-
Notifications
You must be signed in to change notification settings - Fork 1
/
bert.rs
164 lines (135 loc) · 5.74 KB
/
bert.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use std::path::Path;
use tch::{Tensor, nn, Device, no_grad};
use tch::nn::VarStore;
use rust_bert::Config;
use rust_bert::bert::{BertModel, BertEmbeddings, BertConfig};
use rust_tokenizers::{BertTokenizer, BertVocab};
use rust_tokenizers::preprocessing::tokenizer::base_tokenizer::{Tokenizer, MultiThreadedTokenizer};
use tch::index::IndexOp;
#[derive(Debug)]
#[derive(Default)]
pub struct Features {
pub input_ids: Option<Tensor>,
pub token_type_ids: Option<Tensor>,
pub token_embeddings: Option<Tensor>,
pub cls_token_embeddings: Option<Tensor>,
pub input_mask: Option<Tensor>,
pub sentence_embedding: Option<Tensor>,
pub token_weights_sum: Option<Tensor>
}
impl Features {
pub fn new(input_ids: Tensor,
token_type_ids: Tensor,
token_embeddings: Tensor,
cls_token_embeddings: Tensor,
input_mask: Tensor,
sentence_embedding: Tensor,
token_weights_sum: Tensor) -> Features {
Features {
input_ids: Some(input_ids),
token_type_ids: Some(token_type_ids),
token_embeddings: Some(token_embeddings),
cls_token_embeddings:Some(cls_token_embeddings),
input_mask: Some(input_mask),
sentence_embedding: Some(sentence_embedding),
token_weights_sum: Some(token_weights_sum) }
}
pub fn default() -> Features {
Features {
input_ids: None,
token_type_ids: None,
token_embeddings: None,
cls_token_embeddings: None,
input_mask: None,
sentence_embedding: None,
token_weights_sum: None }
}
}
pub struct Bert {
pub bert: BertModel<BertEmbeddings>,
tokenizer: BertTokenizer,
max_seq_length: i64,
cls_token_id: i64,
sep_token_id: i64,
pub vs: VarStore
}
impl Bert {
pub fn new(model_path: &Path,
max_seq_length: Option<i64>,
do_lower_case: Option<bool>,
device: Device) -> Bert {
let max_seq_length = if let Some(value) = max_seq_length {value} else { 128 };
let do_lower_case = if let Some(value) = do_lower_case {value} else { true };
let max_seq_length = if max_seq_length > 510 {
warn!("Bert only allows a max_seq_length of 510 (512 with special tokens). Value will be set to 510");
510
} else {
max_seq_length
};
let mut vs = nn::VarStore::new(device);
let bert_config_path = model_path.join("config.json");
let bert_vocab_path = model_path.join("vocab.txt");
let weights_path = model_path.join("model.ot");
let bert_config = BertConfig::from_file(bert_config_path.as_path());
let bert: BertModel<BertEmbeddings> = BertModel::new(&(&vs.root() / "bert"), &bert_config);
let tokenizer = BertTokenizer::from_file(bert_vocab_path.to_str().unwrap(), do_lower_case);
let cls_token_id = tokenizer.convert_tokens_to_ids(&[String::from(BertVocab::cls_value())].to_vec())[0];
let sep_token_id = tokenizer.convert_tokens_to_ids(&[String::from(BertVocab::sep_value())].to_vec())[0];
vs.load(Path::new(&weights_path)).expect("Failed to load weights!");
Bert {bert, tokenizer, max_seq_length, cls_token_id, sep_token_id,
vs
}
}
pub fn forward_t(&self, features: Features) -> Features {
let (output_tokens, _, _, _) = no_grad(|| {
self.bert.forward_t(
Some(features.input_ids.as_ref().unwrap().shallow_clone()),
Some(features.input_mask.as_ref().unwrap().shallow_clone()),
Some(features.token_type_ids.as_ref().unwrap().shallow_clone()),
None,
None,
&None,
&None, //Some(features.input_mask.as_ref().unwrap().shallow_clone()),
false).unwrap() });
let cls_token = output_tokens.i((.., 0, ..)); //CLS token is first token
Features {
token_embeddings: Some(output_tokens),
cls_token_embeddings: Some(cls_token),
.. features }
}
pub fn tokenize(&self, text: &str) -> Vec<i64> {
self.tokenizer.convert_tokens_to_ids(&self.tokenizer.tokenize(text))
}
pub fn tokenize_multithreaded(&self, text_list: Vec<&str>) -> Vec<Vec<i64>> {
MultiThreadedTokenizer::tokenize_list(&self.tokenizer, text_list)
.iter()
.map(|sentence_tokens| self.tokenizer.convert_tokens_to_ids(sentence_tokens))
.collect()
}
pub fn get_sentence_features(&self, tokens: &[i64], pad_seq_length: usize) -> (Vec<i64>, Vec<i64>, Vec<i64>, Vec<i64>) {
let mut pad_seq_length = pad_seq_length.min(self.max_seq_length as usize);
let tokens = if pad_seq_length < tokens.len() {
&tokens[.. pad_seq_length as usize]
} else {
&tokens
};
let mut input_ids: Vec<i64> = vec![self.cls_token_id]
.into_iter()
.chain(tokens.to_vec().into_iter())
.chain(vec![self.sep_token_id])
.collect();
let sentence_length = input_ids.len() ;
pad_seq_length += 2;
let mut token_type_ids = vec![0; input_ids.len()];
let mut input_mask = vec![1; input_ids.len()];
// Zero-pad up to the sequence length. Bert: Pad to the right
let padding = vec![0; pad_seq_length as usize - input_ids.len()];
input_ids.extend(&padding);
token_type_ids.extend(&padding);
input_mask.extend( &padding);
assert_eq!(input_ids.len(), pad_seq_length);
assert_eq!(input_mask.len(), pad_seq_length);
assert_eq!(token_type_ids.len(), pad_seq_length);
(input_ids, token_type_ids, input_mask, vec![sentence_length as i64])
}
}