Neighbor Search's Bounds

After reading the paper "Tree-Independent Dual-Tree Algorithms" in detail, I found some mistakes in the definition of bounds, in the section " k-Nearest Neighbor Search": I think the recursive definition of the bound B_{2} is incorrect. It is defined as:

$$
B_{2}\left(N_{q}\right)=\min \left\{\min _{p \in P_{q}}\left(D_{p}[k]+\rho\left(N_{q}\right)+\lambda\left(N_{q}\right)\right), \min _{N_{c} \in C_{q}}\left(B_{2}\left(N_{c}\right)+2\left(\lambda\left(N_{q}\right)-\lambda\left(N_{c}\right)\right)\right)\right\}
$$

It makes sense to use a tighter bound: $\rho\left(N_{q}\right)+\lambda\left(N_{q}\right)$ for points in the node, but the recursive call: $\min _{N_{c} \in C_{q}}\left(B_{2}\left(N_{c}\right)+2\left(\lambda\left(N_{q}\right)-\lambda\left(N_{c}\right)\right)\right.$), doesn't seem to be ok. We are subtracting $2 \lambda\left(N_{c}\right)$ but maybe the child's B_{2} bound was calculated using the tighter bound: $\rho\left(N_{c}\right)+\lambda\left(N_{c}\right)$, where probably: $\rho\left(N_{c}\right)+\lambda\left(N_{c}\right)<2 \lambda\left(N_{c}\right)$, so we are substracting more than the correct value. So, sometimes, this could result in a smaller value of B_{2} than the correct one, and erroneously prune.

From the initial definition:

$$
B_{2}\left(N_{q}\right)=\min _{p \in D_{q}^{p}} D_{p}[k]+2 \lambda\left(N_{q}\right)
$$

The recursive definition would be:

$$
B_{2}\left(N_{q}\right)=\min \left\{\min _{p \in P_{q}}\left(D_{p}[k]+2 \lambda\left(N_{q}\right)\right), \min _{N_{c} \in C_{q}}\left(B_{2}\left(N_{c}\right)+2\left(\lambda\left(N_{q}\right)-\lambda\left(N_{c}\right)\right)\right)\right\}
$$

If we introduce the tighter bound: $\rho\left(N_{q}\right)+\lambda\left(N_{q}\right)$ for points in the node, we not only have to change the base case, but also the recursive call.
I would define it, using an auxiliary function $B_{a u x}$:

$$
\begin{aligned}
& B_{a u x}\left(N_{q}\right)=\min \left\{\min _{p \in P_{q}} D_{p}[k], \min _{N_{c} \in C_{q}} B_{a u x}\left(N_{c}\right)\right\} \\
& B_{2}\left(N_{q}\right)=\min \left\{\min _{p \in P_{q}}\left(D_{p}[k]+\rho\left(N_{q}\right)+\lambda\left(N_{q}\right)\right), B_{a u x}\left(N_{q}\right)+2 \lambda\left(N_{q}\right)\right\}
\end{aligned}
$$

Finally, the total definition of bounds would be:

$$
\begin{aligned}
& B_{1}\left(N_{q}\right)=\max \left\{\max _{p \in P_{q}} D_{p}[k], \max _{N_{c} \in C_{q}} B_{1}\left(N_{c}\right)\right\} \\
& B_{a u x}\left(N_{q}\right)=\min \left\{\min _{p \in P_{q}} D_{p}[k], \min _{N_{c} \in C_{q}} B_{a u x}\left(N_{c}\right)\right\} \\
& B_{2}\left(N_{q}\right)=\min \left\{\min _{p \in P_{q}}\left(D_{p}[k]+\rho\left(N_{q}\right)+\lambda\left(N_{q}\right)\right), B_{a u x}\left(N_{q}\right)+2 \lambda\left(N_{q}\right)\right\} \\
& B\left(N_{q}\right)=\min \left\{B_{1}\left(N_{q}\right), B_{2}\left(N_{q}\right), B\left(\operatorname{Par}\left(N_{q}\right)\right)\right\}
\end{aligned}
$$

Code of mlpack neighbor_search, implements B_{2} as mentioned in the paper, so I think we should fix it.

