A quick note on $B_{2}(\cdot)$

Ryan R. Curtin

May 25, 2016

Our goal here is to show that $B_{2}(\cdot)$ from [1] is a correct bound for nearest neighbor search. We can prove this, but first let's rewrite the bound function itself:

$$
\begin{equation*}
B_{2}\left(\mathscr{N}_{q}\right)=\min \left\{\min _{p \in \mathscr{P}_{q}}\left(D_{p}[k]+\rho\left(\mathscr{N}_{q}\right)+\lambda\left(\mathscr{N}_{q}\right)\right), \min _{\mathscr{N}_{c} \in \mathscr{C}_{q}}\left(B_{2}\left(\mathscr{N}_{c}\right)+2\left(\lambda\left(\mathscr{N}_{q}\right)-\lambda\left(\mathscr{N}_{c}\right)\right)\right)\right\} . \tag{1}
\end{equation*}
$$

Theorem 1. $B_{2}\left(\mathscr{N}_{q}\right)$ gives, for any \mathscr{N}_{q}, an upper bound on the distance between any descendant point of \mathscr{N}_{q} and its k-nearest neighbor.
Proof. To prove the correctness of $B_{2}\left(\mathscr{N}_{q}\right)$, we have to consider two cases: when \mathscr{N}_{q} is a leaf (has no children), and when \mathscr{N}_{q} is not a leaf. This strategy resembles induction, where the base case is a leaf.

First, consider when \mathscr{N}_{q} is a leaf. In this setting, the second min in Equation 1 does not evaluate since $\left|\mathscr{C}\left(\mathscr{N}_{q}\right)\right|=0$. So we only need to consider the first term. Also, when \mathscr{N}_{q} is a leaf, $\lambda\left(\mathscr{N}_{q}\right)=\rho\left(\mathscr{N}_{q}\right)$ because $\mathscr{P}_{q}=\mathscr{D}_{q}^{p}$ (that is, the set of points held in \mathscr{N}_{q} is the same as the set of descendant points of \mathscr{N}_{q}). Thus in this case,

$$
\begin{equation*}
B_{2}\left(\mathscr{N}_{q}\right)=\min _{p \in \mathscr{P}_{q}} D_{p}[k]+2 \lambda\left(\mathscr{N}_{q}\right) . \tag{2}
\end{equation*}
$$

We can show the correctness here using the triangle inequality. Any point in \mathscr{P}_{q} is separated from any other points in \mathscr{P}_{q} by a maximum of $2 \lambda\left(\mathscr{N}_{q}\right)$. Thus, if there exists some point p with k-furthest neighbor candidate distance $D_{p}[k]$, then for any other point p_{i} in \mathscr{P}_{q}, then

$$
\begin{align*}
D_{p_{i}}[k] & \leq D_{p}[k]+d\left(p, p_{i}\right) \tag{3}\\
& \leq D_{p}[k]+2 \lambda\left(\mathscr{N}_{q}\right) . \tag{4}
\end{align*}
$$

Thus, $B_{2}\left(\mathscr{N}_{q}\right)$ is correct when \mathscr{N}_{q} is a leaf. Now, let us consider the other case, where \mathscr{N}_{q} is not a leaf. Here we must prove that both sides of Equation 1 are correct. We will consider the first side first, with a similar argument.

Since \mathscr{N}_{q} is not a leaf, then $\rho\left(\mathscr{N}_{q}\right) \leq \lambda\left(\mathscr{N}_{q}\right)$ (that is, we do not have strict equality). We know that any point in \mathscr{P}_{q} (any point held in \mathscr{N}_{q}) is separated from \mathscr{D}_{q}^{p} (any descendant point of $\left.\mathscr{N}_{q}\right)$ by at most $\rho\left(\mathscr{N}_{q}\right)+\lambda\left(\mathscr{N}_{q}\right)$. Thus, if there exists some point $p \in \mathscr{P}_{q}$ with k-furthest neighbor candidate distance $D_{p}[k]$, then for any descendant point $p_{i} \in \mathscr{D}_{q}^{p}$, then

$$
\begin{align*}
D_{p_{i}}[k] & \leq D_{p}[k]+d\left(p, p_{i}\right) \tag{5}\\
& \leq D_{p}[k]+\rho\left(\mathscr{N}_{q}\right)+\lambda\left(\mathscr{N}_{q}\right) . \tag{6}
\end{align*}
$$

Now we may turn to proving the correctness of the second side of Equation 1. Assume that $\mathscr{B}_{2}\left(\mathscr{N}_{c}\right)$ is valid for each child \mathscr{N}_{c} of \mathscr{N}_{q} (that is, it satisfies the statement of the theorem). This means that $\mathscr{B}_{2}\left(\mathscr{N}_{c}\right)$ is a valid upper bound on the distance between any descendant point of \mathscr{N}_{c} and its k-nearest neighbor. But we can actually say something slightly stricter due to the way $B_{2}\left(\mathscr{N}_{c}\right)$ is constructed: $B_{2}\left(\mathscr{N}_{c}\right)$ is a valid upper bound on the distance between any point that falls into the ball of radius $\lambda\left(\mathscr{N}_{c}\right)$ centered at the center of the node \mathscr{N}_{c} and its k-nearest neighbor.

The ball of radius $\lambda\left(\mathscr{N}_{c}\right)$ centered at the center of the node \mathscr{N}_{c} lies entirely within the ball of radius $\lambda\left(\mathscr{N}_{q}\right)$ centered at the center of the node \mathscr{N}_{q}. For simplicity for what I'm about to write, call B_{i} the ball of radius λ_{i} centered at the center of node \mathscr{N}_{i}.

Then, for any point $p_{q} \in B_{q}$ and any point $p_{c} \in B_{c}$, we may construct a valid upper bound u_{q} on the k-nearest neighbor of p_{q} :

$$
\begin{equation*}
u_{q}=D_{p_{c}}[k]+d\left(p_{q}, p_{c}\right) \tag{7}
\end{equation*}
$$

If $p_{q} \in B_{c}$ (that is, p_{q} not only is contained in the ball B_{q} but also in B_{c}) then we may simply pick $p_{q}=p_{c}$ so $d\left(p_{q}, p_{c}\right)=0$. And if $p_{q} \notin B_{c}$, we can pick the closest point in B_{c} to p_{q}. The furthest possible distance between any $p_{q} \in B_{q}$ and the closest $p_{c} \in B_{c}$ is $2 \lambda\left(\mathscr{N}_{q}\right)-2 \lambda\left(\mathscr{N}_{c}\right)$. (Maybe it is easiest to see this geometrically, but I don't feel like drawing out the figure for this 'short' response.)

Thus we can conclude that in any situation, $d\left(p_{q}, p_{c}\right) \leq 2\left(\lambda\left(\mathscr{N}_{q}\right)-\lambda\left(\mathscr{N}_{c}\right)\right.$. Therefore

$$
\begin{equation*}
u_{q}=D_{p_{c}}[k]+2\left(\lambda\left(\mathscr{N}_{q}\right)+\lambda\left(\mathscr{N}_{c}\right)\right) \tag{8}
\end{equation*}
$$

and since $B_{2}\left(\mathscr{N}_{q}\right)$ is a valid upper bound for any point $p_{c} \in B_{c}$, we may simplify to

$$
\begin{equation*}
u_{q}=B_{2}\left(\mathscr{N}_{q}\right)+2\left(\lambda\left(\mathscr{N}_{q}\right)+\lambda\left(\mathscr{N}_{c}\right)\right) . \tag{9}
\end{equation*}
$$

We know that u_{q} is valid for any $p_{q} \in B_{q}$; thus, we can conclude that the second term in Equation 1 is a valid upper bound on the k-nearest neighbor for any p_{q} that is a descendant point of \mathscr{N}_{q}.

Combining upper bounds via min still gives valid upper bounds, so the statement of the theorem holds.

References

[1] Ryan R. Curtin, William B. March, Parikshit Ram, David V. Anderson, Alexander G. Gray, and Charles L. Isbell Jr. Tree-independent dual-tree algorithms. In Proceedings of The 30th International Conference on Machine Learning (ICML '13), pages 1435-1443, 2013.

