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While the previous proof works for ball trees, it doesn’t seem to be correct for different
bounds.
The problem is in the assumption:
“The ball of radius λ(Nc) centered at the center of the node Nc lies entirely within the ball
of radius λ(Nq) centered at the center of the node Nq.”
This is not always true for some bounds such as hyperrectangles used in KDTrees. Let’s
see an example:
Let consider a four-point dataset {x1, x2, x3, x4} ⊆ R2.

x1 = (0, 0) x2 = (12, 3611) x3 = (12, 6) x4 = (10, 0)
(x2 particularly chosen to be aligned with c2 and x1, making the proof simpler)
The abstract representation of the space tree is shown in the Figure 1a, and a R2 represen-
tation including convex subsets can be seen in Figure 1b. c0 and c2 represent the centroids
of the nodes N0 and N2 respectively.

(a) Abstract representation.
(b) R2 representation.

As can be seen in Figure 2, the ball B0 (ball of radius λ(N0) centered at the center of node
N0) doesn’t completely include the ball B2 (ball of radius λ(N2) centered at the center of
node N2).
If we consider the point x1 in the figure, we can prove that the distance between x1 and
the closest point y ∈ B2 is greater than 2λ(N0) − 2λ(N2). In contradiction to what was
mentioned in the previous proof (“The furthest possible distance between any pq ∈ Bq and
the closest pc ∈ Bc is 2λ(Nq)− 2λ(Nc)”).

dist(x1, y) > 2λ(N0)− 2λ(N2) (1)

This is easy to see from the figure, a proof could be provided if necessary.
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Figure 2: R2 representation incluiding B2 and B0

Let’s consider a reference dataset {xr} ⊆ R2, xr = (15, 4511)
(xr particularly chosen to be aligned with x1, c2 and x2, making the proof simpler)
It is easy to see from the figure that:

dist(x2, xr) < dist(x3, xr) (2)

dist(x2, xr) < dist(x4, xr) (3)

Assuming 1-nearest neighbor search (k = 1), let’s analyze the value of B2 bound after
traversing the space tree considering the reference point xr:

B2(N4) = dist(x4, xr)

B2(N3) = dist(x3, xr)

B2(N2) = min{minp∈P2(Dp[1] + ρ(N2) + λ(N2)) , minNc∈C2(B2(Nc) + 2 (λ(N2)− λ(Nc)))}
= min{dist(x2, xr) + dist(c2, x2) + λ(N2) , B2(N3) + 2λ(N2) , B2(N4) + 2λ(N2)}
= min{dist(x2, xr) + dist(c2, x2) + λ(N2) , dist(x3, xr) + 2λ(N2) , dist(x4, xr) + 2λ(N2)}
= min{dist(x2, xr) + dist(c2, x2) + dist(c2, y) , dist(x3, xr) + 2 dist(c2, y)

, dist(x4, xr) + 2 dist(c2, y)}

Since (2), (3) and dist(c2, x2) < dist(c2, y), results:

dist(x2, xr) + dist(c2, x2) + dist(c2, y) < dist(x3, xr) + 2 dist(c2, y)
dist(x2, xr) + dist(c2, x2) + dist(c2, y) < dist(x4, xr) + 2 dist(c2, y)

So, therefore:
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B2(N2) = dist(x2, xr) + dist(c2, x2) + dist(c2, y)

= dist(y, xr)

B2(N1) = dist(x1, xr)

B2(N0) = min{minp∈P0(Dp[1] + ρ(N0) + λ(N0)),minNc∈C0(B2(Nc) + 2 (λ(N0)− λ(Nc)))}
= min{B2(N1) + 2 (λ(N0)− λ(N1)), B2(N2) + 2 (λ(N0)− λ(N2))}
= min{dist(x1, xr) + 2 (λ(N0)− λ(N1)), dist(y, xr) + 2 (λ(N0)− λ(N2))}
= min{dist(x1, xr) + 2λ(N0), dist(y, xr) + 2 (λ(N0)− λ(N2))}
= dist(y, xr) + 2 (λ(N0)− λ(N2))

As mentioned at the beginning (1): dist(x1, y) > 2λ(N0)− 2λ(N2)
Therefore: dist(x1, y) + dist(y, xr) > 2λ(N0)− 2λ(N2) + dist(y, xr)
Resulting in: dist(x1, xr) > B2(N0)
So, B2(N0) is not an upper bound on the distance between any descendant point of N0

and its 1-nearest neighbor.
We could make errors when prunning, considering actual B2 bound definition.
For example, if we increase the reference dataset with another point x′r (Figure 3), included
in a leaf node N ′

r, x
′
r aligned with c0 and x1, and at the fixed distance:

dist(x1, x
′
r) = B2(N0) + (dist(x1, xr)−B2(N0))/2

Clearly dist(x1, x
′
r) < dist(x1, xr), but the node combination: (N0, N

′
r) will be pruned

because:
dmin(N0, N

′
r) = dist(x1, x

′
r) > B2(N0)

Figure 3
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