Neighbor Search's Bounds

Marcos Pividori

While the previous proof works for ball trees, it doesn't seem to be correct for different bounds.
The problem is in the assumption:
"The ball of radius $\lambda\left(N_{c}\right)$ centered at the center of the node N_{c} lies entirely within the ball of radius $\lambda\left(N_{q}\right)$ centered at the center of the node N_{q}."
This is not always true for some bounds such as hyperrectangles used in KDTrees. Let's see an example:
Let consider a four-point dataset $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq \mathbb{R}^{2}$.

$$
x_{1}=(0,0) \quad x_{2}=\left(12, \frac{36}{11}\right) \quad x_{3}=(12,6) \quad x_{4}=(10,0)
$$

(x_{2} particularly chosen to be aligned with c_{2} and x_{1}, making the proof simpler)
The abstract representation of the space tree is shown in the Figure 1a, and a \mathbb{R}^{2} representation including convex subsets can be seen in Figure 1b. c_{0} and c_{2} represent the centroids of the nodes N_{0} and N_{2} respectively.

(a) Abstract representation.

(b) \mathbb{R}^{2} representation.

As can be seen in Figure 2, the ball B_{0} (ball of radius $\lambda\left(N_{0}\right)$ centered at the center of node N_{0}) doesn't completely include the ball B_{2} (ball of radius $\lambda\left(N_{2}\right)$ centered at the center of node N_{2}).
If we consider the point x_{1} in the figure, we can prove that the distance between x_{1} and the closest point $y \in B_{2}$ is greater than $2 \lambda\left(N_{0}\right)-2 \lambda\left(N_{2}\right)$. In contradiction to what was mentioned in the previous proof ("The furthest possible distance between any $p_{q} \in B_{q}$ and the closest $p_{c} \in B_{c}$ is $2 \lambda\left(N_{q}\right)-2 \lambda\left(N_{c}\right)$ ").

$$
\begin{equation*}
\operatorname{dist}\left(x_{1}, y\right)>2 \lambda\left(N_{0}\right)-2 \lambda\left(N_{2}\right) \tag{1}
\end{equation*}
$$

This is easy to see from the figure, a proof could be provided if necessary.

Figure 2: \mathbb{R}^{2} representation incluiding B_{2} and B_{0}
Let's consider a reference dataset $\left\{x_{r}\right\} \subseteq \mathbb{R}^{2}, x_{r}=\left(15, \frac{45}{11}\right)$
(x_{r} particularly chosen to be aligned with x_{1}, c_{2} and x_{2}, making the proof simpler)
It is easy to see from the figure that:

$$
\begin{align*}
& \operatorname{dist}\left(x_{2}, x_{r}\right)<\operatorname{dist}\left(x_{3}, x_{r}\right) \tag{2}\\
& \operatorname{dist}\left(x_{2}, x_{r}\right)<\operatorname{dist}\left(x_{4}, x_{r}\right) \tag{3}
\end{align*}
$$

Assuming 1-nearest neighbor search $(k=1)$, let's analyze the value of B_{2} bound after traversing the space tree considering the reference point x_{r} :

$$
\begin{aligned}
B_{2}\left(N_{4}\right) & =\operatorname{dist}\left(x_{4}, x_{r}\right) \\
B_{2}\left(N_{3}\right) & =\operatorname{dist}\left(x_{3}, x_{r}\right) \\
B_{2}\left(N_{2}\right) & =\min \left\{\min _{p \in \mathscr{P}_{2}}\left(\operatorname{Dp}[1]+\rho\left(N_{2}\right)+\lambda\left(N_{2}\right)\right), \min _{N_{c} \in \mathscr{C}_{2}}\left(B_{2}\left(N_{c}\right)+2\left(\lambda\left(N_{2}\right)-\lambda\left(N_{c}\right)\right)\right)\right\} \\
& =\min \left\{\operatorname{dist}\left(x_{2}, x_{r}\right)+\operatorname{dist}\left(c_{2}, x_{2}\right)+\lambda\left(N_{2}\right), B_{2}\left(N_{3}\right)+2 \lambda\left(N_{2}\right), B_{2}\left(N_{4}\right)+2 \lambda\left(N_{2}\right)\right\} \\
& =\min \left\{\operatorname{dist}\left(x_{2}, x_{r}\right)+\operatorname{dist}\left(c_{2}, x_{2}\right)+\lambda\left(N_{2}\right), \operatorname{dist}\left(x_{3}, x_{r}\right)+2 \lambda\left(N_{2}\right), \operatorname{dist}\left(x_{4}, x_{r}\right)+2 \lambda\left(N_{2}\right)\right\} \\
& =\min \left\{\operatorname{dist}\left(x_{2}, x_{r}\right)+\operatorname{dist}\left(c_{2}, x_{2}\right)+\operatorname{dist}\left(c_{2}, y\right), \operatorname{dist}\left(x_{3}, x_{r}\right)+2 \operatorname{dist}\left(c_{2}, y\right)\right. \\
& \left.\quad, \operatorname{dist}\left(x_{4}, x_{r}\right)+2 \operatorname{dist}\left(c_{2}, y\right)\right\}
\end{aligned}
$$

Since (2), (3) and $\operatorname{dist}\left(c_{2}, x_{2}\right)<\operatorname{dist}\left(c_{2}, y\right)$, results:

$$
\begin{aligned}
& \operatorname{dist}\left(x_{2}, x_{r}\right)+\operatorname{dist}\left(c_{2}, x_{2}\right)+\operatorname{dist}\left(c_{2}, y\right)<\operatorname{dist}\left(x_{3}, x_{r}\right)+2 \operatorname{dist}\left(c_{2}, y\right) \\
& \operatorname{dist}\left(x_{2}, x_{r}\right)+\operatorname{dist}\left(c_{2}, x_{2}\right)+\operatorname{dist}\left(c_{2}, y\right)<\operatorname{dist}\left(x_{4}, x_{r}\right)+2 \operatorname{dist}\left(c_{2}, y\right)
\end{aligned}
$$

So, therefore:

$$
\begin{aligned}
B_{2}\left(N_{2}\right) & =\operatorname{dist}\left(x_{2}, x_{r}\right)+\operatorname{dist}\left(c_{2}, x_{2}\right)+\operatorname{dist}\left(c_{2}, y\right) \\
& =\operatorname{dist}\left(y, x_{r}\right) \\
B_{2}\left(N_{1}\right) & =\operatorname{dist}\left(x_{1}, x_{r}\right) \\
B_{2}\left(N_{0}\right) & =\min \left\{\min _{p \in \mathscr{P}_{0}}\left(D p[1]+\rho\left(N_{0}\right)+\lambda\left(N_{0}\right)\right), \min _{N_{c} \in \mathscr{C}_{0}}\left(B_{2}\left(N_{c}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{c}\right)\right)\right)\right\} \\
& =\min \left\{B_{2}\left(N_{1}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{1}\right)\right), B_{2}\left(N_{2}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{2}\right)\right)\right\} \\
& =\min \left\{\operatorname{dist}\left(x_{1}, x_{r}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{1}\right)\right), \operatorname{dist}\left(y, x_{r}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{2}\right)\right)\right\} \\
& =\min \left\{\operatorname{dist}\left(x_{1}, x_{r}\right)+2 \lambda\left(N_{0}\right), \operatorname{dist}\left(y, x_{r}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{2}\right)\right)\right\} \\
& =\operatorname{dist}\left(y, x_{r}\right)+2\left(\lambda\left(N_{0}\right)-\lambda\left(N_{2}\right)\right)
\end{aligned}
$$

As mentioned at the beginning (1): $\operatorname{dist}\left(x_{1}, y\right)>2 \lambda\left(N_{0}\right)-2 \lambda\left(N_{2}\right)$
Therefore: $\operatorname{dist}\left(x_{1}, y\right)+\operatorname{dist}\left(y, x_{r}\right)>2 \lambda\left(N_{0}\right)-2 \lambda\left(N_{2}\right)+\operatorname{dist}\left(y, x_{r}\right)$
Resulting in: $\operatorname{dist}\left(x_{1}, x_{r}\right)>B_{2}\left(N_{0}\right)$
So, $B_{2}\left(N_{0}\right)$ is not an upper bound on the distance between any descendant point of N_{0} and its 1-nearest neighbor.
We could make errors when prunning, considering actual B_{2} bound definition.
For example, if we increase the reference dataset with another point x_{r}^{\prime} (Figure 3), included in a leaf node $N_{r}^{\prime}, x_{r}^{\prime}$ aligned with c_{0} and x_{1}, and at the fixed distance:

$$
\operatorname{dist}\left(x_{1}, x_{r}^{\prime}\right)=B_{2}\left(N_{0}\right)+\left(\operatorname{dist}\left(x_{1}, x_{r}\right)-B_{2}\left(N_{0}\right)\right) / 2
$$

Clearly $\operatorname{dist}\left(x_{1}, x_{r}^{\prime}\right)<\operatorname{dist}\left(x_{1}, x_{r}\right)$, but the node combination: $\left(N_{0}, N_{r}^{\prime}\right)$ will be pruned because:

$$
d_{\min }\left(N_{0}, N_{r}^{\prime}\right)=\operatorname{dist}\left(x_{1}, x_{r}^{\prime}\right)>B_{2}\left(N_{0}\right)
$$

Figure 3

