where we analyze the relationship between the different
decathlon disciplines with athletes taking part in the 1988 Olympics and which
had results above 7000 points. We perform the St. Nicolas House Analysis and
later check the average R-square values for the each node.

data loading
data(decathlon88)
head(decathlon88)

disc high jave long pole shot X100 X110 X1500 X400
1 49.28 2.27 61.32 7.43 4.7 15.48 32.00 26.17 20.08 29.45
2 44.36 1.97 61.76 7.45 5.1 14.97 33.12 27.39 19.78 30.18
3 43.66 1.97 64.16 7.44 5.2 14.20 32.20 26.74 20.52 29.82
4 44.80 2.03 64.04 7.38 4.9 15.02 33.90 26.90 18.94 29.35
5 41.20 1.97 57.46 7.43 5.2 12.92 32.67 27.50 21.04 30.35

4

6 43.06 2.12 52.18 7.72 4.9 13.58 33.24 27.93 19.70 29.79

A=snha(decathlon88,method="spearman",alpha=0.1)
cols=rep("salmon",10)
cols[names(A$data) %in% c("jave","shot","disc","pole")]="skyblue"
plot(A,layout="sam",vertex.color=cols,vertex.size=8,cex=1.1,edge.width=5)

[1] "directed: FALSE"

snha_rsquare(A)

disc high jave long pole shot X100
0.68526777 0.09393084 0.35741977 0.36944843 0.40512466 0.75415820 0.52515892
X110 X1500 X400
0.53154849 0.43997638 0.56366090

mn=mean(snha_rsquare(A))
title(paste("R-square = ",round(mn,2)))

SNHA - Decathlon Data 1988

As you can see the variables nicely separates between disciplines related to the
upper part of the body (blue) and disciplines where the legs do most of the
work (salmon). The mostly hated 1500m run is negatively associated to the
throwing disciplines. The running distances are building a chain 100-400-1500m
as expected and the jump disciplines are close to each other high-jump (high),
hurdles (X110), long jump (long) and pole. As you can see the variables are just
in their logical order.

round(A$sigma,2)

5

disc high jave long pole shot X100 X110 X1500 X400
disc 1.00 0.05 0.42 0.18 0.37 0.79 0.06 0.16 -0.37 -0.11
high 0.05 1.00 0.11 0.21 0.32 0.12 0.27 0.42 0.08 0.11
jave 0.42 0.11 1.00 0.32 0.35 0.64 0.11 0.17 0.00 -0.07
long 0.18 0.21 0.32 1.00 0.37 0.19 0.55 0.46 0.27 0.41
pole 0.37 0.32 0.35 0.37 1.00 0.50 0.43 0.55 0.11 0.32
shot 0.79 0.12 0.64 0.19 0.50 1.00 0.17 0.25 -0.24 -0.11
X100 0.06 0.27 0.11 0.55 0.43 0.17 1.00 0.67 0.22 0.61
X110 0.16 0.42 0.17 0.46 0.55 0.25 0.67 1.00 0.12 0.51
X1500 -0.37 0.08 0.00 0.27 0.11 -0.24 0.22 0.12 1.00 0.54
X400 -0.11 0.11 -0.07 0.41 0.32 -0.11 0.61 0.51 0.54 1.00

round(A$p.value,3)

disc high jave long pole shot X100 X110 X1500 X400
disc 0.000 0.792 0.016 0.328 0.033 0.000 0.755 0.361 0.034 0.528
high 0.792 0.000 0.547 0.242 0.065 0.498 0.130 0.016 0.665 0.551
jave 0.016 0.547 0.000 0.074 0.044 0.000 0.540 0.337 0.990 0.719
long 0.328 0.242 0.074 0.000 0.033 0.295 0.001 0.007 0.130 0.018
pole 0.033 0.065 0.044 0.033 0.000 0.003 0.013 0.001 0.549 0.067
shot 0.000 0.498 0.000 0.295 0.003 0.000 0.337 0.160 0.185 0.534
X100 0.755 0.130 0.540 0.001 0.013 0.337 0.000 0.000 0.216 0.000
X110 0.361 0.016 0.337 0.007 0.001 0.160 0.000 0.000 0.522 0.002
X1500 0.034 0.665 0.990 0.130 0.549 0.185 0.216 0.522 0.000 0.001
X400 0.528 0.551 0.719 0.018 0.067 0.534 0.000 0.002 0.001 0.000

For illustrative purposes create a graph with the same layout but with edges
showing all significant correlations.

B = A$theta
B[]=0
B[A$p.value<0.05]=1
diag(B)=0
plot.snha(B,layout='sam',vertex.color=cols,vertex.size=8,cex=1.1,edge.width=5)

6

Decathlon Data 1988 (p-value Graph)

[1] "directed: FALSE"

As you can see the major relationships are the same, but there are a few more
edges which did however not enhance the overall data structure. In case of
really interacting variables it would be as well difficult to distinguish between
direct and indirect associations, as the latter can be as well very easily become
significant if the primary interaction is highly significant.

Swiss dataset example
Let’s finish with an other data set, the swiss data which are available in every
R installation. Here we try out both the correlation methods, Spearman and
Pearson correlation. We use the function snha_layout to determine a layout
matrix which we will then reuse for both plots.

library(snha)
data(swiss)
head(swiss,4)

Fertility Agriculture Examination Education Catholic
Courtelary 80.2 17.0 15 12 9.96
Delemont 83.1 45.1 6 9 84.84
Franches-Mnt 92.5 39.7 5 5 93.40
Moutier 85.8 36.5 12 7 33.77
Infant.Mortality
Courtelary 22.2

7

Delemont 22.2
Franches-Mnt 20.2
Moutier 20.3

shorter names useful for display later in the graph
colnames(swiss)=abbreviate(colnames(swiss))
head(swiss,4)

Frtl Agrc Exmn Edct Cthl In.M
Courtelary 80.2 17.0 15 12 9.96 22.2
Delemont 83.1 45.1 6 9 84.84 22.2
Franches-Mnt 92.5 39.7 5 5 93.40 20.2
Moutier 85.8 36.5 12 7 33.77 20.3

par(mfrow=c(1,2))
options(warn=-1)
as=snha(swiss,method="pearson")
store layout for reuse in two graphs
lay = snha_layout(as,mode="sam")
plot(as,layout=lay,vertex.size=8,main="Pearson")

[1] "directed: FALSE"

as=snha(swiss,method="spearman")
plot(as,layout=lay,vertex.size=8,main="Spearman")

Swiss data variable associations

[1] "directed: FALSE"

Here is the resulting adjacency matrix:

knitr::kable(as$theta)

8

Frtl Agrc Exmn Edct Cthl In.M
Frtl 0 0 1 0 0 1
Agrc 0 0 0 1 0 0
Exmn 1 0 0 1 1 0
Edct 0 1 1 0 0 0
Cthl 0 0 1 0 0 0
In.M 1 0 0 0 0 0

As you can see the structure remains the same, but Pearson correlation shows
more edges, we should check if the data are normally distributed. Again, without
playing around with some parameters or thresholds we get immediately the
general associations between the data. Let’s just check if the data are normally
distributed and then conclude if we should use Spearman correlation for non-
normally distributed data or Pearson correlation for normally distributed data:

prepare a test returning only p-values
mtest = function (x) { return(shapiro.test(x)$p.value) }
df=data.frame(orig=round(apply(swiss,2,mtest),3))
df=cbind(df,log2=round(apply(log2(swiss),2,mtest),3))
knitr::kable(df)

orig log2
Frtl 0.345 0.003
Agrc 0.193 0.000
Exmn 0.256 0.006
Edct 0.000 0.257
Cthl 0.000 0.000
In.M 0.498 0.008

As you can see, both with the original data and as well with the log-normalized
data the Shapiro-Wilk test has a few significant entries, so we reject the Null-
hypothesis that these data are coming from a normal distribution. So for our
example using the swiss data we should very likely prefer using the Spearman
correlation.

Plotting
The plotting of the graph can be changed in various ways, for details see
?plot.snha. Here I just give a few examples. As the graph is generated based
on the underlying pairwise correlations, it might be useful to display the pairwise
correlation either in a correlation plot or by adding the correlations values on
the edges of the graph. Here an example where we do first a correlation plot and
then a plot of the SNHA graph overlaying the edges with the correlation values.

9

par(mfrow=c(1,2),mai=rep(0.2,4))
sw=snha(swiss,method="spearman",alpha=0.1)
plot(sw,type="corrplot")
plot(as,edge.text=round(as$sigma,2),edge.pch=15,layout='sam')

Correlation and Network plot with correlation values on the edges

[1] "directed: FALSE"

Log-Likelihood
The edge quality can be judged either by the log-likelihood ratio for the individual
chains or by bootstrapping where we look how often a certain chain was found if
we do re-samplings with our data set.

Let’s first calculate the log-likelihoods for the different chains which were found.
We can see the underlying chains either directly using the internal object chains
or by using the snha_get_chains method which returns a data frame:

snha_get_chains(as)

Name Node1 Node2 Node3 Node4
[1,] "m-chain-Edct" "Agrc" "Edct" "Exmn" "Frtl"
[2,] "a-chain-Cthl" "Cthl" "Exmn" "Frtl" ""
[3,] "a-chain-In.M" "In.M" "Frtl" "Agrc" ""

The m in front of a chain name indicated that the chain was found by investigating
the variable to be in the middle of a chain, the a indicated that the chain was at
the beginning of the investigated chain. For details on the algorithm have a look
at Hermanussen et. al. (20212).

The log-likelihood for these chains can be calculated using the function snha_ll
like this:

snha_ll(as)

10

chain members r2sum r2per ll.total ll.chain ll.rest
1 m-chain-Edct Agrc-Edct-Exmn-Frtl 1.314 -116.46 -318.3388 -223.9931 -131.6451
2 a-chain-Cthl Cthl-Exmn-Frtl 0.745 -66.05 -318.3388 -176.5415 -185.3486
3 a-chain-In.M In.M-Frtl-Agrc 0.298 -26.43 -318.3388 -190.9628 -168.9559
ll.block df chisq p.value block.df block.ch block.p.value
1 -212.5995 7 51.81166 6.359431e-09 3 22.787152 4.472558e-05
2 -176.0080 6 86.03570 2.013898e-16 1 1.067003 3.016233e-01
3 -189.5145 6 80.26339 3.152138e-15 1 2.896428 8.877610e-02

The relevant p-values are in the last column, if the p-value is higher than 0.05
we can assume that the chain is sufficient to capture the dependency between
the variables of the chain. Here for the chain 2 and 3 this is the case, whereas
for the first chain the p-value is very low indicating that the chain is not
sufficient to capture the variable dependencies. One reason might be that we
used Spearman correlation to create the graph whereas log-likelihood assumes
linear dependencies.

Bootstrapping
Another approach to evaluate the quality of chains and edges is bootstrapping.
We sample several times items from the data set with replacement and we redo
thereafter the analysis with each of the samples. Edges which appear only very
rarely are less likely to be of importance and significance.

Let’s use an example:

par(mfrow=c(1,2),mai=c(0.1,0.1,0.7,0.1))
as.boot=snha(swiss,method="spearman",prob=TRUE)
lay=snha_layout(as.boot,method="sam")
plot(as,layout=lay,vertex.size=6,main="Single Run")

[1] "directed: FALSE"

plot(as.boot,layout=lay,vertex.size=6,main="Bootstrap Run")

11

Boostrap Example

[1] "directed: FALSE"

Solid lines shown in the graph above indicate that edges where found in more
than 75 percent of all re-samplings, broken lines indicate edges appearing in
more than 50% of all re-samplings and dotted lines in 25-50% of all re-samplings.

As you can see the bootstrap method does find a few more edges than the single
run variation of the snha method. If you network is not too large it is usually
recommended to use bootstrapping to get more insights into the edge quality
and to get as well edges if the network is more dense and has a lot of highly
connected nodes.

Creating your own data
In order to test the algorithm there is as well in the package a function which
allows you to generate data for directed and undirected graphs, either using the
given adjacency matrix as precision matrix or using a Monte Carlo simulation
as described by Novine et. al (20213). Here an example:

W=matrix(0,nrow=6,ncol=6,dimnames=list(LETTERS[1:6],LETTERS[1:6]))
W[1:2,3]=1
W[3,4]=1
W[4,5:6]=1
W[5,6]=1
W

A B C D E F
A 0 0 1 0 0 0
B 0 0 1 0 0 0
C 0 0 0 1 0 0
D 0 0 0 0 1 1
E 0 0 0 0 0 1
F 0 0 0 0 0 0

For such an adjacency matrix we can create data like this:

data=snha_graph2data(W)
dim(data)

[1] 6 100

round(cor(t(data)),2)

A B C D E F
A 1.00 0.10 0.54 0.16 0.13 0.14
B 0.10 1.00 0.50 0.29 -0.04 0.18
C 0.54 0.50 1.00 0.31 0.08 0.13
D 0.16 0.29 0.31 1.00 0.27 0.39
E 0.13 -0.04 0.08 0.27 1.00 0.48

12

F 0.14 0.18 0.13 0.39 0.48 1.00

As you can see the correlations follow the given graph, we can as well plot these
for better illustration:

par(mfrow=c(1,3),mai=rep(0.2,4))
plot.snha(W)

[1] "directed: TRUE"

plot.snha(cor(t(data)),type="cor")
plot.snha(snha(t(data)))

True graph, correlations and predicted graph (left to right)

[1] "directed: FALSE"

Installation
As long as the package is not yet on the CRAN repository the package can
be usually installed using the submitted tar.gz archive with the following
commands:

library(tcltk)
pkgname=tclvalue(tkgetOpenFile(

filetypes="{{Tar.gz files} {*.tar.gz}} {{All files} {*.*}}"))
if (pkgname != "") {

13

install.packages(pkgname,repos=NULL)
}

It is as well possible to install the latest version directly from the Github
repository like this:

library(remotes)
remotes::install_github("https://github.com/mittelmark/snha")

Thereafter you can check the installation like this:

library(snha)
citation("snha")

Background Details and Concept
Analyzing multivariate data is often done using visualization of pairwise correla-
tions, using principal component analysis or multidimensional scaling as typical
methods in this area. The snha package provides an alternative approach, by
uncovering ordered sequences of correlation coefficients which can be reversed1
2. Existing chains are translated into edges between the variables, here taken
as nodes of a graph. The graph can be then visualized and the major relations
between the variables are visible.

The basic assumption of the method is the assumption that correlations coeffi-
cients between two variables, where one variable directly influences the other,
are larger than those of secondary associations. So for instance if we assume
that a variable A influences a variable B, and B influences C, it can be assumed,
that r(AB) > r(AC) and that in the opposite direction r(CB) > r(CA).

The algorithm provided in the snha package uncovers such association chains
where the order of correlation coefficient can be reversed. The advantage of the
method is that there is only a very limited requirement for choosing thresholds
for instance for the p-value or for the correlation coefficient. The reason is that
the existence of such association chains with the correct ordering of three or
more nodes is much less likely to exists by accident then significant pairwise
correlations.

In the following we will first illustrate the concept on a simple hypothetical
association chain and thereafter you might again study the real world examples
at the beginning of this vignette with more understanding.

Simple association chain
Let’s assume we have a simple association chain where a variable A is influencing
a variable B, B is influencing a variable C and C is influencing variable D like
this:

par(mai=c(0.1,0.1,0.1,0.0))
plot(1,xlab="",ylab="",axes=FALSE,type="n",xlim=c(0.5,4.5),ylim=c(0.8,1.2))

14

arrows(1:3,rep(1,3),1:3+0.8,rep(1,3),lwd=3,length=0.1)
points(1:4,rep(1,4),pch=19,col="salmon",cex=6)
text(1:4,1,LETTERS[1:4],cex=2)

An association chain

In this situation we can assume that, despite of the omnipresent noise in such
situation, the correlations of directly interacting variables is higher in comparison
to variables only connected only via other variables. Let’s assume for simplicity
reasons, that the correlation between directly connected variables drops down
from r=0.7 to around r=0.5 for secondary connected variables and r=0.3 for
tertiary connected variables. So a possible correlation matrix could look like
this:

C=matrix(c(1,0.7,0.5,0.3,
0.7,1,0.7,0.5,
0.5,0.7,1,0.7,
0.3,0.5,0.7,1),
nrow=4,byrow=TRUE)

rownames(C)=colnames(C)=LETTERS[1:4]
knitr::kable(C)

A B C D
A 1.0 0.7 0.5 0.3
B 0.7 1.0 0.7 0.5
C 0.5 0.7 1.0 0.7
D 0.3 0.5 0.7 1.0

Let’s now add a little bit of noise and visualize the pairwise correlations using
the plot function of the snha package.

set.seed(123)
par(mfrow=c(1,2),mai=c(0.1,0.1,0.1,0.1))
C=C+rnorm(length(C),mean=0,sd=0.1)
C[lower.tri(C)]=t(C)[lower.tri(C)]
diag(C)=1
as=snha(C)
round(as$sigma,3)

15

A B C D
A 1.000 0.713 0.431 0.340
B 0.713 1.000 0.655 0.511
C 0.431 0.655 1.000 0.644
D 0.340 0.511 0.644 1.000

plot(as,type="corplot")
as$theta

A B C D
A 0 1 0 0
B 1 0 1 0
C 0 1 0 1
D 0 0 1 0

plot(as)

Visualization of correlation matrix sigma and the adjacency matrix theta

[1] "directed: FALSE"

As we can see, the correlations are now slightly altered. A simple r threshold
mechanism, for instance taking only correlations larger than 0.5 into consideration
would as well have false positive edges like between the nodes B and D. The
function snha takes as input either a correlation matrix or a data matrix or
data.frame and tries to find such association chains. The association chain is
stored in the internal object theta and can be visualized using the default plot
command.

Summary
Here are the functions to be used by the normal user of the package:

• snha - create a snha graph object

16

• plot - plot a snha graph object
• as.list - create a list out of a snha graph object, ready to write for instance

into an Excel file

• snha_get_chains - get the actual chains which were found and which build
the graph

• snha_graph2data - generate for a given adjacency matrix some data

• snha_rsquare - get r-square values for the nodes based on linear model to
have a qualitative measure for the graph prediction.

The snha graph object contains a few internal variables which might be of interest
for the user:

• alpha - the chosen p-value threshold
• chains - the found association chains
• data - the input data
• method - the correlation method
• p-values the pairwise p-values
• probabilities - in case of bootstrapping the proportion how often a chain

was found
• theta - the adjacency matrix for the nodes / variables

Build information
The package was build using R version 4.1.3 (2022-03-10) on x86_64-redhat-
linux-gnu using snha package 0.1.0.

print(sessionInfo())

R version 4.1.3 (2022-03-10)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Fedora Linux 36 (Workstation Edition)
##
Matrix products: default
BLAS/LAPACK: /usr/lib64/libflexiblas.so.3.3
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##

17

other attached packages:
[1] snha_0.1.0 MASS_7.3-55
##
loaded via a namespace (and not attached):
[1] digest_0.6.27 R6_2.5.1 jsonlite_1.7.2 evaluate_0.20
[5] highr_0.9 rlang_1.0.2 cachem_1.0.5 cli_3.3.0
[9] jquerylib_0.1.4 bslib_0.4.2 rmarkdown_2.20 tools_4.1.3
[13] xfun_0.37 yaml_2.2.1 fastmap_1.1.0 compiler_4.1.3
[17] htmltools_0.5.4 knitr_1.42 sass_0.4.5

References
1.
Groth, D., Scheffler, C. & Hermanussen, M. Body height in stunted Indonesian
children depends directly on parental education and not via a nutrition mediated
pathway - Evidence from tracing association chains by St. Nicolas House Analysis.
Anthropol Anz 76, 445–451 (2019).
2.
Hermanussen, M., Aßmann, C. & Groth, D. Chain Reversion for Detecting
Associations in Interacting Variables-St. Nicolas House Analysis. Int J Environ
Res Public Health 18, 1741 (2021).
3.
Novine, M., Mattsson, C. C. & Groth, D. Network reconstruction based on
synthetic data generated by a monte carlo approach. Human Biology and Public
Health 3, (2021).

18

https://doi.org/10.1127/anthranz/2019/1027
https://doi.org/10.1127/anthranz/2019/1027
https://doi.org/10.1127/anthranz/2019/1027
https://doi.org/10.3390/ijerph18041741
https://doi.org/10.3390/ijerph18041741
https://doi.org/10.52905/hbph2021.3.26
https://doi.org/10.52905/hbph2021.3.26

	Tutorial on the snha package
	Introduction
	Decathlon data
	Swiss dataset example
	Plotting
	Log-Likelihood
	Bootstrapping
	Creating your own data
	Installation
	Background Details and Concept
	Simple association chain
	Summary
	Build information
	References

