Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

README.md

#Bayesian Updating as Escalation This project provides the basis to simulate a series of wins and losses.

Data can be simulated and then Bayesian Updating can be applied to lagged learning sequences (i.e., Two-, three-, and four-lagged projections). Simulated data take the form of sequential learning tasks. In randomized sequences of events, a distinct pattern of Wins or Losses is observed and then modeled using Bayesian Updating to determine warranted beliefs.

Warranted beliefs, in Bayesian thinking, refer to the likelihood that an action is likely to succeed taking into account earlier, similar circumstances. As such, warranted beliefs are differentially affected by the amount of exposures as well as the outcomes from each exposure.

##Purpose
This repository serves as sample usage of Bayesian Updating to model escalation/persistence in no-win situations.

##Works utilized elsewhere ISAAC, PHP-port by Illmari Karonen original work by Bob Jenkins - unmodified; shared on Stack Overflow

##License This project is licensed under the GPL-V2+ license.

Developed by Shawn Patrick Gilroy, PhD NCSP BCBA-D Published in Journal of Behavioural Processes (Shawn Gilroy, Donald Hantula)
Temple University, 2016

About

Application of Bayesian Updating to sequential learning tasks

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.