
MICROSERVICES
& API’S

Al Graham (@blogtackular)

(& NODE.JS)

</PLUG>

WHAT THIS IS

WHAT THIS ISN’T

COMPLEX SERVICE-ASSEMBLIES ARE
ABSTRACTED BEHIND (A) SIMPLE URI
INTERFACE. ANY SERVICE, AT ANY
GRANULARITY, CAN BE EXPOSED

Dr Peter Rodgers

WHAT ARE MICROSERVICES?

CloudComputing Expo, 2005

HUH?

THE OLD MONOLITHS

‘THE BACKEND’

Mobile App

Authentication

User Management

Ordering

etc etc

all information

THE ‘OLD’ WAY

MONOLITHIC SERVICES, ALL TIGHTLY COUPLED

HARD TO SCALE

HARD TO CHANGE

HARD TO DEPLOY

… JUST HARD

MICROSERVICES

Mobile App

Authentication Service

User Management Service

Order Service

etc etc (Service)

Login

Change Password

Make Order

Other Stuff

THE MICROSERVICE WAY

WE HAVE LOOSELY COUPLED, DISCRETE SERVICES

EASY TO SCALE -SPIN UP MORE INSTANCES!

EASY TO CHANGE, AS NO IMPACT ON THE OTHERS

EASY TO DEPLOY

… LOTS EASIER!

BUT!

THE MICROSERVICE WAY

THERE ARE PROBLEMS…

DISCRETE SERVICES NEED GOOD, STABLE API’S

LOTS OF ENDPOINTS (AND URL’S) TO MANAGE

NEED SOME WAY TO MAINTAIN STATE

… BUT THERE ARE SOLUTIONS

MICROSERVICES - AGGREGATE

Mobile App

Authentication Service

User Management Service

Order Service

etc etc (Service)

Login

Change Password

Make Order

Other Stuff

Mobile
Aggregatorall info

THE MICROSERVICE WAY

SOLVES THE PROBLEMS…
DISCRETE SERVICES NEED GOOD, STABLE API’S  
AGGREGATOR CAN HANDLE ANY CHANGES
LOTS OF ENDPOINTS (AND URL’S) TO MANAGE  
EVERYTHING GOES THROUGH THE AGGREGATOR
NEED SOME WAY TO MAINTAIN STATE 
JASON WEB TOKENS (JWT) ARE YOUR BEST FRIEND

… SO HOW CAN I DO THIS?

NODE.JS

NODE.JS HELPS US

QUICKLY CREATE SERVICES

MODULARISE SAID SERVICES TO DECOUPLE THEM

QUICKLY DEPLOY SERVICES

KEEP EVERYTHING FAMILIAR AND ‘JS-Y’

… SHOW ME

CREATE A WEBSERVICE

$ npm install express

Setup the scaffolding…

var express = require('express'),
 app = express();

app.listen(8001, '0.0.0.0', function() {
 console.log("App started at: " + new Date() + " on port: 8001");
});

server.js

CREATE A WEBSERVICE

Add some endpoints…
var express = require('express'),
 app = express();

app.get('/', function(req, res) {
 console.log(new Date(), 'In hello route GET / req.query=', req.query);
 var world = req.query && req.query.hello ? req.query.hello : 'World';
 res.json({
 msg: 'Hello ' + world
 });
});

app.post('/', function(req, res) {
 console.log(new Date(), 'In hello route POST / req.body=', req.body);
 var world = req.body && req.body.hello ? req.body.hello : 'World';
 res.json({
 msg: 'Hello ' + world
 });
});

app.listen(8001, '0.0.0.0', function() {
 console.log("App started at: " + new Date() + " on port: 8001");
});

server.js

CREATE A WEBSERVICE

$ node server.js

Run it…

MONOLITH!

MODULARISE THE WEBSERVICE

var express = require(‘express');

function helloRoute() {
 var hello = new express.Router();

 hello.get('/', function(req, res) {
 console.log(new Date(), 'In hello route GET / req.query=', req.query);
 var world = req.query && req.query.hello ? req.query.hello : 'World';
 res.json({
 msg: 'Hello ' + world
 });
 });

 hello.post('/', function(req, res) {
 console.log(new Date(), 'In hello route POST / req.body=', req.body);
 var world = req.body && req.body.hello ? req.body.hello : 'World';
 res.json({
 msg: 'Hello ' + world
 });
 });

 return hello;
}

module.exports = helloRoute;

hello.js

Create hello.js module

ADD THE MODULE

include the module…

var express = require('express'),
 app = express();

app.use('/', require('./hello.js')());

app.listen(8001, '0.0.0.0', function() {
 console.log("App started at: " + new Date() + " on port: 8001");
});

server.js

CREATE A WEBSERVICE

$ node server.js

Run it again!

THIS IS A SIMPLE EXAMPLE

EXPRESS ALLOWS YOU TO EASILY CREATE POST, DELETE, GET, ETC

ADD SOCKETS, EASY!

DEPLOY STEPS - SIMPLE WITH NPM & PACKAGE.JSON

MOVE TO DIFFERENT SERVERS, THE REQUEST MODULE SORTS YOU OUT!

API’S

GOOD API’S ARE HARD

WHICH VERB SHOULD I USE

WHICH RESPONSE SHOULD I SEND

WHAT TO RETURN ON ERRORS

HOW DO I DOCUMENT

WHICH VERBS?

Lots of choice

Is a ‘logout’ a POST, or a DELETE?
You’re deleting a session, but not a user…

Should fetching data *always* be a GET?
What if you know you’ll always need params -url params
are unwieldy

WHICH RESPONSE?

If params are missing is it a:
422 Unprocessable Entity 
The request was well-formed but was unable to be followed due to semantic errors.

or
400 Bad Request 
The server cannot or will not process the request due to something that is perceived to be a client error
(e.g., malformed request syntax, invalid request message framing, or deceptive request routing).

or
412 Precondition Failed  
The server does not meet one of the preconditions that the requester put on the request.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
both a blessing, and a curse!

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

THERE’S ONLY ONE THING FOR IT

DOCUMENT

DOCUMENT

DOCUMENT

DOCUMENT

NOT HARD

NODE TO THE RESCUE AGAIN

DOCCO (HTTPS://JASHKENAS.GITHUB.IO/DOCCO/)

NODE-DOC (HTTPS://WWW.NPMJS.COM/PACKAGE/NODE-DOC)

SWAGGER (HTTPS://GITHUB.COM/SWAGGER-API/SWAGGER-NODE)

API-BLUEPRINT (HTTPS://APIBLUEPRINT.ORG/)

Lots of modules/libs out there

https://jashkenas.github.io/docco/
https://www.npmjs.com/package/node-doc
https://github.com/swagger-api/swagger-node
https://apiblueprint.org/

WRAP UP

MICROSERVICES FTW

MICROSERVICES ARE GREAT

THEY’RE REALLY JUST FANCY MODULES

MODULES ARE *REALLY* GREAT

THIS IS THE TIP OF THE ICEBERG

THANKS!
Al Graham, @blogtackular

