Neighbor Search's Bounds

Marcos Pividori

While the previous proof works for ball trees, it doesn't seem to be correct for different bounds.

The problem is in the assumption:

"The ball of radius $\lambda(N_c)$ centered at the center of the node N_c lies entirely within the ball of radius $\lambda(N_q)$ centered at the center of the node N_q ."

This is not always true for some bounds such as hyperrectangles used in KDTrees. Let's see an example:

Let consider a four-point dataset $\{x_1, x_2, x_3, x_4\} \subseteq \mathbb{R}^2$.

 $x_1 = (0,0)$ $x_2 = (12,\frac{36}{11})$ $x_3 = (12,6)$ $x_4 = (10,0)$

 $(x_2 \text{ particularly chosen to be aligned with } c_2 \text{ and } x_1, \text{ making the proof simpler})$

The abstract representation of the space tree is shown in the Figure 1a, and a \mathbb{R}^2 representation including convex subsets can be seen in Figure 1b. c_0 and c_2 represent the centroids of the nodes N_0 and N_2 respectively.

(a) Abstract representation.

(b) \mathbb{R}^2 representation.

As can be seen in Figure 2, the ball B_0 (ball of radius $\lambda(N_0)$ centered at the center of node N_0) doesn't completely include the ball B_2 (ball of radius $\lambda(N_2)$ centered at the center of node N_2).

If we consider the point x_1 in the figure, we can prove that the distance between x_1 and the closest point $y \in B_2$ is greater than $2\lambda(N_0) - 2\lambda(N_2)$. In contradiction to what was mentioned in the previous proof ("The furthest possible distance between any $p_q \in B_q$ and the closest $p_c \in B_c$ is $2\lambda(N_q) - 2\lambda(N_c)$ ").

$$dist(x_1, y) > 2\lambda(N_0) - 2\lambda(N_2) \tag{1}$$

This is easy to see from the figure, a proof could be provided if necessary.

Figure 2: \mathbb{R}^2 representation incluiding B_2 and B_0

Let's consider a reference dataset $\{x_r\} \subseteq \mathbb{R}^2$, $x_r = (15, \frac{45}{11})$ (x_r particularly chosen to be aligned with x_1 , c_2 and x_2 , making the proof simpler) It is easy to see from the figure that:

$$dist(x_2, x_r) < dist(x_3, x_r)$$

$$dist(x_2, x_r) < dist(x_4, x_r)$$

$$(2)$$

$$(3)$$

Assuming 1-nearest neighbor search (k = 1), let's analyze the value of B_2 bound after traversing the space tree considering the reference point x_r :

$$\begin{split} B_2(N_4) &= dist(x_4, x_r) \\ B_2(N_3) &= dist(x_3, x_r) \\ B_2(N_2) &= min\{min_{p \in \mathscr{P}_2}(Dp[1] + \rho(N_2) + \lambda(N_2)), \ min_{N_c \in \mathscr{C}_2}(B_2(N_c) + 2\left(\lambda(N_2) - \lambda(N_c)\right))\} \\ &= min\{dist(x_2, x_r) + dist(c_2, x_2) + \lambda(N_2), \ B_2(N_3) + 2\lambda(N_2), \ B_2(N_4) + 2\lambda(N_2)\} \\ &= min\{dist(x_2, x_r) + dist(c_2, x_2) + \lambda(N_2), \ dist(x_3, x_r) + 2\lambda(N_2), \ dist(x_4, x_r) + 2\lambda(N_2)\} \\ &= min\{dist(x_2, x_r) + dist(c_2, x_2) + dist(c_2, y), \ dist(x_3, x_r) + 2dist(c_2, y) \\ &\quad , dist(x_4, x_r) + 2dist(c_2, y)\} \end{split}$$

Since (2), (3) and $dist(c_2, x_2) < dist(c_2, y)$, results:

$$dist(x_2, x_r) + dist(c_2, x_2) + dist(c_2, y) < dist(x_3, x_r) + 2 dist(c_2, y)$$

$$dist(x_2, x_r) + dist(c_2, x_2) + dist(c_2, y) < dist(x_4, x_r) + 2 dist(c_2, y)$$

So, therefore:

$$B_2(N_2) = dist(x_2, x_r) + dist(c_2, x_2) + dist(c_2, y) = dist(y, x_r)$$

 $B_2(N_1) = dist(x_1, x_r)$

$$\begin{split} B_2(N_0) &= \min\{\min_{p \in \mathscr{P}_0} (Dp[1] + \rho(N_0) + \lambda(N_0)), \min_{N_c \in \mathscr{C}_0} (B_2(N_c) + 2\left(\lambda(N_0) - \lambda(N_c)\right))\} \\ &= \min\{B_2(N_1) + 2\left(\lambda(N_0) - \lambda(N_1)\right), B_2(N_2) + 2\left(\lambda(N_0) - \lambda(N_2)\right)\} \\ &= \min\{dist(x_1, x_r) + 2\left(\lambda(N_0) - \lambda(N_1)\right), dist(y, x_r) + 2\left(\lambda(N_0) - \lambda(N_2)\right)\} \\ &= \min\{dist(x_1, x_r) + 2\lambda(N_0), dist(y, x_r) + 2\left(\lambda(N_0) - \lambda(N_2)\right)\} \\ &= dist(y, x_r) + 2\left(\lambda(N_0) - \lambda(N_2)\right) \end{split}$$

As mentioned at the beginning (1): $dist(x_1, y) > 2\lambda(N_0) - 2\lambda(N_2)$ Therefore: $dist(x_1, y) + dist(y, x_r) > 2\lambda(N_0) - 2\lambda(N_2) + dist(y, x_r)$ Resulting in: $dist(x_1, x_r) > B_2(N_0)$

So, $B_2(N_0)$ is not an upper bound on the distance between any descendant point of N_0 and its 1-nearest neighbor.

We could make errors when prunning, considering actual B_2 bound definition.

For example, if we increase the reference dataset with another point x'_r (Figure 3), included in a leaf node N'_r , x'_r aligned with c_0 and x_1 , and at the fixed distance:

 $dist(x_1, x'_r) = B_2(N_0) + (dist(x_1, x_r) - B_2(N_0))/2$ Clearly $dist(x_1, x'_r) < dist(x_1, x_r)$, but the node combination: (N_0, N'_r) will be pruned because:

 $d_{min}(N_0, N'_r) = dist(x_1, x'_r) > B_2(N_0)$

Figure 3