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Our goal here is to show that By(-) from [1] is a correct bound for nearest neighbor
search. We can prove this, but first let’s rewrite the bound function itself:

Bo(Ay) = min{ min (Dy[k] + p(Ag) + NAg)) . min (Ba(A) + 200A5) = AAD}. (1)
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Theorem 1. By(A;) gives, for any Ay, an upper bound on the distance between any de-
scendant point of Ay and its k-nearest neighbor.

Proof. To prove the correctness of Ba(.4;), we have to consider two cases: when .4 is a
leaf (has no children), and when .4; is not a leaf. This strategy resembles induction, where
the base case is a leaf.

First, consider when .47 is a leaf. In this setting, the second min in Equation 1 does not
evaluate since |€'(A45)| = 0. So we only need to consider the first term. Also, when .45 is a
leaf, A\(A5) = p(A;) because &, = PP (that is, the set of points held in .4 is the same as
the set of descendant points of .4;). Thus in this case,

By(Ay) = min Dy[k] +2A(A). (2)
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We can show the correctness here using the triangle inequality. Any point in &, is
separated from any other points in &7, by a maximum of 2A\(.47). Thus, if there exists some
point p with k-furthest neighbor candidate distance D,[k], then for any other point p; in
Py, then

Dy, [¥]
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Dy[k] +d(p, pi) 3)
Dyp[k] +2X(A7)- (4)

Thus, By(.A4;) is correct when 4 is a leaf. Now, let us consider the other case, where
Ny is not a leaf. Here we must prove that both sides of Equation 1 are correct. We will
consider the first side first, with a similar argument.

Since 45 is not a leaf, then p(47) < A(Ag) (that is, we do not have strict equality). We
know that any point in &, (any point held in .43) is separated from 2P (any descendant
point of Ag) by at most p(A;) + A(Ag). Thus, if there exists some point p € &, with
k-furthest neighbor candidate distance D, [k], then for any descendant point p; € 2%, then

Dy, [¥] Dy[k] + d(p, pi) ()

Dp[k] + p(Ag) + A(Ag). (6)
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Now we may turn to proving the correctness of the second side of Equation 1. Assume
that %Ba(A¢) is valid for each child A, of .4, (that is, it satisfies the statement of the
theorem). This means that %a(.A4;) is a valid upper bound on the distance between any
descendant point of .4, and its k-nearest neighbor. But we can actually say something
slightly stricter due to the way Bs(.A:) is constructed: Bg(4%) is a valid upper bound on
the distance between any point that falls into the ball of radius A(A.) centered at the center
of the node A, and its k-nearest neighbor.

The ball of radius A(.4;) centered at the center of the node .4, lies entirely within the
ball of radius A(.#;) centered at the center of the node .4#;. For simplicity for what I'm
about to write, call B; the ball of radius \; centered at the center of node .4;.

Then, for any point p, € B, and any point p. € B, we may construct a valid upper
bound u, on the k-nearest neighbor of p,:

ug = Dy, [k] + d(pq, pe)- (7)

If p, € B. (that is, p; not only is contained in the ball B, but also in B.) then we may
simply pick p; = pc so d(pg,pc) = 0. And if p, & B., we can pick the closest point in
B. to py. The furthest possible distance between any p, € B, and the closest p. € B, is
2X(Ag) —2A(A2). (Maybe it is easiest to see this geometrically, but I don’t feel like drawing
out the figure for this ‘short’ response.)

Thus we can conclude that in any situation, d(pq,pc) < 2(A(Ag) — A(A2). Therefore

ug = Dy, [K] + 2(A(Ag) + A(A2)) (8)
and since Ba(A;) is a valid upper bound for any point p. € B., we may simplify to

g = Ba( ) + 2NA) + A(A)). (9)

We know that v, is valid for any p, € By; thus, we can conclude that the second term in
Equation 1 is a valid upper bound on the k-nearest neighbor for any p, that is a descendant

point of ;.

Combining upper bounds via min still gives valid upper bounds, so the statement of the
theorem holds. O
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