
mlr Tutorial

Julia Schiffner Lars Kotthoff Bernd Bischl
Jakob Richter Zachary M. Jones IcedragonP
Florian Pfisterer Mason Gallo Philipp Probst

Contents
1 mlr Tutorial 6

1.1 Quick start . 6

2 Learning Tasks 7
2.1 Task types and creation . 7

2.1.1 Regression . 7
2.1.2 Classification . 8
2.1.3 Survival analysis . 9
2.1.4 Multilabel classification 9
2.1.5 Cluster analysis . 10
2.1.6 Cost-sensitive classification 11

2.2 Further settings . 12
2.3 Accessing a learning task . 12
2.4 Modifying a learning task . 15
2.5 Example tasks and convenience functions 16

3 Learners 16
3.1 Constructing a learner . 17
3.2 Accessing a learner . 18
3.3 Modifying a learner . 20
3.4 Listing learners . 21

4 Training a Learner 23
4.1 Accessing learner models . 24
4.2 Further options and comments 26

5 Predicting Outcomes for New Data 27
5.1 Accessing the prediction . 29

5.1.1 Extract Probabilities . 30
5.2 Adjusting the threshold . 32
5.3 Visualizing the prediction . 34

1

CONTENTS CONTENTS

6 Evaluating Learner Performance 38
6.1 Available performance measures 38
6.2 Listing measures . 39
6.3 Calculate performance measures 40

6.3.1 Requirements of performance measures 41
6.4 Access a performance measure . 42
6.5 Binary classification: Plot performance versus threshold 42

7 Resampling 43
7.1 Stratified resampling . 47
7.2 Accessing individual learner models 47
7.3 Resample descriptions and resample instances 49
7.4 Aggregating performance values 51

7.4.1 Example: Different measures and aggregations 52
7.4.2 Example: Calculating the training error 52
7.4.3 Example: Bootstrap . 53

7.5 Convenience functions . 54

8 Tuning Hyperparameters 54
8.1 Basics . 54

8.1.1 Specifying the search space 55
8.1.2 Specifying the optimization algorithm 56
8.1.3 Performing the tuning . 57
8.1.4 Accessing the tuning result 60
8.1.5 Investigating hyperparameter tuning effects 61

8.2 Further comments . 63

9 Benchmark Experiments 64
9.1 Conducting benchmark experiments 64
9.2 Accessing benchmark results . 65

9.2.1 Learner performances . 65
9.2.2 Predictions . 66
9.2.3 IDs . 68
9.2.4 Learner models . 68
9.2.5 Learners and measures . 69

9.3 Merging benchmark results . 69
9.4 Benchmark analysis and visualization 71

9.4.1 Example: Comparing lda, rpart and random Forest 71
9.4.2 Integrated plots . 74
9.4.3 Comparing learners using hypothesis tests 80
9.4.4 Critical differences diagram 81
9.4.5 Custom plots . 83

9.5 Further comments . 86

10 Parallelization 87
10.1 Parallelization levels . 87

2

CONTENTS CONTENTS

10.2 Custom learners and parallelization 88
10.3 The end . 88

11 Visualization 89
11.1 Generation and plotting functions 89

11.1.1 Some examples . 89
11.1.2 Customizing plots . 90

11.2 Available generation and plotting functions 96

12 Configuring mlr 97
12.1 Example: Reducing the output on the console 97
12.2 Accessing and resetting the configuration 98
12.3 Example: Turning off parameter checking 99
12.4 Example: Handling errors in a learning method 100

13 Wrapper 102
13.1 Example: Bagging wrapper . 102

14 Data Preprocessing 106
14.1 Fusing learners with preprocessing 107
14.2 Preprocessing with makePreprocWrapperCaret 108

14.2.1 Joint tuning of preprocessing options and learner parameters111
14.3 Writing a custom preprocessing wrapper 114

14.3.1 Specifying the train function 114
14.3.2 Specifying the predict function 115
14.3.3 Creating the preprocessing wrapper 116
14.3.4 Joint tuning of preprocessing and learner parameters . . . 117
14.3.5 Preprocessing wrapper functions 119

15 Imputation of Missing Values 120
15.1 Imputation and reimputation . 121
15.2 Fusing a learner with imputation 125

16 Generic Bagging 126
16.1 Changing the type of prediction 128

17 Advanced Tuning 130
17.1 Iterated F-Racing for mixed spaces and dependencies 130
17.2 Tuning across whole model spaces with ModelMultiplexer 131
17.3 Multi-criteria evaluation and optimization 133

18 Feature Selection 134
18.1 Filter methods . 135

18.1.1 Calculating the feature importance 135
18.1.2 Selecting a feature subset 137
18.1.3 Fuse a learner with a filter method 137
18.1.4 Tuning the size of the feature subset 138

3

CONTENTS CONTENTS

18.2 Wrapper methods . 142
18.2.1 Select a feature subset . 143
18.2.2 Fuse a learner with feature selection 145

19 Nested Resampling 147
19.1 Tuning . 149

19.1.1 Accessing the tuning result 150
19.2 Feature selection . 152

19.2.1 Wrapper methods . 152
19.2.2 Filter methods with tuning 155

19.3 Benchmark experiments . 157
19.3.1 Example 1: Two tasks, two learners, tuning 158
19.3.2 Example 2: One task, two learners, feature selection . . . 161
19.3.3 Example 3: One task, two learners, feature filtering with

tuning . 163

20 Cost-Sensitive Classification 164
20.1 Class-dependent misclassification costs 165

20.1.1 Binary classification problems 165
20.1.2 Multi-class problems . 176

20.2 Example-dependent misclassification costs 178

21 Imbalanced Classification Problems 181
21.1 Sampling-based approaches . 182

21.1.1 (Simple) over- and undersampling 182
21.1.2 Over- and undersampling wrappers 184
21.1.3 Extensions to oversampling 184

21.2 Cost-based approaches . 187
21.2.1 Weighted classes wrapper 187

22 ROC Analysis and Performance Curves 187
22.1 Performance plots with plotROCCurves 189

22.1.1 Example 1: Single predictions 189
22.1.2 Example 2: Benchmark experiment 194

22.2 Performance plots with asROCRPrediction 198
22.2.1 Example 1: Single predictions (continued) 198
22.2.2 Example 2: Benchmark experiments (continued) 200

22.3 Viper charts . 204

23 Multilabel Classification 205
23.1 Creating a task . 205
23.2 Constructing a learner . 206

23.2.1 Algorithm adaptation methods 206
23.2.2 Problem transformation methods 206

23.3 Train . 208
23.4 Predict . 208

4

CONTENTS CONTENTS

23.5 Performance . 209
23.6 Resampling . 210
23.7 Binary performance . 210

24 Learning Curve Analysis 211
24.1 Plotting the learning curve . 212

25 Exploring Learner Predictions 215
25.1 Generating partial dependences 217
25.2 Functional ANOVA . 223
25.3 Plotting partial dependences . 225

26 Classifier Calibration 233

27 Evaluating Hyperparameter Tuning 237
27.1 Generating hyperparameter tuning data 238
27.2 Visualizing the effect of a single hyperparameter 241
27.3 Visualizing the effect of 2 hyperparameters 245

28 Integrating Another Learner 252
28.1 Classes, constructors, and naming schemes 253
28.2 Classification . 254

28.2.1 Definition of the learner 254
28.2.2 Creating the training function of the learner 255
28.2.3 Creating the prediction method 256

28.3 Regression . 257
28.4 Survival analysis . 258
28.5 Clustering . 259
28.6 Multilabel classification . 260
28.7 Creating a new feature importance method 261

29 Integrating Another Measure 262
29.1 Performance measures and aggregation schemes 262
29.2 Constructing a performance measure 264
29.3 Constructing a measure for ordinary misclassification costs . . . 265
29.4 Creating an aggregation scheme 266

29.4.1 Example: Evaluating the range of measures 266

30 Creating an Imputation Method 268
30.1 Example: Imputation using the mean 268
30.2 Writing your own imputation method 269

31 Integrating Another Filter Method 270
31.1 Filter objects . 270
31.2 Writing a new filter method . 271

5

1 MLR TUTORIAL

1 mlr Tutorial

This web page provides an in-depth introduction on how to use the mlr frame-
work for machine learning experiments in R.

We focus on the comprehension of the basic functions and applications. More
detailed technical information can be found in the manual pages which are
regularly updated and reflect the documentation of the current package version
on CRAN.

An offline version of this tutorial is available for download

• here for the current mlr release on CRAN
• and here for the mlr devel version on Github.

The tutorial explains the basic analysis of a data set step by step. Please refer
to sections of the menu above: Basics, Advanced, Extend and Appendix.

During the tutorial we present various simple examples from classification, re-
gression, cluster and survival analysis to illustrate the main features of the
package.

Enjoy reading!

1.1 Quick start

A simple stratified cross-validation of linear discriminant analysis with mlr.

library(mlr)
data(iris)

Define the task
task = makeClassifTask(id = "tutorial", data = iris, target =

"Species")

Define the learner
lrn = makeLearner("classif.lda")

Define the resampling strategy
rdesc = makeResampleDesc(method = "CV", stratify = TRUE)

Do the resampling
r = resample(learner = lrn, task = task, resampling = rdesc,

show.info = FALSE)

Get the mean misclassification error
r$aggr
#> mmce.test.mean

6

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://cran.r-project.org/web/packages/mlr/index.html
http://cran.r-project.org/web/packages/mlr/index.html
https://mlr-org.github.io/mlr-tutorial/release/mlr_tutorial.zip
https://mlr-org.github.io/mlr-tutorial/devel/mlr_tutorial.zip
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/mlr/

2 LEARNING TASKS

#> 0.02

2 Learning Tasks

Learning tasks encapsulate the data set and further relevant information about
a machine learning problem, for example the name of the target variable for
supervised problems.

2.1 Task types and creation

The tasks are organized in a hierarchy, with the generic Task at the top. The
following tasks can be instantiated and all inherit from the virtual superclass
Task:

• RegrTask for regression problems,
• ClassifTask for binary and multi-class classification problems (cost-

sensitive classification with class-dependent costs can be handled as
well),

• SurvTask for survival analysis,
• ClusterTask for cluster analysis,
• MultilabelTask for multilabel classification problems,
• CostSensTask for general cost-sensitive classification (with example-

specific costs).

To create a task, just call make<TaskType>, e.g., makeClassifTask. All tasks re-
quire an identifier (argument id) and a data.frame (argument data). If no ID is
provided it is automatically generated using the variable name of the data. The
ID will be later used to name results, for example of benchmark experiments,
and to annotate plots. Depending on the nature of the learning problem, addi-
tional arguments may be required and are discussed in the following sections.

2.1.1 Regression

For supervised learning like regression (as well as classification and survival anal-
ysis) we, in addition to data, have to specify the name of the target variable.

data(BostonHousing, package = "mlbench")
regr.task = makeRegrTask(id = "bh", data = BostonHousing, target =

"medv")
regr.task
#> Supervised task: bh
#> Type: regr
#> Target: medv

7

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html

2.1 Task types and creation 2 LEARNING TASKS

#> Observations: 506
#> Features:
#> numerics factors ordered
#> 12 1 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE

As you can see, the Task records the type of the learning problem and basic
information about the data set, e.g., the types of the features (numeric vectors,
factors or ordered factors), the number of observations, or whether missing
values are present.

Creating tasks for classification and survival analysis follows the same scheme,
the data type of the target variables included in data is simply different. For
each of these learning problems some specifics are described below.

2.1.2 Classification

For classification the target column has to be a factor.

In the following example we define a classification task for the BreastCancer data
set and exclude the variable Id from all further model fitting and evaluation.
data(BreastCancer, package = "mlbench")
df = BreastCancer
df$Id = NULL
classif.task = makeClassifTask(id = "BreastCancer", data = df,

target = "Class")
classif.task
#> Supervised task: BreastCancer
#> Type: classif
#> Target: Class
#> Observations: 699
#> Features:
#> numerics factors ordered
#> 0 4 5
#> Missings: TRUE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 2
#> benign malignant
#> 458 241
#> Positive class: benign

In binary classification the two classes are usually referred to as positive and
negative class with the positive class being the category of greater interest. This

8

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/numeric.html
http://www.rdocumentation.org/packages/base/functions/factor.html
http://www.rdocumentation.org/packages/base/functions/factor.html
http://www.rdocumentation.org/packages/base/functions/factor.html
http://www.rdocumentation.org/packages/mlbench/functions/BreastCancer.html

2.1 Task types and creation 2 LEARNING TASKS

is relevant for many performance measures like the true positive rate or ROC
curves. Moreover, mlr, where possible, permits to set options (like the decision
threshold or class weights) and returns and plots results (like class posterior
probabilities) for the positive class only.

makeClassifTask by default selects the first factor level of the target variable
as the positive class, in the above example benign. Class malignant can be
manually selected as follows:

classif.task = makeClassifTask(id = "BreastCancer", data = df,
target = "Class", positive = "malignant")

2.1.3 Survival analysis

Survival tasks use two target columns. For left and right censored problems
these consist of the survival time and a binary event indicator. For interval
censored data the two target columns must be specified in the "interval2"
format (see Surv).

data(lung, package = "survival")
lung$status = (lung$status == 2) # convert to logical
surv.task = makeSurvTask(data = lung, target = c("time", "status"))
surv.task
#> Supervised task: lung
#> Type: surv
#> Target: time,status
#> Observations: 228
#> Features:
#> numerics factors ordered
#> 8 0 0
#> Missings: TRUE
#> Has weights: FALSE
#> Has blocking: FALSE

The type of censoring can be specified via the argument censoring, which
defaults to "rcens" for right censored data.

2.1.4 Multilabel classification

In multilabel classification each object can belong to more than one category at
the same time.

The data are expected to contain as many target columns as there are class
labels. The target columns should be logical vectors that indicate which class
labels are present. The names of the target columns are taken as class labels
and need to be passed to the target argument of makeMultilabelTask.

9

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/setThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/setThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/makeWeightedClassesWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/survival/functions/Surv.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

2.1 Task types and creation 2 LEARNING TASKS

In the following example we get the data of the yeast data set, extract the label
names, and pass them to the target argument in makeMultilabelTask.

yeast = getTaskData(yeast.task)

labels = colnames(yeast)[1:14]
yeast.task = makeMultilabelTask(id = "multi", data = yeast, target =

labels)
yeast.task
#> Supervised task: multi
#> Type: multilabel
#> Target:

label1,label2,label3,label4,label5,label6,label7,label8,label9,label10,label11,label12,label13,label14
#> Observations: 2417
#> Features:
#> numerics factors ordered
#> 103 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 14
#> label1 label2 label3 label4 label5 label6 label7 label8

label9
#> 762 1038 983 862 722 597 428 480

178
#> label10 label11 label12 label13 label14
#> 253 289 1816 1799 34

See also the tutorial page on multilabel classification.

2.1.5 Cluster analysis

As cluster analysis is unsupervised, the only mandatory argument to construct
a cluster analysis task is the data. Below we create a learning task from the
data set mtcars.

data(mtcars, package = "datasets")
cluster.task = makeClusterTask(data = mtcars)
cluster.task
#> Unsupervised task: mtcars
#> Type: cluster
#> Observations: 32
#> Features:
#> numerics factors ordered
#> 11 0 0
#> Missings: FALSE

10

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/datasets/functions/mtcars.html

2.1 Task types and creation 2 LEARNING TASKS

#> Has weights: FALSE
#> Has blocking: FALSE

2.1.6 Cost-sensitive classification

The standard objective in classification is to obtain a high prediction accuracy,
i.e., to minimize the number of errors. All types of misclassification errors are
thereby deemed equally severe. However, in many applications different kinds
of errors cause different costs.

In case of class-dependent costs, that solely depend on the actual and predicted
class labels, it is sufficient to create an ordinary ClassifTask.

In order to handle example-specific costs it is necessary to generate a CostSen-
sTask. In this scenario, each example (x, y) is associated with an individual cost
vector of length K with K denoting the number of classes. The k-th component
indicates the cost of assigning x to class k. Naturally, it is assumed that the
cost of the intended class label y is minimal.

As the cost vector contains all relevant information about the intended class y,
only the feature values x and a cost matrix, which contains the cost vectors for
all examples in the data set, are required to create the CostSensTask.

In the following example we use the iris data and an artificial cost matrix (which
is generated as proposed by Beygelzimer et al., 2005):

df = iris
cost = matrix(runif(150 * 3, 0, 2000), 150) * (1 -

diag(3))[df$Species,]
df$Species = NULL

costsens.task = makeCostSensTask(data = df, cost = cost)
costsens.task
#> Supervised task: df
#> Type: costsens
#> Observations: 150
#> Features:
#> numerics factors ordered
#> 4 0 0
#> Missings: FALSE
#> Has blocking: FALSE
#> Classes: 3
#> y1, y2, y3

For more details see the page about cost-sensitive classification.

11

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://dx.doi.org/10.1145/1102351.1102358

2.2 Further settings 2 LEARNING TASKS

2.2 Further settings

The Task help page also lists several other arguments to describe further details
of the learning problem.

For example, we could include a blocking factor in the task. This would in-
dicate that some observations “belong together” and should not be separated
when splitting the data into training and test sets for resampling.

Another option is to assign weights to observations. These can simply indicate
observation frequencies or result from the sampling scheme used to collect the
data.
Note that you should use this option only if the weights really belong to the
task. If you plan to train some learning algorithms with different weights on
the same Task, mlr offers several other ways to set observation or class weights
(for supervised classification). See for example the tutorial page about training
or function makeWeightedClassesWrapper.

2.3 Accessing a learning task

We provide many operators to access the elements stored in a Task. The most
important ones are listed in the documentation of Task and getTaskData.

To access the task description that contains basic information about the task
you can use:

getTaskDescription(classif.task)
#> $id
#> [1] "BreastCancer"
#>
#> $type
#> [1] "classif"
#>
#> $target
#> [1] "Class"
#>
#> $size
#> [1] 699
#>
#> $n.feat
#> numerics factors ordered
#> 0 4 5
#>
#> $has.missings
#> [1] TRUE
#>
#> $has.weights

12

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeWeightedClassesWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/getTaskData.html
http://www.rdocumentation.org/packages/mlr/functions/TaskDesc.html

2.3 Accessing a learning task 2 LEARNING TASKS

#> [1] FALSE
#>
#> $has.blocking
#> [1] FALSE
#>
#> $class.levels
#> [1] "benign" "malignant"
#>
#> $positive
#> [1] "malignant"
#>
#> $negative
#> [1] "benign"
#>
#> attr(,"class")
#> [1] "TaskDescClassif" "TaskDescSupervised" "TaskDesc"

Note that task descriptions have slightly different elements for different types
of Tasks. Frequently required elements can also be accessed directly.

Get the ID
getTaskId(classif.task)
#> [1] "BreastCancer"

Get the type of task
getTaskType(classif.task)
#> [1] "classif"

Get the names of the target columns
getTaskTargetNames(classif.task)
#> [1] "Class"

Get the number of observations
getTaskSize(classif.task)
#> [1] 699

Get the number of input variables
getTaskNFeats(classif.task)
#> [1] 9

Get the class levels in classif.task
getTaskClassLevels(classif.task)
#> [1] "benign" "malignant"

Moreover, mlr provides several functions to extract data from a Task.

Accessing the data set in classif.task

13

http://www.rdocumentation.org/packages/mlr/functions/TaskDesc.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html

2.3 Accessing a learning task 2 LEARNING TASKS

str(getTaskData(classif.task))
#> 'data.frame': 699 obs. of 10 variables:
#> $ Cl.thickness : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 5

5 3 6 4 8 1 2 2 4 ...
#> $ Cell.size : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1

4 1 8 1 10 1 1 1 2 ...
#> $ Cell.shape : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1

4 1 8 1 10 1 2 1 1 ...
#> $ Marg.adhesion : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1

5 1 1 3 8 1 1 1 1 ...
#> $ Epith.c.size : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 2

7 2 3 2 7 2 2 2 2 ...
#> $ Bare.nuclei : Factor w/ 10 levels "1","2","3","4",..: 1 10

2 4 1 10 10 1 1 1 ...
#> $ Bl.cromatin : Factor w/ 10 levels "1","2","3","4",..: 3 3 3

3 3 9 3 3 1 2 ...
#> $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1

7 1 7 1 1 1 1 ...
#> $ Mitoses : Factor w/ 9 levels "1","2","3","4",..: 1 1 1

1 1 1 1 1 5 1 ...
#> $ Class : Factor w/ 2 levels "benign","malignant": 1 1

1 1 1 2 1 1 1 1 ...

Get the names of the input variables in cluster.task
getTaskFeatureNames(cluster.task)
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am"

"gear"
#> [11] "carb"

Get the values of the target variables in surv.task
head(getTaskTargets(surv.task))
#> time status
#> 1 306 TRUE
#> 2 455 TRUE
#> 3 1010 FALSE
#> 4 210 TRUE
#> 5 883 TRUE
#> 6 1022 FALSE

Get the cost matrix in costsens.task
head(getTaskCosts(costsens.task))
#> y1 y2 y3
#> [1,] 0 1589.5664 674.44434
#> [2,] 0 1173.4364 828.40682
#> [3,] 0 942.7611 1095.33713
#> [4,] 0 1049.5562 477.82496

14

2.4 Modifying a learning task 2 LEARNING TASKS

#> [5,] 0 1121.8899 90.85237
#> [6,] 0 1819.9830 841.06686

Note that getTaskData offers many options for converting the data set into a
convenient format. This especially comes in handy when you integrate a new
learner from another R package into mlr. In this regard function getTaskFor-
mula is also useful.

2.4 Modifying a learning task

mlr provides several functions to alter an existing Task, which is often more
convenient than creating a new Task from scratch. Here are some examples.

Select observations and/or features
cluster.task = subsetTask(cluster.task, subset = 4:17)

It may happen, especially after selecting observations, that
features are constant.

These should be removed.
removeConstantFeatures(cluster.task)
#> Removing 1 columns: am
#> Unsupervised task: mtcars
#> Type: cluster
#> Observations: 14
#> Features:
#> numerics factors ordered
#> 10 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE

Remove selected features
dropFeatures(surv.task, c("meal.cal", "wt.loss"))
#> Supervised task: lung
#> Type: surv
#> Target: time,status
#> Observations: 228
#> Features:
#> numerics factors ordered
#> 6 0 0
#> Missings: TRUE
#> Has weights: FALSE
#> Has blocking: FALSE

Standardize numerical features

15

http://www.rdocumentation.org/packages/mlr/functions/getTaskData.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/getTaskFormula.html
http://www.rdocumentation.org/packages/mlr/functions/getTaskFormula.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

2.5 Example tasks and convenience functions 3 LEARNERS

task = normalizeFeatures(cluster.task, method = "range")
summary(getTaskData(task))
#> mpg cyl disp hp
#> Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
#> 1st Qu.:0.3161 1st Qu.:0.5000 1st Qu.:0.1242 1st Qu.:0.2801
#> Median :0.5107 Median :1.0000 Median :0.4076 Median :0.6311
#> Mean :0.4872 Mean :0.7143 Mean :0.4430 Mean :0.5308
#> 3rd Qu.:0.6196 3rd Qu.:1.0000 3rd Qu.:0.6618 3rd Qu.:0.7473
#> Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
#> drat wt qsec vs
#> Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
#> 1st Qu.:0.2672 1st Qu.:0.1275 1st Qu.:0.2302 1st Qu.:0.0000
#> Median :0.3060 Median :0.1605 Median :0.3045 Median :0.0000
#> Mean :0.4544 Mean :0.3268 Mean :0.3752 Mean :0.4286
#> 3rd Qu.:0.7026 3rd Qu.:0.3727 3rd Qu.:0.4908 3rd Qu.:1.0000
#> Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
#> am gear carb
#> Min. :0.5 Min. :0.0000 Min. :0.0000
#> 1st Qu.:0.5 1st Qu.:0.0000 1st Qu.:0.3333
#> Median :0.5 Median :0.0000 Median :0.6667
#> Mean :0.5 Mean :0.2857 Mean :0.6429
#> 3rd Qu.:0.5 3rd Qu.:0.7500 3rd Qu.:1.0000
#> Max. :0.5 Max. :1.0000 Max. :1.0000

For more functions and more detailed explanations have a look at the data
preprocessing page.

2.5 Example tasks and convenience functions

For your convenience mlr provides pre-defined Tasks for each type of learning
problem. These are also used throughout this tutorial in order to get shorter
and more readable code. A list of all Tasks can be found in the Appendix.

Moreover, mlr’s function convertMLBenchObjToTask can generate Tasks from
the data sets and data generating functions in package mlbench.

3 Learners

The following classes provide a unified interface to all popular machine learning
methods in R: (cost-sensitive) classification, regression, survival analysis, and
clustering. Many are already integrated in mlr, others are not, but the package
is specifically designed to make extensions simple.

16

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/convertMLBenchObjToTask.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlbench/
http://www.rdocumentation.org/packages/mlr/

3.1 Constructing a learner 3 LEARNERS

Section integrated learners shows the already implemented machine learning
methods and their properties. If your favorite method is missing, either open
an issue or take a look at how to integrate a learning method yourself. This
basic introduction demonstrates how to use already implemented learners.

3.1 Constructing a learner

A learner in mlr is generated by calling makeLearner. In the constructor you
need to specify which learning method you want to use. Moreover, you can:

• Set hyperparameters.
• Control the output for later prediction, e.g., for classification whether you

want a factor of predicted class labels or probabilities.
• Set an ID to name the object (some methods will later use this ID to name

results or annotate plots).

Classification tree, set it up for predicting probabilities
classif.lrn = makeLearner("classif.randomForest", predict.type =

"prob", fix.factors.prediction = TRUE)

Regression gradient boosting machine, specify hyperparameters via
a list

regr.lrn = makeLearner("regr.gbm", par.vals = list(n.trees = 500,
interaction.depth = 3))

Cox proportional hazards model with custom name
surv.lrn = makeLearner("surv.coxph", id = "cph")

K-means with 5 clusters
cluster.lrn = makeLearner("cluster.kmeans", centers = 5)

Multilabel Random Ferns classification algorithm
multilabel.lrn = makeLearner("multilabel.rFerns")

The first argument specifies which algorithm to use. The naming
convention is classif.<R_method_name> for classification methods,
regr.<R_method_name> for regression methods, surv.<R_method_name>
for survival analysis, cluster.<R_method_name> for clustering methods, and
multilabel.<R_method_name> for multilabel classification.

Hyperparameter values can be specified either via the ... argument or as a list
via par.vals.

Occasionally, factor features may cause problems when fewer levels are
present in the test data set than in the training data. By setting
fix.factors.prediction = TRUE these are avoided by adding a factor
level for missing data in the test data set.

17

https://github.com/mlr-org/mlr/issues
https://github.com/mlr-org/mlr/issues
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/base/functions/factor.html

3.2 Accessing a learner 3 LEARNERS

Let’s have a look at two of the learners created above.

classif.lrn
#> Learner classif.randomForest from package randomForest
#> Type: classif
#> Name: Random Forest; Short name: rf
#> Class: classif.randomForest
#> Properties:

twoclass,multiclass,numerics,factors,ordered,prob,class.weights,featimp
#> Predict-Type: prob
#> Hyperparameters:

surv.lrn
#> Learner cph from package survival
#> Type: surv
#> Name: Cox Proportional Hazard Model; Short name: coxph
#> Class: surv.coxph
#> Properties: numerics,factors,weights,rcens
#> Predict-Type: response
#> Hyperparameters:

All generated learners are objects of class Learner. This class contains the
properties of the method, e.g., which types of features it can handle, what
kind of output is possible during prediction, and whether multi-class problems,
observations weights or missing values are supported.

As you might have noticed, there is currently no special learner class for cost-
sensitive classification. For ordinary misclassification costs you can use standard
classification methods. For example-dependent costs there are several ways
to generate cost-sensitive learners from ordinary regression and classification
learners. This is explained in greater detail in the section about cost-sensitive
classification.

3.2 Accessing a learner

The Learner object is a list and the following elements contain information
regarding the hyperparameters and the type of prediction.

Get the configured hyperparameter settings that deviate from the
defaults

cluster.lrn$par.vals
#> $centers
#> [1] 5

Get the set of hyperparameters
classif.lrn$par.set

18

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/base/functions/list.html

3.2 Accessing a learner 3 LEARNERS

#> Type len Def Constr Req Tunable Trafo
#> ntree integer - 500 1 to Inf - TRUE -
#> mtry integer - - 1 to Inf - TRUE -
#> replace logical - TRUE - - TRUE -
#> classwt numericvector <NA> - 0 to Inf - TRUE -
#> cutoff numericvector <NA> - 0 to 1 - TRUE -
#> strata untyped - - - - TRUE -
#> sampsize integervector <NA> - 1 to Inf - TRUE -
#> nodesize integer - 1 1 to Inf - TRUE -
#> maxnodes integer - - 1 to Inf - TRUE -
#> importance logical - FALSE - - TRUE -
#> localImp logical - FALSE - - TRUE -
#> proximity logical - FALSE - - FALSE -
#> oob.prox logical - - - Y FALSE -
#> norm.votes logical - TRUE - - FALSE -
#> do.trace logical - FALSE - - FALSE -
#> keep.forest logical - TRUE - - FALSE -
#> keep.inbag logical - FALSE - - FALSE -

Get the type of prediction
regr.lrn$predict.type
#> [1] "response"

Slot $par.set is an object of class ParamSet. It contains, among others, the
type of hyperparameters (e.g., numeric, logical), potential default values and
the range of allowed values.

Moreover, mlr provides function getHyperPars to access the current hyperpa-
rameter setting of a Learner and getParamSet to get a description of all possible
settings. These are particularly useful in case of wrapped Learners, for example
if a learner is fused with a feature selection strategy, and both, the learner as
well the feature selection method, have hyperparameters. For details see the
section on wrapped learners.

Get current hyperparameter settings
getHyperPars(cluster.lrn)
#> $centers
#> [1] 5

Get a description of all possible hyperparameter settings
getParamSet(classif.lrn)
#> Type len Def Constr Req Tunable Trafo
#> ntree integer - 500 1 to Inf - TRUE -
#> mtry integer - - 1 to Inf - TRUE -
#> replace logical - TRUE - - TRUE -
#> classwt numericvector <NA> - 0 to Inf - TRUE -
#> cutoff numericvector <NA> - 0 to 1 - TRUE -

19

http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/getHyperPars.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/getParamSet.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html

3.3 Modifying a learner 3 LEARNERS

#> strata untyped - - - - TRUE -
#> sampsize integervector <NA> - 1 to Inf - TRUE -
#> nodesize integer - 1 1 to Inf - TRUE -
#> maxnodes integer - - 1 to Inf - TRUE -
#> importance logical - FALSE - - TRUE -
#> localImp logical - FALSE - - TRUE -
#> proximity logical - FALSE - - FALSE -
#> oob.prox logical - - - Y FALSE -
#> norm.votes logical - TRUE - - FALSE -
#> do.trace logical - FALSE - - FALSE -
#> keep.forest logical - TRUE - - FALSE -
#> keep.inbag logical - FALSE - - FALSE -

We can also use getParamSet to get a quick overview about the available hyper-
parameters and defaults of a learning method without explicitly constructing it
(by calling makeLearner).

getParamSet("classif.randomForest")
#> Type len Def Constr Req Tunable Trafo
#> ntree integer - 500 1 to Inf - TRUE -
#> mtry integer - - 1 to Inf - TRUE -
#> replace logical - TRUE - - TRUE -
#> classwt numericvector <NA> - 0 to Inf - TRUE -
#> cutoff numericvector <NA> - 0 to 1 - TRUE -
#> strata untyped - - - - TRUE -
#> sampsize integervector <NA> - 1 to Inf - TRUE -
#> nodesize integer - 1 1 to Inf - TRUE -
#> maxnodes integer - - 1 to Inf - TRUE -
#> importance logical - FALSE - - TRUE -
#> localImp logical - FALSE - - TRUE -
#> proximity logical - FALSE - - FALSE -
#> oob.prox logical - - - Y FALSE -
#> norm.votes logical - TRUE - - FALSE -
#> do.trace logical - FALSE - - FALSE -
#> keep.forest logical - TRUE - - FALSE -
#> keep.inbag logical - FALSE - - FALSE -

3.3 Modifying a learner

There are also some functions that enable you to change certain aspects of a
Learner without needing to create a new Learner from scratch. Here are some
examples.

Change the ID
surv.lrn = setId(surv.lrn, "CoxModel")

20

http://www.rdocumentation.org/packages/mlr/functions/getParamSet.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html

3.4 Listing learners 3 LEARNERS

#> Warning: 'setId' is deprecated.
#> Use 'setLearnerId' instead.
#> See help("Deprecated")
surv.lrn
#> Learner CoxModel from package survival
#> Type: surv
#> Name: Cox Proportional Hazard Model; Short name: coxph
#> Class: surv.coxph
#> Properties: numerics,factors,weights,rcens
#> Predict-Type: response
#> Hyperparameters:

Change the prediction type, predict a factor with class labels
instead of probabilities

classif.lrn = setPredictType(classif.lrn, "response")

Change hyperparameter values
cluster.lrn = setHyperPars(cluster.lrn, centers = 4)

Go back to default hyperparameter values
regr.lrn = removeHyperPars(regr.lrn, c("n.trees",

"interaction.depth"))

3.4 Listing learners

A list of all learners integrated in mlr and their respective properties is shown
in the Appendix.

If you would like a list of available learners, maybe only with certain properties
or suitable for a certain learning Task use function listLearners.

List everything in mlr
lrns = listLearners()
head(lrns[c("class", "package")])
#> class package
#> 1 classif.ada ada
#> 2 classif.avNNet nnet
#> 3 classif.bartMachine bartMachine
#> 4 classif.bdk kohonen
#> 5 classif.binomial stats
#> 6 classif.blackboost mboost,party

List classifiers that can output probabilities
lrns = listLearners("classif", properties = "prob")
head(lrns[c("class", "package")])

21

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/listLearners.html

3.4 Listing learners 3 LEARNERS

#> class package
#> 1 classif.ada ada
#> 2 classif.avNNet nnet
#> 3 classif.bartMachine bartMachine
#> 4 classif.bdk kohonen
#> 5 classif.binomial stats
#> 6 classif.blackboost mboost,party

List classifiers that can be applied to iris (i.e., multiclass)
and output probabilities

lrns = listLearners(iris.task, properties = "prob")
head(lrns[c("class", "package")])
#> class package
#> 1 classif.avNNet nnet
#> 2 classif.bdk kohonen
#> 3 classif.boosting adabag,rpart
#> 4 classif.C50 C50
#> 5 classif.cforest party
#> 6 classif.ctree party

The calls above return character vectors, but you can also create
learner objects

head(listLearners("cluster", create = TRUE), 2)
#> [[1]]
#> Learner cluster.cmeans from package e1071,clue
#> Type: cluster
#> Name: Fuzzy C-Means Clustering; Short name: cmeans
#> Class: cluster.cmeans
#> Properties: numerics,prob
#> Predict-Type: response
#> Hyperparameters: centers=2
#>
#>
#> [[2]]
#> Learner cluster.Cobweb from package RWeka
#> Type: cluster
#> Name: Cobweb Clustering Algorithm; Short name: cobweb
#> Class: cluster.Cobweb
#> Properties: numerics
#> Predict-Type: response
#> Hyperparameters:

22

4 TRAINING A LEARNER

4 Training a Learner

Training a learner means fitting a model to a given data set. In mlr this can be
done by calling function train on a Learner and a suitable Task.

We start with a classification example and perform a linear discriminant analysis
on the iris data set.

Generate the task
task = makeClassifTask(data = iris, target = "Species")

Generate the learner
lrn = makeLearner("classif.lda")

Train the learner
mod = train(lrn, task)
mod
#> Model for learner.id=classif.lda; learner.class=classif.lda
#> Trained on: task.id = iris; obs = 150; features = 4
#> Hyperparameters:

In the above example creating the Learner explicitly is not absolutely necessary.
As a general rule, you have to generate the Learner yourself if you want to
change any defaults, e.g., setting hyperparameter values or altering the predict
type. Otherwise, train and many other functions also accept the class name of
the learner and call makeLearner internally with default settings.

mod = train("classif.lda", task)
mod
#> Model for learner.id=classif.lda; learner.class=classif.lda
#> Trained on: task.id = iris; obs = 150; features = 4
#> Hyperparameters:

Training a learner works the same way for every type of learning problem. Below
is a survival analysis example where a Cox proportional hazards model is fitted
to the lung data set. Note that we use the corresponding lung.task provided by
mlr. All available Tasks are listed in the Appendix.

mod = train("surv.coxph", lung.task)
mod
#> Model for learner.id=surv.coxph; learner.class=surv.coxph
#> Trained on: task.id = lung-example; obs = 167; features = 8
#> Hyperparameters:

23

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/survival/functions/coxph.html
http://www.rdocumentation.org/packages/survival/functions/lung.html
http://www.rdocumentation.org/packages/mlr/functions/lung.task.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html

4.1 Accessing learner models 4 TRAINING A LEARNER

4.1 Accessing learner models

Function train returns an object of class WrappedModel, which encapsulates the
fitted model, i.e., the output of the underlying R learning method. Additionally,
it contains some information about the Learner, the Task, the features and
observations used for training, and the training time. A WrappedModel can
subsequently be used to make a prediction for new observations.

The fitted model in slot $learner.model of the WrappedModel object can be
accessed using function getLearnerModel.

In the following example we cluster the Ruspini data set (which has four groups
and two features) by K-means with K = 4 and extract the output of the
underlying kmeans function.

data(ruspini, package = "cluster")
plot(y ~ x, ruspini)

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●●
● ●

●
●●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ● ●
●

●

● ●
●

●
●

●●

0 20 40 60 80 100 120

0
50

10
0

15
0

x

y

24

http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/getLearnerModel.html
http://www.rdocumentation.org/packages/cluster/functions/ruspini.html
http://www.rdocumentation.org/packages/stats/functions/kmeans.html

4.1 Accessing learner models 4 TRAINING A LEARNER

Generate the task
ruspini.task = makeClusterTask(data = ruspini)

Generate the learner
lrn = makeLearner("cluster.kmeans", centers = 4)

Train the learner
mod = train(lrn, ruspini.task)
mod
#> Model for learner.id=cluster.kmeans; learner.class=cluster.kmeans
#> Trained on: task.id = ruspini; obs = 75; features = 2
#> Hyperparameters: centers=4

Peak into mod
names(mod)
#> [1] "learner" "learner.model" "task.desc" "subset"
#> [5] "features" "factor.levels" "time"

mod$learner
#> Learner cluster.kmeans from package stats,clue
#> Type: cluster
#> Name: K-Means; Short name: kmeans
#> Class: cluster.kmeans
#> Properties: numerics,prob
#> Predict-Type: response
#> Hyperparameters: centers=4

mod$features
#> [1] "x" "y"

mod$time
#> [1] 0.001

Extract the fitted model
getLearnerModel(mod)
#> K-means clustering with 4 clusters of sizes 23, 17, 15, 20
#>
#> Cluster means:
#> x y
#> 1 43.91304 146.0435
#> 2 98.17647 114.8824
#> 3 68.93333 19.4000
#> 4 20.15000 64.9500
#>
#> Clustering vector:
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

25

4.2 Further options and comments 4 TRAINING A LEARNER

23 24 25
#> 4 1 1

1 1 1
#> 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

2 2 2
#> 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

73 74 75
#> 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3
#>
#> Within cluster sum of squares by cluster:
#> [1] 3176.783 4558.235 1456.533 3689.500
#> (between_SS / total_SS = 94.7 %)
#>
#> Available components:
#>
#> [1] "cluster" "centers" "totss" "withinss"
#> [5] "tot.withinss" "betweenss" "size" "iter"
#> [9] "ifault"

4.2 Further options and comments

By default, the whole data set in the Task is used for training. The subset
argument of train takes a logical or integer vector that indicates which obser-
vations to use, for example if you want to split your data into a training and a
test set or if you want to fit separate models to different subgroups in the data.

Below we fit a linear regression model to the BostonHousing data set (bh.task)
and randomly select 1/3 of the data set for training.

Get the number of observations
n = getTaskSize(bh.task)

Use 1/3 of the observations for training
train.set = sample(n, size = n/3)

Train the learner
mod = train("regr.lm", bh.task, subset = train.set)
mod
#> Model for learner.id=regr.lm; learner.class=regr.lm
#> Trained on: task.id = BostonHousing-example; obs = 168; features

= 13
#> Hyperparameters:

26

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/stats/functions/lm.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlr/functions/bh.task.html

5 PREDICTING OUTCOMES FOR NEW DATA

Note, for later, that all standard resampling strategies are supported. Therefore
you usually do not have to subset the data yourself.

Moreover, if the learner supports this, you can specify observation weights
that reflect the relevance of observations in the training process. Weights can
be useful in many regards, for example to express the reliability of the training
observations, reduce the influence of outliers or, if the data were collected over
a longer time period, increase the influence of recent data. In supervised clas-
sification weights can be used to incorporate misclassification costs or account
for class imbalance.

For example in the BreastCancer data set class benign is almost twice as fre-
quent as class malignant. In order to grant both classes equal importance in
training the classifier we can weight the examples according to the inverse class
frequencies in the data set as shown in the following R code.

Calculate the observation weights
target = getTaskTargets(bc.task)
tab = as.numeric(table(target))
w = 1/tab[target]

train("classif.rpart", task = bc.task, weights = w)
#> Model for learner.id=classif.rpart; learner.class=classif.rpart
#> Trained on: task.id = BreastCancer-example; obs = 683; features =

9
#> Hyperparameters: xval=0

Note, for later, that mlr offers much more functionality to deal with imbalanced
classification problems.

As another side remark for more advanced readers: By varying the weights
in the calls to train, you could also implement your own variant of a general
boosting type algorithm on arbitrary mlr base learners.

As you may recall, it is also possible to set observation weights when creating the
Task. As a general rule, you should specify them in make*Task if the weights
really “belong” to the task and always should be used. Otherwise, pass them
to train. The weights in train take precedence over the weights in Task.

5 Predicting Outcomes for New Data

Predicting the target values for new observations is implemented the same way
as most of the other predict methods in R. In general, all you need to do is call
predict on the object returned by train and pass the data you want predictions
for.

There are two ways to pass the data:

27

http://www.rdocumentation.org/packages/mlbench/functions/BreastCancer.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/train.html

5 PREDICTING OUTCOMES FOR NEW DATA

• Either pass the Task via the task argument or
• pass a data frame via the newdata argument.

The first way is preferable if you want predictions for data already included in
a Task.

Just as train, the predict function has a subset argument, so you can set aside
different portions of the data in Task for training and prediction (more advanced
methods for splitting the data in train and test set are described in the section
on resampling).

In the following example we fit a gradient boosting machine to every second ob-
servation of the BostonHousing data set and make predictions on the remaining
data in bh.task.

n = getTaskSize(bh.task)
train.set = seq(1, n, by = 2)
test.set = seq(2, n, by = 2)
lrn = makeLearner("regr.gbm", n.trees = 100)
mod = train(lrn, bh.task, subset = train.set)

task.pred = predict(mod, task = bh.task, subset = test.set)
task.pred
#> Prediction: 253 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> id truth response
#> 2 2 21.6 22.28539
#> 4 4 33.4 23.33968
#> 6 6 28.7 22.40896
#> 8 8 27.1 22.12750
#> 10 10 18.9 22.12750
#> 12 12 18.9 22.12750
#> ... (253 rows, 3 cols)

The second way is useful if you want to predict data not included in the Task.

Here we cluster the iris data set without the target variable. All observations
with an odd index are included in the Task and used for training. Predictions
are made for the remaining observations.

n = nrow(iris)
iris.train = iris[seq(1, n, by = 2), -5]
iris.test = iris[seq(2, n, by = 2), -5]
task = makeClusterTask(data = iris.train)
mod = train("cluster.kmeans", task)

newdata.pred = predict(mod, newdata = iris.test)

28

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/gbm/functions/gbm.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlr/functions/bh.task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

5.1 Accessing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

newdata.pred
#> Prediction: 75 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> response
#> 2 2
#> 4 2
#> 6 2
#> 8 2
#> 10 2
#> 12 2
#> ... (75 rows, 1 cols)

Note that for supervised learning you do not have to remove the target columns
from the data. These columns are automatically removed prior to calling the
underlying predict method of the learner.

5.1 Accessing the prediction

Function predict returns a named list of class Prediction. Its most important
element is $data which is a data frame that contains columns with the true
values of the target variable (in case of supervised learning problems) and the
predictions. Use as.data.frame for direct access.

In the following the predictions on the BostonHousing and the iris data sets are
shown. As you may recall, the predictions in the first case were made from a
Task and in the second case from a data frame.

Result of predict with data passed via task argument
head(as.data.frame(task.pred))
#> id truth response
#> 2 2 21.6 22.28539
#> 4 4 33.4 23.33968
#> 6 6 28.7 22.40896
#> 8 8 27.1 22.12750
#> 10 10 18.9 22.12750
#> 12 12 18.9 22.12750

Result of predict with data passed via newdata argument
head(as.data.frame(newdata.pred))
#> response
#> 2 2
#> 4 2
#> 6 2
#> 8 2

29

http://www.rdocumentation.org/packages/mlr/functions/predict.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html

5.1 Accessing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

#> 10 2
#> 12 2

As you can see when predicting from a Task, the resulting data frame contains
an additional column, called id, which tells us which element in the original
data set the prediction corresponds to.

A direct way to access the true and predicted values of the target variable(s) is
provided by functions getPredictionTruth and getPredictionResponse.
head(getPredictionTruth(task.pred))
#> [1] 21.6 33.4 28.7 27.1 18.9 18.9

head(getPredictionResponse(task.pred))
#> [1] 22.28539 23.33968 22.40896 22.12750 22.12750 22.12750

5.1.1 Extract Probabilities

The predicted probabilities can be extracted from the Prediction using the func-
tion getPredictionProbabilities. (Function getProbabilities has been deprecated
in favor of getPredictionProbabilities in mlr version 2.5.) Here is another cluster
analysis example. We use fuzzy c-means clustering on the mtcars data set.
lrn = makeLearner("cluster.cmeans", predict.type = "prob")
mod = train(lrn, mtcars.task)

pred = predict(mod, task = mtcars.task)
head(getPredictionProbabilities(pred))
#> 1 2
#> Mazda RX4 0.97959529 0.020404714
#> Mazda RX4 Wag 0.97963550 0.020364495
#> Datsun 710 0.99265984 0.007340164
#> Hornet 4 Drive 0.54292079 0.457079211
#> Hornet Sportabout 0.01870622 0.981293776
#> Valiant 0.75746556 0.242534444

For classification problems there are some more things worth mentioning. By
default, class labels are predicted.
Linear discriminant analysis on the iris data set
mod = train("classif.lda", task = iris.task)

pred = predict(mod, task = iris.task)
pred
#> Prediction: 150 observations
#> predict.type: response
#> threshold:

30

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionResponse.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionResponse.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionProbabilities.html
http://www.rdocumentation.org/packages/mlr/functions/getProbabilities.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionProbabilities.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/e1071/functions/cmeans.html
http://www.rdocumentation.org/packages/datasets/functions/mtcars.html

5.1 Accessing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

#> time: 0.00
#> id truth response
#> 1 1 setosa setosa
#> 2 2 setosa setosa
#> 3 3 setosa setosa
#> 4 4 setosa setosa
#> 5 5 setosa setosa
#> 6 6 setosa setosa
#> ... (150 rows, 3 cols)

A confusion matrix can be obtained by calling getConfMatrix.

getConfMatrix(pred)
#> Warning: 'getConfMatrix' is deprecated.
#> Use 'calculateConfusionMatrix' instead.
#> See help("Deprecated")
#> predicted
#> true setosa versicolor virginica -err.-
#> setosa 50 0 0 0
#> versicolor 0 48 2 2
#> virginica 0 1 49 1
#> -err.- 0 1 2 3

In order to get predicted posterior probabilities we have to create a Learner
with the appropriate predict.type.

lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, iris.task)

pred = predict(mod, newdata = iris)
head(as.data.frame(pred))
#> truth prob.setosa prob.versicolor prob.virginica response
#> 1 setosa 1 0 0 setosa
#> 2 setosa 1 0 0 setosa
#> 3 setosa 1 0 0 setosa
#> 4 setosa 1 0 0 setosa
#> 5 setosa 1 0 0 setosa
#> 6 setosa 1 0 0 setosa

In addition to the probabilities, class labels are predicted by choosing the class
with the maximum probability and breaking ties at random.

As mentioned above, the predicted posterior probabilities can be accessed via
the getPredictionProbabilities function.

head(getPredictionProbabilities(pred))
#> setosa versicolor virginica
#> 1 1 0 0

31

http://www.rdocumentation.org/packages/mlr/functions/getConfMatrix.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionProbabilities.html

5.2 Adjusting the threshold5 PREDICTING OUTCOMES FOR NEW DATA

#> 2 1 0 0
#> 3 1 0 0
#> 4 1 0 0
#> 5 1 0 0
#> 6 1 0 0

5.2 Adjusting the threshold

We can set the threshold value that is used to map the predicted posterior prob-
abilities to class labels. Note that for this purpose we need to create a Learner
that predicts probabilities. For binary classification, the threshold determines
when the positive class is predicted. The default is 0.5. Now, we set the thresh-
old for the positive class to 0.9 (that is, an example is assigned to the positive
class if its posterior probability exceeds 0.9). Which of the two classes is the pos-
itive one can be seen by accessing the Task. To illustrate binary classification,
we use the Sonar data set from the mlbench package.

lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, task = sonar.task)

Label of the positive class
getTaskDescription(sonar.task)$positive
#> [1] "M"

Default threshold
pred1 = predict(mod, sonar.task)
pred1$threshold
#> M R
#> 0.5 0.5

Set the threshold value for the positive class
pred2 = setThreshold(pred1, 0.9)
pred2$threshold
#> M R
#> 0.9 0.1
pred2
#> Prediction: 208 observations
#> predict.type: prob
#> threshold: M=0.90,R=0.10
#> time: 0.00
#> id truth prob.M prob.R response
#> 1 1 R 0.1060606 0.8939394 R
#> 2 2 R 0.7333333 0.2666667 R
#> 3 3 R 0.0000000 1.0000000 R
#> 4 4 R 0.1060606 0.8939394 R

32

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlbench/functions/Sonar.html
http://www.rdocumentation.org/packages/mlbench/

5.2 Adjusting the threshold5 PREDICTING OUTCOMES FOR NEW DATA

#> 5 5 R 0.9250000 0.0750000 M
#> 6 6 R 0.0000000 1.0000000 R
#> ... (208 rows, 5 cols)

We can also set the effect in the confusion matrix
getConfMatrix(pred1)
#> Warning: 'getConfMatrix' is deprecated.
#> Use 'calculateConfusionMatrix' instead.
#> See help("Deprecated")
#> predicted
#> true M R -err.-
#> M 95 16 16
#> R 10 87 10
#> -err.- 10 16 26
getConfMatrix(pred2)
#> Warning: 'getConfMatrix' is deprecated.
#> Use 'calculateConfusionMatrix' instead.
#> See help("Deprecated")
#> predicted
#> true M R -err.-
#> M 84 27 27
#> R 6 91 6
#> -err.- 6 27 33

Note that in the binary case getPredictionProbabilities by default extracts the
posterior probabilities of the positive class only.

head(getPredictionProbabilities(pred1))
#> [1] 0.1060606 0.7333333 0.0000000 0.1060606 0.9250000 0.0000000

But we can change that, too
head(getPredictionProbabilities(pred1, cl = c("M", "R")))
#> M R
#> 1 0.1060606 0.8939394
#> 2 0.7333333 0.2666667
#> 3 0.0000000 1.0000000
#> 4 0.1060606 0.8939394
#> 5 0.9250000 0.0750000
#> 6 0.0000000 1.0000000

It works similarly for multiclass classification. The threshold has to be given by
a named vector specifying the values by which each probability will be divided.
The class with the maximum resulting value is then selected.

lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, iris.task)
pred = predict(mod, newdata = iris)

33

http://www.rdocumentation.org/packages/mlr/functions/getPredictionProbabilities.html

5.3 Visualizing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

pred$threshold
#> setosa versicolor virginica
#> 0.3333333 0.3333333 0.3333333
table(as.data.frame(pred)$response)
#>
#> setosa versicolor virginica
#> 50 54 46
pred = setThreshold(pred, c(setosa = 0.01, versicolor = 50,

virginica = 1))
pred$threshold
#> setosa versicolor virginica
#> 0.01 50.00 1.00
table(as.data.frame(pred)$response)
#>
#> setosa versicolor virginica
#> 50 0 100

If you are interested in tuning the threshold (vector) have a look at the section
about performance curves and threshold tuning.

5.3 Visualizing the prediction

The function plotLearnerPrediction allows to visualize predictions, e.g., for
teaching purposes or exploring models. It trains the chosen learning method
for 1 or 2 selected features and then displays the predictions with ggplot.

For classification, we get a scatter plot of 2 features (by default the first 2 in
the data set). The type of symbol shows the true class labels of the data points.
Symbols with white border indicate misclassified observations. The posterior
probabilities (if the learner under consideration supports this) are represented
by the background color where higher saturation means larger probabilities.

The plot title displays the ID of the Learner (in the following example CART),
its parameters, its training performance and its cross-validation performance.
mmce stands for mean misclassification error, i.e., the error rate. See the sec-
tions on performance and resampling for further explanations.

lrn = makeLearner("classif.rpart", id = "CART")
plotLearnerPrediction(lrn, task = iris.task)

34

http://www.rdocumentation.org/packages/mlr/functions/plotLearnerPrediction.html
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html

5.3 Visualizing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

● setosa

versicolor

virginica

rpart: xval=0
Train: mmce=0.207; CV: mmce.test.mean=0.253

For clustering we also get a scatter plot of two selected features. The color of
the points indicates the predicted cluster.

lrn = makeLearner("cluster.kmeans")
plotLearnerPrediction(lrn, task = mtcars.task, features = c("disp",

"drat"), cv = 0)

35

5.3 Visualizing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

●●

●

●

●

●

●

●

● ●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.0

3.5

4.0

4.5

5.0

100 200 300 400
disp

dr
at

response
●

●

1

2

For regression, there are two types of plots. The 1D plot shows the target values
in relation to a single feature, the regression curve and, if the chosen learner
supports this, the estimated standard error.

plotLearnerPrediction("regr.lm", features = "lstat", task = bh.task)

36

5.3 Visualizing the prediction5 PREDICTING OUTCOMES FOR NEW DATA

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●

●
● ●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

10

20

30

40

50

0 10 20 30
lstat

m
ed

v
lm:

Train: mse=38.5; CV: mse.test.mean=38.7

The 2D variant, as in the classification case, generates a scatter plot of 2 features.
The fill color of the dots illustrates the value of the target variable "medv", the
background colors show the estimated mean. The plot does not represent the
estimated standard error.

plotLearnerPrediction("regr.lm", features = c("lstat", "rm"), task =
bh.task)

37

6 EVALUATING LEARNER PERFORMANCE

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●● ● ●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●●

● ●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●● ● ●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●●

● ●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

4

5

6

7

8

9

0 10 20 30
lstat

rm

0

10

20

30

40

medv

lm:
Train: mse=30.5; CV: mse.test.mean=31.1

6 Evaluating Learner Performance

The quality of the predictions of a model in mlr can be assessed with respect to a
number of different performance measures. In order to calculate the performance
measures, call performance on the object returned by predict and specify the
desired performance measures.

6.1 Available performance measures

mlr provides a large number of performance measures for all types of learning
problems. Typical performance measures for classification are the mean misclas-
sification error (mmce), accuracy (acc) or measures based on ROC analysis. For
regression the mean of squared errors (mse) or mean of absolute errors (mae)

38

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/performance.html
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html
http://www.rdocumentation.org/packages/mlr/

6.2 Listing measures 6 EVALUATING LEARNER PERFORMANCE

are usually considered. For clustering tasks, measures such as the Dunn in-
dex (dunn) are provided, while for survival predictions, the Concordance Index
(cindex) is supported, and for cost-sensitive predictions the misclassification
penalty (mcp) and others. It is also possible to access the time to train the
learner (timetrain), the time to compute the prediction (timepredict) and their
sum (timeboth) as performance measures.

To see which performance measures are implemented, have a look at the table
of performance measures and the measures documentation page.

If you want to implement an additional measure or include a measure with non-
standard misclassification costs, see the section on creating custom measures.

6.2 Listing measures

The properties and requirements of the individual measures are shown in the
table of performance measures.

If you would like a list of available measures with certain properties or suitable
for a certain learning Task use the function listMeasures.

Performance measures for classification with multiple classes
listMeasures("classif", properties = "classif.multi")
#> [1] "multiclass.brier" "multiclass.aunp" "multiclass.aunu"
#> [4] "qsr" "ber" "logloss"
#> [7] "timeboth" "timepredict" "acc"
#> [10] "lsr" "featperc" "multiclass.au1p"
#> [13] "multiclass.au1u" "ssr" "timetrain"
#> [16] "mmce"
Performance measure suitable for the iris classification task
listMeasures(iris.task)
#> [1] "multiclass.brier" "multiclass.aunp" "multiclass.aunu"
#> [4] "qsr" "ber" "logloss"
#> [7] "timeboth" "timepredict" "acc"
#> [10] "lsr" "featperc" "multiclass.au1p"
#> [13] "multiclass.au1u" "ssr" "timetrain"
#> [16] "mmce"

For convenience there exists a default measure for each type of learning problem,
which is calculated if nothing else is specified. As defaults we chose the most
commonly used measures for the respective types, e.g., the mean squared error
(mse) for regression and the misclassification rate (mmce) for classification. The
help page of function getDefaultMeasure lists all defaults for all types of learning
problems. The function itself returns the default measure for a given task type,
Task or Learner.

Get default measure for iris.task

39

http://www.rdocumentation.org/packages/mlr/functions/measures.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/listMeasures.html
http://www.rdocumentation.org/packages/mlr/functions/getDefaultMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Learner.html

6.3 Calculate performance measures6 EVALUATING LEARNER PERFORMANCE

getDefaultMeasure(iris.task)
#> Name: Mean misclassification error
#> Performance measure: mmce
#> Properties: classif,classif.multi,req.pred,req.truth
#> Minimize: TRUE
#> Best: 0; Worst: 1
#> Aggregated by: test.mean
#> Note:

Get the default measure for linear regression
getDefaultMeasure(makeLearner("regr.lm"))
#> Name: Mean of squared errors
#> Performance measure: mse
#> Properties: regr,req.pred,req.truth
#> Minimize: TRUE
#> Best: 0; Worst: Inf
#> Aggregated by: test.mean
#> Note:

6.3 Calculate performance measures

In the following example we fit a gradient boosting machine on a subset of the
BostonHousing data set and calculate the default measure mean squared error
(mse) on the remaining observations.

n = getTaskSize(bh.task)
lrn = makeLearner("regr.gbm", n.trees = 1000)
mod = train(lrn, task = bh.task, subset = seq(1, n, 2))
pred = predict(mod, task = bh.task, subset = seq(2, n, 2))

performance(pred)
#> mse
#> 42.68414

The following code computes the median of squared errors (medse) instead.

performance(pred, measures = medse)
#> medse
#> 9.134965

Of course, we can also calculate multiple performance measures at once by
simply passing a list of measures which can also include your own measure.

Calculate the mean squared error, median squared error and mean absolute
error (mae).

40

http://www.rdocumentation.org/packages/gbm/functions/gbm.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html

6.3 Calculate performance measures6 EVALUATING LEARNER PERFORMANCE

performance(pred, measures = list(mse, medse, mae))
#> mse medse mae
#> 42.684141 9.134965 4.536750

For the other types of learning problems and measures, calculating the perfor-
mance basically works in the same way.

6.3.1 Requirements of performance measures

Note that in order to calculate some performance measures it is required that
you pass the Task or the fitted model in addition to the Prediction.

For example in order to assess the time needed for training (timetrain), the
fitted model has to be passed.

performance(pred, measures = timetrain, model = mod)
#> timetrain
#> 0.059

For many performance measures in cluster analysis the Task is required.

lrn = makeLearner("cluster.kmeans", centers = 3)
mod = train(lrn, mtcars.task)
pred = predict(mod, task = mtcars.task)

Calculate the Dunn index
performance(pred, measures = dunn, task = mtcars.task)
#> dunn
#> 0.1462919

Moreover, some measures require a certain type of prediction. For example
in binary classification in order to calculate the AUC (auc) – the area under
the ROC (receiver operating characteristic) curve – we have to make sure that
posterior probabilities are predicted. For more information on ROC analysis,
see the section on ROC analysis.

lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, task = sonar.task)
pred = predict(mod, task = sonar.task)

performance(pred, measures = auc)
#> auc
#> 0.9224018

Also bear in mind that many of the performance measures that are available
for classification, e.g., the false positive rate (fpr), are only suitable for binary
problems.

41

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

6.4 Access a performance measure6 EVALUATING LEARNER PERFORMANCE

6.4 Access a performance measure

Performance measures in mlr are objects of class Measure. If you are interested
in the properties or requirements of a single measure you can access it directly.
See the help page of Measure for information on the individual slots.

Mean misclassification error
str(mmce)
#> List of 10
#> $ id : chr "mmce"
#> $ minimize : logi TRUE
#> $ properties: chr [1:4] "classif" "classif.multi" "req.pred"

"req.truth"
#> $ fun :function (task, model, pred, feats, extra.args)
#> $ extra.args: list()
#> $ best : num 0
#> $ worst : num 1
#> $ name : chr "Mean misclassification error"
#> $ note : chr ""
#> $ aggr :List of 4
#> ..$ id : chr "test.mean"
#> ..$ name : chr "Test mean"
#> ..$ fun :function (task, perf.test, perf.train, measure,

group, pred)
#> ..$ properties: chr "req.test"
#> ..- attr(*, "class")= chr "Aggregation"
#> - attr(*, "class")= chr "Measure"

6.5 Binary classification: Plot performance versus thresh-
old

As you may recall (see the previous section on making predictions) in binary clas-
sification we can adjust the threshold used to map probabilities to class labels.
Helpful in this regard is are the functions generateThreshVsPerfData and plot-
ThreshVsPerf, which generate and plot, respectively, the learner performance
versus the threshold.

For more performance plots and automatic threshold tuning see here.

In the following example we consider the Sonar data set and plot the false
positive rate (fpr), the false negative rate (fnr) as well as the misclassification
rate (mmce) for all possible threshold values.

lrn = makeLearner("classif.lda", predict.type = "prob")
n = getTaskSize(sonar.task)
mod = train(lrn, task = sonar.task, subset = seq(1, n, by = 2))

42

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlbench/functions/Sonar.html

7 RESAMPLING

pred = predict(mod, task = sonar.task, subset = seq(2, n, by = 2))

Performance for the default threshold 0.5
performance(pred, measures = list(fpr, fnr, mmce))
#> fpr fnr mmce
#> 0.2500000 0.3035714 0.2788462
Plot false negative and positive rates as well as the error rate

versus the threshold
d = generateThreshVsPerfData(pred, measures = list(fpr, fnr, mmce))
plotThreshVsPerf(d)

False positive rate False negative rate Mean misclassification error

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
threshold

pe
rf

or
m

an
ce

There is an experimental ggvis plotting function plotThreshVsPerfGGVIS which
performs similarly to plotThreshVsPerf but instead of creating facetted subplots
to visualize multiple learners and/or multiple measures, one of them is mapped
to an interactive sidebar which selects what to display.

plotThreshVsPerfGGVIS(d)

7 Resampling

In order to assess the performance of a learning algorithm, resampling strategies
are usually used. The entire data set is split into (multiple) training and test sets.
You train a learner on each training set, predict on the corresponding test set
(sometimes on the training set as well) and calculate some performance measure.
Then the individual performance values are aggregated, typically by calculating
the mean. There exist various different resampling strategies, for example cross-
validation and bootstrap, to mention just two popular approaches.

43

http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerfGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html

7 RESAMPLING

If you want to read up further details, the paper Resampling Strategies for
Model Assessment and Selection by Simon is proabably not a bad choice. Bernd
has also published a paper Resampling methods for meta-model validation with
recommendations for evolutionary computation which contains detailed descrip-
tions and lots of statistical background information on resampling methods.

In mlr the resampling strategy can be chosen via the function makeResam-
pleDesc. The supported resampling strategies are:

• Cross-validation ("CV"),
• Leave-one-out cross-validation ("LOO""),
• Repeated cross-validation ("RepCV"),
• Out-of-bag bootstrap and other variants ("Bootstrap"),
• Subsampling, also called Monte-Carlo cross-validaton ("Subsample"),
• Holdout (training/test) ("Holdout").

The resample function evaluates the performance of a Learner using the specified
resampling strategy for a given machine learning Task.

In the following example the performance of the Cox proportional hazards model
on the lung data set is calculated using 3-fold cross-validation. Generally, in
K-fold cross-validation the data set D is partitioned into K subsets of (approx-
imately) equal size. In the i-th step of the K iterations, the i-th subset is
used for testing, while the union of the remaining parts forms the training set.
The default performance measure in survival analysis is the concordance index
(cindex).

Specify the resampling strategy (3-fold cross-validation)
rdesc = makeResampleDesc("CV", iters = 3)

44

http://link.springer.com/chapter/10.1007%2F978-0-387-47509-7_8
http://link.springer.com/chapter/10.1007%2F978-0-387-47509-7_8
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00069
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00069
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/survival/functions/coxph.html
http://www.rdocumentation.org/packages/survival/functions/lung.html

7 RESAMPLING

Calculate the performance
r = resample("surv.coxph", lung.task, rdesc)
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] Result: cindex.test.mean=0.627
r
#> Resample Result
#> Task: lung-example
#> Learner: surv.coxph
#> Aggr perf: cindex.test.mean=0.627
#> Runtime: 0.0241723
peak a little bit into r
names(r)
#> [1] "learner.id" "task.id" "measures.train"

"measures.test"
#> [5] "aggr" "pred" "models" "err.msgs"
#> [9] "extract" "runtime"
r$aggr
#> cindex.test.mean
#> 0.6271182
r$measures.test
#> iter cindex
#> 1 1 0.5783027
#> 2 2 0.6324074
#> 3 3 0.6706444
r$measures.train
#> iter cindex
#> 1 1 NA
#> 2 2 NA
#> 3 3 NA

r$measures.test gives the value of the performance measure on the 3 indi-
vidual test data sets. r$aggr shows the aggregated performance value. Its
name, "cindex.test.mean", indicates the performance measure, cindex, and
the method used to aggregate the 3 individual performances. test.mean is the
default method and, as the name implies, takes the mean over the performances
on the 3 test data sets. No predictions on the training data sets were made and
thus r$measures.train contains missing values.

If predictions for the training set are required, too, set predict = "train"or
predict = "both" in makeResampleDesc. This is necessary for some bootstrap
methods (b632 and b632+) and we will see some examples later on.

r$pred is an object of class ResamplePrediction. Just as a Prediction object
(see the section on making predictions) r$pred has an element called "data"
which is a data.frame that contains the predictions and in case of a supervised

45

http://www.rdocumentation.org/packages/mlr/functions/aggregations.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/ResamplePrediction.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html

7 RESAMPLING

learning problem the true values of the target variable.

head(r$pred$data)
#> id truth.time truth.event response iter set
#> 1 1 455 TRUE -0.4951788 1 test
#> 2 2 210 TRUE 0.9573824 1 test
#> 3 4 310 TRUE 0.8069059 1 test
#> 4 10 613 TRUE 0.1918188 1 test
#> 5 12 61 TRUE 0.6638736 1 test
#> 6 14 81 TRUE -0.1873917 1 test

The columns iter and setindicate the resampling iteration and if an individual
prediction was made on the test or the training data set.

In the above example the performance measure is the concordance index (cin-
dex). Of course, it is possible to compute multiple performance measures at
once by passing a list of measures (see also the previous section on evaluating
learner performance).

In the following we estimate the Dunn index (dunn), the Davies-Bouldin cluster
separation measure (db), and the time for training the learner (timetrain) by
subsampling with 5 iterations. In each iteration the data set D is randomly
partitioned into a training and a test set according to a given percentage, e.g.,
2/3 training and 1/3 test set. If there is just one iteration, the strategy is
commonly called holdout or test sample estimation.

cluster iris feature data
task = makeClusterTask(data = iris[,-5])
Subsampling with 5 iterations and default split 2/3
rdesc = makeResampleDesc("Subsample", iters = 5)
Subsampling with 5 iterations and 4/5 training data
rdesc = makeResampleDesc("Subsample", iters = 5, split = 4/5)

Calculate the three performance measures
r = resample("cluster.kmeans", task, rdesc, measures = list(dunn,

db, timetrain))
#> [Resample] subsampling iter: 1
#> [Resample] subsampling iter: 2
#> [Resample] subsampling iter: 3
#> [Resample] subsampling iter: 4
#> [Resample] subsampling iter: 5
#> [Resample] Result:

dunn.test.mean=0.274,db.test.mean=0.51,timetrain.test.mean=0.0008
r$aggr
#> dunn.test.mean db.test.mean timetrain.test.mean
#> 0.2738893 0.5103655 0.0008000

46

7.1 Stratified resampling 7 RESAMPLING

7.1 Stratified resampling

For classification, it is usually desirable to have the same proportion of the
classes in all of the partitions of the original data set. Stratified resampling
ensures this. This is particularly useful in case of imbalanced classes and small
data sets. Otherwise it may happen, for example, that observations of less
frequent classes are missing in some of the training sets which can decrease
the performance of the learner, or lead to model crashes In order to conduct
stratified resampling, set stratify = TRUE when calling makeResampleDesc.

3-fold cross-validation
rdesc = makeResampleDesc("CV", iters = 3, stratify = TRUE)

r = resample("classif.lda", iris.task, rdesc)
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] Result: mmce.test.mean=0.02

Stratification is also available for survival tasks. Here the stratification balances
the censoring rate.

Sometimes it is required to also stratify on the input data, e.g. to ensure that
all subgroups are represented in all training and test sets. To stratify on the
input columns, specify factor columns of your task data via stratify.cols

rdesc = makeResampleDesc("CV", iters = 3, stratify.cols = "chas")
r = resample("regr.rpart", bh.task, rdesc)
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] Result: mse.test.mean=23.2

7.2 Accessing individual learner models

In each resampling iteration a Learner is fitted on the respective training set.
By default, the resulting WrappedModels are not returned by resample. If you
want to keep them, set models = TRUE when calling resample.

3-fold cross-validation
rdesc = makeResampleDesc("CV", iters = 3)

r = resample("classif.lda", iris.task, rdesc, models = TRUE)
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3

47

http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html

7.2 Accessing individual learner models 7 RESAMPLING

#> [Resample] Result: mmce.test.mean=0.02
r$models
#> [[1]]
#> Model for learner.id=classif.lda; learner.class=classif.lda
#> Trained on: task.id = iris-example; obs = 100; features = 4
#> Hyperparameters:
#>
#> [[2]]
#> Model for learner.id=classif.lda; learner.class=classif.lda
#> Trained on: task.id = iris-example; obs = 100; features = 4
#> Hyperparameters:
#>
#> [[3]]
#> Model for learner.id=classif.lda; learner.class=classif.lda
#> Trained on: task.id = iris-example; obs = 100; features = 4
#> Hyperparameters:

Keeping only certain information instead of entire models, for example the vari-
able importance in a regression tree, can be achieved using the extract argu-
ment. The function passed to extract is applied to each model fitted on one
of the 3 training sets.

3-fold cross-validation
rdesc = makeResampleDesc("CV", iters = 3)

Extract the variable importance in a regression tree
r = resample("regr.rpart", bh.task, rdesc,

extract = function(x) x$learner.model$variable.importance)
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] Result: mse.test.mean=30.3
r$extract
#> [[1]]
#> rm lstat crim indus age ptratio
#> 15228.2872 10742.2277 3893.2744 3651.6232 2601.5262 2551.8492
#> dis nox rad tax zn
#> 2498.2748 2419.5269 1014.2609 743.3742 308.8209
#>
#> [[2]]
#> lstat nox age indus crim

rm
#> 15725.19021 9323.20270 8474.23077 8358.67000 8251.74446

7332.59637
#> zn dis tax rad ptratio

b

48

http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html

7.3 Resample descriptions and resample instances 7 RESAMPLING

#> 6151.29577 2741.12074 2055.67537 1216.01398 634.78381
71.00088

#>
#> [[3]]
#> rm lstat age ptratio nox dis
#> 15890.9279 13262.3672 4296.4175 3678.6651 3668.4944 3512.2753
#> crim tax indus zn b rad
#> 3474.5883 2844.9918 1437.7900 1284.4714 578.6932 496.2382

7.3 Resample descriptions and resample instances

As shown above, the function makeResampleDesc is used to specify the resam-
pling strategy.

rdesc = makeResampleDesc("CV", iters = 3)
str(rdesc)
#> List of 4
#> $ id : chr "cross-validation"
#> $ iters : int 3
#> $ predict : chr "test"
#> $ stratify: logi FALSE
#> - attr(*, "class")= chr [1:2] "CVDesc" "ResampleDesc"

The result rdescis an object of class ResampleDesc and contains, as the name
implies, a description of the resampling strategy. In principle, this is an instruc-
tion for drawing training and test sets including the necessary parameters like
the number of iterations, the sizes of the training and test sets etc.

Based on this description, the data set is randomly partitioned into multiple
training and test sets. For each iteration, we get a set of index vectors indicating
the training and test examples. These are stored in a ResampleInstance.

If a ResampleDesc is passed to resample, it is instantiated internally. Naturally,
it is also possible to pass a ResampleInstance directly.

A ResampleInstance can be created through the function makeResampleIn-
stance given a ResampleDesc and either the size of the data set at hand or
the Task. It basically performs the random drawing of indices to separate the
data into training and test sets according to the description.

Create a resample instance based an a task
rin = makeResampleInstance(rdesc, task = iris.task)
rin
#> Resample instance for 150 cases.
#> Resample description: cross-validation with 3 iterations.
#> Predict: test
#> Stratification: FALSE

49

http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

7.3 Resample descriptions and resample instances 7 RESAMPLING

Create a resample instance given the size of the data set
rin = makeResampleInstance(rdesc, size = nrow(iris))
str(rin)
#> List of 5
#> $ desc :List of 4
#> ..$ id : chr "cross-validation"
#> ..$ iters : int 3
#> ..$ predict : chr "test"
#> ..$ stratify: logi FALSE
#> ..- attr(*, "class")= chr [1:2] "CVDesc" "ResampleDesc"
#> $ size : int 150
#> $ train.inds:List of 3
#> ..$: int [1:100] 36 81 6 82 120 110 118 132 105 61 ...
#> ..$: int [1:100] 6 119 120 110 121 118 99 100 29 127 ...
#> ..$: int [1:100] 36 81 82 119 121 99 132 105 61 115 ...
#> $ test.inds :List of 3
#> ..$: int [1:50] 2 3 4 5 7 9 11 16 22 24 ...
#> ..$: int [1:50] 8 12 17 19 20 23 25 27 32 33 ...
#> ..$: int [1:50] 1 6 10 13 14 15 18 21 29 31 ...
#> $ group : Factor w/ 0 levels:
#> - attr(*, "class")= chr "ResampleInstance"

Access the indices of the training observations in iteration 3
rin$train.inds[[3]]
#> [1] 36 81 82 119 121 99 132 105 61 115 17 42 4 71 5

79 30
#> [18] 113 138 19 150 77 58 92 114 133 8 109 33 145 22 111

97 24
#> [35] 7 44 3 20 134 96 16 43 149 9 46 32 139 87 2

11 52
#> [52] 86 40 141 142 72 54 48 83 64 90 112 148 129 137 116

143 69
#> [69] 84 25 80 37 38 75 130 126 135 107 146 26 12 98 55

124 60
#> [86] 63 117 23 67 73 28 106 76 50 144 59 47 102 56 27

While having two separate objects, resample descriptions and instances as well
as the resample function seems overly complicated, it has several advantages:

• Resample instances allow for paired experiments, that is comparing the
performance of several learners on exactly the same training and test sets.
This is particularly useful if you want to add another method to a com-
parison experiment you already did.

rdesc = makeResampleDesc("CV", iters = 3)
rin = makeResampleInstance(rdesc, task = iris.task)

50

http://www.rdocumentation.org/packages/mlr/functions/resample.html

7.4 Aggregating performance values 7 RESAMPLING

Calculate the performance of two learners based on the same
resample instance

r.lda = resample("classif.lda", iris.task, rin, show.info = FALSE)
r.rpart = resample("classif.rpart", iris.task, rin, show.info =

FALSE)
r.lda$aggr
#> mmce.test.mean
#> 0.02666667
r.rpart$aggr
#> mmce.test.mean
#> 0.06

• It is easy to add other resampling methods later on. You can simply
derive from the ResampleInstance class, but you do not have to touch any
methods that use the resampling strategy.

As mentioned above, when calling makeResampleInstance the index sets are
drawn randomly. Mainly for holdout (test sample) estimation you might want
full control about the training and tests set and specify them manually. This
can be done using the function makeFixedHoldoutInstance.

rin = makeFixedHoldoutInstance(train.inds = 1:100, test.inds =
101:150, size = 150)

rin
#> Resample instance for 150 cases.
#> Resample description: holdout with 0.67 split rate.
#> Predict: test
#> Stratification: FALSE

7.4 Aggregating performance values

In resampling we get (for each measure we wish to calculate) one performance
value (on the test set, training set, or both) for each iteration. Subsequently,
these are aggregated. As mentioned above, mainly the mean over the perfor-
mance values on the test data sets (test.mean) is calculated.

For example, a 10-fold cross validation computes 10 values for the chosen per-
formance measure. The aggregated value is the mean of these 10 numbers. mlr
knows how to handle it because each Measure knows how it is aggregated:

Mean misclassification error
mmce$aggr
#> Aggregation function: test.mean

Root mean square error

51

http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeFixedHoldoutInstance.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html

7.4 Aggregating performance values 7 RESAMPLING

rmse$aggr
#> Aggregation function: test.rmse

The aggregation method of a Measure can be changed via the function setAg-
gregation. See the documentation of aggregations for available methods.

7.4.1 Example: Different measures and aggregations

test.median computes the median of the performance values on the test sets.

We use the mean error rate and the median of the true positive
rates

m1 = mmce
m2 = setAggregation(tpr, test.median)
rdesc = makeResampleDesc("CV", iters = 3)
r = resample("classif.rpart", sonar.task, rdesc, measures = list(m1,

m2))
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] Result: mmce.test.mean=0.293,tpr.test.median=0.735
r$aggr
#> mmce.test.mean tpr.test.median
#> 0.2930987 0.7352941

7.4.2 Example: Calculating the training error

Here we calculate the mean misclassification error (mmce) on the training and
the test data sets. Note that we have to set predict = "both"when calling
makeResampleDesc in order to get predictions on both data sets, training and
test.

mmce.train.mean = setAggregation(mmce, train.mean)
rdesc = makeResampleDesc("CV", iters = 3, predict = "both")
r = resample("classif.rpart", iris.task, rdesc, measures =

list(mmce, mmce.train.mean))
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] Result: mmce.test.mean=0.0467,mmce.train.mean=0.0367
r$measures.train
#> iter mmce mmce
#> 1 1 0.04 0.04
#> 2 2 0.03 0.03
#> 3 3 0.04 0.04

52

http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/setAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/setAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html

7.4 Aggregating performance values 7 RESAMPLING

r$aggr
#> mmce.test.mean mmce.train.mean
#> 0.04666667 0.03666667

7.4.3 Example: Bootstrap

In out-of-bag bootstrap estimation B new data sets D1 to DB are drawn from the
data set D with replacement, each of the same size as D. In the i-th iteration,
Di forms the training set, while the remaining elements from D, i.e., elements
not in the training set, form the test set.

The variants b632 and b632+ calculate a convex combination of the training
performance and the out-of-bag bootstrap performance and thus require predic-
tions on the training sets and an appropriate aggregation strategy.

rdesc = makeResampleDesc("Bootstrap", predict = "both", iters = 10)
b632.mmce = setAggregation(mmce, b632)
b632plus.mmce = setAggregation(mmce, b632plus)
b632.mmce
#> Name: Mean misclassification error
#> Performance measure: mmce
#> Properties: classif,classif.multi,req.pred,req.truth
#> Minimize: TRUE
#> Best: 0; Worst: 1
#> Aggregated by: b632
#> Note:

r = resample("classif.rpart", iris.task, rdesc,
measures = list(mmce, b632.mmce, b632plus.mmce), show.info =

FALSE)
head(r$measures.train)
#> iter mmce mmce mmce
#> 1 1 0.026666667 0.026666667 0.026666667
#> 2 2 0.026666667 0.026666667 0.026666667
#> 3 3 0.006666667 0.006666667 0.006666667
#> 4 4 0.026666667 0.026666667 0.026666667
#> 5 5 0.033333333 0.033333333 0.033333333
#> 6 6 0.013333333 0.013333333 0.013333333
r$aggr
#> mmce.test.mean mmce.b632 mmce.b632plus
#> 0.07051905 0.05389071 0.05496489

53

7.5 Convenience functions 8 TUNING HYPERPARAMETERS

7.5 Convenience functions

When quickly trying out some learners, it can get tedious to write the R code
for generating a resample instance, setting the aggregation strategy and so on.
For this reason mlr provides some convenience functions for the frequently used
resampling strategies, for example holdout, crossval or bootstrapB632. But note
that you do not have as much control and flexibility as when using resample
with a resample description or instance.

holdout("regr.lm", bh.task, measures = list(mse, mae))
crossval("classif.lda", iris.task, iters = 3, measures = list(mmce,

ber))

8 Tuning Hyperparameters

Many machine learning algorithms have hyperparameters that need to be set.
If selected by the user they can be specified as explained on the tutorial page
on Learners – simply pass them to makeLearner. Often suitable parameter
values are not obvious and it is preferable to tune the hyperparameters, that is
automatically identify values that lead to the best performance.

8.1 Basics

In order to tune a machine learning algorithm, you have to specify:

• the search space
• the optimization algorithm (aka tuning method)
• an evaluation method, i.e., a resampling strategy and a performance mea-

sure

An example of the search space could be searching values of the C parameter for
SVM:

ex: create a search space for the C hyperparameter from 0.01 to
0.1

ps = makeParamSet(
makeNumericParam("C", lower = 0.01, upper = 0.1)

)

An example of the optimization algorithm could be performing random search
on the space:

ex: random search with 100 iterations
ctrl = makeTuneControlRandom(maxit = 100L)

54

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html

8.1 Basics 8 TUNING HYPERPARAMETERS

An example of an evaluation method could be 3-fold CV using accuracy as the
performance measure:
rdesc = makeResampleDesc("CV", iters = 3L)
measure = acc

The evaluation method is already covered in detail in evaluation of learning
methods and resampling.

In this tutorial, we show how to specify the search space and optimization
algorithm, how to do the tuning and how to access the tuning result, and how
to visualize the hyperparameter tuning effects through several examples.

Throughout this section we consider classification examples. For the other types
of learning problems, you can follow the same process analogously.

We use the iris classification task for illustration and tune the hyperparameters
of an SVM (function ksvm from the kernlab package) with a radial basis kernel.
The following examples tune the cost parameter C and the RBF kernel parameter
sigma of the ksvm function.

8.1.1 Specifying the search space

We first must define a space to search when tuning our learner. For example,
maybe we want to tune several specific values of a hyperparameter or perhaps
we want to define a space from 10−10 to 1010 and let the optimization algorithm
decide which points to choose.

In order to define a search space, we create a ParamSet object, which describes
the parameter space we wish to search. This is done via the function makeParam-
Set.

For example, we could define a search space with just the values 0.5, 1.0, 1.5,
2.0 for both C and gamma. Notice how we name each parameter as it’s defined
in the kernlab package:
discrete_ps = makeParamSet(

makeDiscreteParam("C", values = c(0.5, 1.0, 1.5, 2.0)),
makeDiscreteParam("sigma", values = c(0.5, 1.0, 1.5, 2.0))

)
print(discrete_ps)
#> Type len Def Constr Req Tunable Trafo
#> C discrete - - 0.5,1,1.5,2 - TRUE -
#> sigma discrete - - 0.5,1,1.5,2 - TRUE -

We could also define a continuous search space (using makeNumericParam in-
stead of makeDiscreteParam) from 10−10 to 1010 for both parameters through
the use of the trafo argument (trafo is short for transformation). Transfor-
mations work like this: All optimizers basically see the parameters on their

55

http://www.rdocumentation.org/packages/mlr/functions/iris.task.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/kernlab/
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/kernlab/
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeNumericParam.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeDiscreteParam.html

8.1 Basics 8 TUNING HYPERPARAMETERS

original scale (from −10 to 10 in this case) and produce values on this scale
during the search. Right before they are passed to the learning algorithm, the
transformation function is applied.

Notice this time we use makeNumericParam:

num_ps = makeParamSet(
makeNumericParam("C", lower = -10, upper = 10, trafo = function(x)

10^x),
makeNumericParam("sigma", lower = -10, upper = 10, trafo =

function(x) 10^x)
)

Many other parameters can be created, check out the examples in makeParam-
Set.

In order to standardize your workflow across several packages, whenever param-
eters in the underlying R functions should be passed in a list structure, mlr tries
to give you direct access to each parameter and get rid of the list structure!

This is the case with the kpar argument of ksvm which is a list of kernel pa-
rameters like sigma. This allows us to interface with learners from different
packages in the same way when defining parameters to tune!

8.1.2 Specifying the optimization algorithm

Now that we have specified the search space, we need to choose an optimiza-
tion algorithm for our parameters to pass to the ksvm learner. Optimization
algorithms are considered TuneControl objects in mlr.

A grid search is one of the standard – albeit slow – ways to choose an appropriate
set of parameters from a given search space.

In the case of discrete_ps above, since we have manually specified the values,
grid search will simply be the cross product. We create the grid search object
using the defaults, noting that we will have 4 × 4 = 16 combinations in the case
of discrete_ps:

ctrl = makeTuneControlGrid()

In the case of num_ps above, since we have only specified the upper and lower
bounds for the search space, grid search will create a grid using equally-sized
steps. By default, grid search will span the space in 10 equal-sized steps. The
number of steps can be changed with the resolution argument. Here we change
to 15 equal-sized steps in the space defined within the ParamSet object. For
num_ps, this means 15 steps in the form of 10 ^ seq(-10, 10, length.out
= 15):

ctrl = makeTuneControlGrid(resolution = 15L)

56

http://www.rdocumentation.org/packages/ParamHelpers/functions/makeNumericParam.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html

8.1 Basics 8 TUNING HYPERPARAMETERS

Many other types of optimization algorithms are available. Check out TuneCon-
trol for some examples.

Since grid search is normally too slow in practice, we’ll also examine random
search. In the case of discrete_ps, random search will randomly choose from
the specified values. The maxit argument controls the amount of iterations.
ctrl = makeTuneControlRandom(maxit = 10L)

In the case of num_ps, random search will randomly choose points within the
space according to the specified bounds. Perhaps in this case we would want to
increase the amount of iterations to ensure we adequately cover the space:
ctrl = makeTuneControlRandom(maxit = 200L)

8.1.3 Performing the tuning

Now that we have specified a search space and the optimization algorithm, it’s
time to perform the tuning. We will need to define a resampling strategy and
make note of our performance measure.

We will use 3-fold cross-validation to assess the quality of a specific parameter
setting. For this we need to create a resampling description just like in the
resampling part of the tutorial.
rdesc = makeResampleDesc("CV", iters = 3L)

Finally, by combining all the previous pieces, we can tune the SVM parameters
by calling tuneParams. We will use discrete_ps with grid search:
discrete_ps = makeParamSet(

makeDiscreteParam("C", values = c(0.5, 1.0, 1.5, 2.0)),
makeDiscreteParam("sigma", values = c(0.5, 1.0, 1.5, 2.0))

)
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
res = tuneParams("classif.ksvm", task = iris.task, resampling =

rdesc,
par.set = discrete_ps, control = ctrl)

#> [Tune] Started tuning learner classif.ksvm for parameter set:
#> Type len Def Constr Req Tunable Trafo
#> C discrete - - 0.5,1,1.5,2 - TRUE -
#> sigma discrete - - 0.5,1,1.5,2 - TRUE -
#> With control class: TuneControlGrid
#> Imputation value: 1
#> [Tune-x] 1: C=0.5; sigma=0.5
#> [Tune-y] 1: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max

57

http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/mlr/functions/tuneParams.html

8.1 Basics 8 TUNING HYPERPARAMETERS

#> [Tune-x] 2: C=1; sigma=0.5
#> [Tune-y] 2: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 3: C=1.5; sigma=0.5
#> [Tune-y] 3: mmce.test.mean=0.0467; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 4: C=2; sigma=0.5
#> [Tune-y] 4: mmce.test.mean=0.0467; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 5: C=0.5; sigma=1
#> [Tune-y] 5: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 6: C=1; sigma=1
#> [Tune-y] 6: mmce.test.mean=0.0467; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 7: C=1.5; sigma=1
#> [Tune-y] 7: mmce.test.mean=0.0467; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 8: C=2; sigma=1
#> [Tune-y] 8: mmce.test.mean=0.0467; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 9: C=0.5; sigma=1.5
#> [Tune-y] 9: mmce.test.mean=0.0333; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 10: C=1; sigma=1.5
#> [Tune-y] 10: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 11: C=1.5; sigma=1.5
#> [Tune-y] 11: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 12: C=2; sigma=1.5
#> [Tune-y] 12: mmce.test.mean=0.0467; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 13: C=0.5; sigma=2
#> [Tune-y] 13: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 14: C=1; sigma=2
#> [Tune-y] 14: mmce.test.mean=0.0333; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 15: C=1.5; sigma=2
#> [Tune-y] 15: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune-x] 16: C=2; sigma=2
#> [Tune-y] 16: mmce.test.mean=0.04; time: 0.0 min; memory: 176Mb

use, 719Mb max
#> [Tune] Result: C=0.5; sigma=1.5 : mmce.test.mean=0.0333

58

8.1 Basics 8 TUNING HYPERPARAMETERS

res
#> Tune result:
#> Op. pars: C=0.5; sigma=1.5
#> mmce.test.mean=0.0333

tuneParams simply performs the cross-validation for every element of the cross-
product and selects the parameter setting with the best mean performance. As
no performance measure was specified, by default the error rate (mmce) is used.

Note that each measure “knows” if it is minimized or maximized during tuning.

error rate
mmce$minimize
#> [1] TRUE

accuracy
acc$minimize
#> [1] FALSE

Of course, you can pass other measures and also a list of measures to tuneParams.
In the latter case the first measure is optimized during tuning, the others are
simply evaluated. If you are interested in optimizing several measures simulta-
neously have a look at Advanced Tuning.

In the example below we calculate the accuracy (acc) instead of the error rate.
We use function setAggregation, as described on the resampling page, to addi-
tionally obtain the standard deviation of the accuracy. We also use random
search with 100 iterations on the num_set we defined above and set show.info
to FALSE to hide the output for all 100 iterations:

num_ps = makeParamSet(
makeNumericParam("C", lower = -10, upper = 10, trafo = function(x)

10^x),
makeNumericParam("sigma", lower = -10, upper = 10, trafo =

function(x) 10^x)
)
ctrl = makeTuneControlRandom(maxit = 100L)
res = tuneParams("classif.ksvm", task = iris.task, resampling =

rdesc, par.set = num_ps,
control = ctrl, measures = list(acc, setAggregation(acc,

test.sd)), show.info = FALSE)
res
#> Tune result:
#> Op. pars: C=95.2; sigma=0.0067
#> acc.test.mean=0.987,acc.test.sd=0.0231

59

http://www.rdocumentation.org/packages/mlr/functions/tuneParams.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/tuneParams.html
http://www.rdocumentation.org/packages/mlr/functions/setAggregation.html

8.1 Basics 8 TUNING HYPERPARAMETERS

8.1.4 Accessing the tuning result

The result object TuneResult allows you to access the best found settings $x
and their estimated performance $y.

res$x
#> $C
#> [1] 95.22422
#>
#> $sigma
#> [1] 0.006695534

res$y
#> acc.test.mean acc.test.sd
#> 0.98666667 0.02309401

We can generate a Learner with optimal hyperparameter settings as follows:

lrn = setHyperPars(makeLearner("classif.ksvm"), par.vals = res$x)
lrn
#> Learner classif.ksvm from package kernlab
#> Type: classif
#> Name: Support Vector Machines; Short name: ksvm
#> Class: classif.ksvm
#> Properties:

twoclass,multiclass,numerics,factors,prob,class.weights
#> Predict-Type: response
#> Hyperparameters: fit=FALSE,C=95.2,sigma=0.0067

Then you can proceed as usual. Here we refit and predict the learner on the
complete iris data set:

m = train(lrn, iris.task)
predict(m, task = iris.task)
#> Prediction: 150 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> id truth response
#> 1 1 setosa setosa
#> 2 2 setosa setosa
#> 3 3 setosa setosa
#> 4 4 setosa setosa
#> 5 5 setosa setosa
#> 6 6 setosa setosa
#> ... (150 rows, 3 cols)

60

http://www.rdocumentation.org/packages/mlr/functions/TuneResult.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/datasets/functions/iris.html

8.1 Basics 8 TUNING HYPERPARAMETERS

But what if you wanted to inspect the other points on the search path, not just
the optimal?

8.1.5 Investigating hyperparameter tuning effects

We can inspect all points evaluated during the search by using generateHyper-
ParsEffectData:

generateHyperParsEffectData(res)
#> HyperParsEffectData:
#> Hyperparameters: C,sigma
#> Measures: acc.test.mean,acc.test.sd
#> Optimizer: TuneControlRandom
#> Nested CV Used: FALSE
#> Snapshot of $data:
#> C sigma acc.test.mean acc.test.sd iteration

exec.time
#> 1 -9.9783231 1.0531818 0.2733333 0.02309401 1

0.047
#> 2 -0.5292817 3.2214785 0.2733333 0.02309401 2

0.047
#> 3 -0.3544567 4.1644832 0.2733333 0.02309401 3

0.047
#> 4 0.6341910 7.8640461 0.2866667 0.03055050 4

0.047
#> 5 5.7640748 -3.3159251 0.9533333 0.03055050 5

0.047
#> 6 -6.5880397 0.4600323 0.2733333 0.02309401 6

0.046

Note that the result of generateHyperParsEffectData contains the parameter
values on the original scale. In order to get the transformed parameter values
instead, use the trafo argument:

generateHyperParsEffectData(res, trafo = TRUE)
#> HyperParsEffectData:
#> Hyperparameters: C,sigma
#> Measures: acc.test.mean,acc.test.sd
#> Optimizer: TuneControlRandom
#> Nested CV Used: FALSE
#> Snapshot of $data:
#> C sigma acc.test.mean acc.test.sd iteration

exec.time
#> 1 1.051180e-10 1.130269e+01 0.2733333 0.02309401 1

0.047

61

http://www.rdocumentation.org/packages/mlr/functions/generateHyperParsEffectData.html
http://www.rdocumentation.org/packages/mlr/functions/generateHyperParsEffectData.html
http://www.rdocumentation.org/packages/mlr/functions/generateHyperParsEffectData.html

8.1 Basics 8 TUNING HYPERPARAMETERS

#> 2 2.956095e-01 1.665246e+03 0.2733333 0.02309401 2
0.047

#> 3 4.421232e-01 1.460438e+04 0.2733333 0.02309401 3
0.047

#> 4 4.307159e+00 7.312168e+07 0.2866667 0.03055050 4
0.047

#> 5 5.808644e+05 4.831421e-04 0.9533333 0.03055050 5
0.047

#> 6 2.582024e-07 2.884246e+00 0.2733333 0.02309401 6
0.046

Note that we can also generate performance on the train data along with the
validation/test data, as discussed on the resampling tutorial page:

rdesc2 = makeResampleDesc("Holdout", predict = "both")
res2 = tuneParams("classif.ksvm", task = iris.task, resampling =

rdesc2, par.set = num_ps,
control = ctrl, measures = list(acc, setAggregation(acc,

train.mean)), show.info = FALSE)
generateHyperParsEffectData(res2)
#> HyperParsEffectData:
#> Hyperparameters: C,sigma
#> Measures: acc.test.mean,acc.train.mean
#> Optimizer: TuneControlRandom
#> Nested CV Used: FALSE
#> Snapshot of $data:
#> C sigma acc.test.mean acc.train.mean iteration

exec.time
#> 1 9.457202 -4.0536025 0.98 0.97 1

0.036
#> 2 9.900523 1.8815923 0.40 1.00 2

0.026
#> 3 2.363975 5.3202458 0.26 1.00 3

0.026
#> 4 -1.530251 4.7579424 0.26 0.37 4

0.026
#> 5 -7.837476 2.4352698 0.26 0.37 5

0.027
#> 6 8.782931 -0.4143757 0.92 1.00 6

0.024

We can also easily visualize the points evaluated by using plotHyperParsEffect.
In the example below, we plot the performance over iterations, using the res
from the previous section but instead with 2 performance measures:

res = tuneParams("classif.ksvm", task = iris.task, resampling =
rdesc, par.set = num_ps,

62

resample.md#aggregating-performance-values
http://www.rdocumentation.org/packages/mlr/functions/plotHyperParsEffect.html

8.2 Further comments 8 TUNING HYPERPARAMETERS

control = ctrl, measures = list(acc, mmce), show.info = FALSE)
data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "iteration", y = "acc.test.mean",
plot.type = "line")

●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●

0.4

0.6

0.8

1.0

0 25 50 75 100
iteration

A
cc

ur
ac

y

Note that by default, we only plot the current global optima. This can be
changed with the global.only argument.

For an in-depth exploration of generating hyperparameter tuning effects and
plotting the data, check out Hyperparameter Tuning Effects.

8.2 Further comments

• Tuning works for all other tasks like regression, survival analysis and so
on in a completely similar fashion.

63

9 BENCHMARK EXPERIMENTS

• In longer running tuning experiments it is very annoying if the com-
putation stops due to numerical or other errors. Have a look at
on.learner.error in configureMlr as well as the examples given in
section Configure mlr of this tutorial. You might also want to inform
yourself about impute.val in TuneControl.

• As we continually optimize over the same data during tuning, the esti-
mated performance value might be optimistically biased. A clean approach
to ensure unbiased performance estimation is nested resampling, where we
embed the whole model selection process into an outer resampling loop.

9 Benchmark Experiments

In a benchmark experiment different learning methods are applied to one or
several data sets with the aim to compare and rank the algorithms with respect
to one or more performance measures.

In mlr a benchmark experiment can be conducted by calling function bench-
mark on a list of Learners and a list of Tasks. benchmark basically executes
resample for each combination of Learner and Task. You can specify an individ-
ual resampling strategy for each Task and select one or multiple performance
measures to be calculated.

9.1 Conducting benchmark experiments

We start with a small example. Two learners, linear discriminant analysis
(lda) and a classification tree (rpart), are applied to one classification problem
(sonar.task). As resampling strategy we choose "Holdout". The performance is
thus calculated on a single randomly sampled test data set.

In the example below we create a resample description (ResampleDesc), which
is automatically instantiated by benchmark. The instantiation is done only once
per Task, i.e., the same training and test sets are used for all learners. It is also
possible to directly pass a ResampleInstance.

If you would like to use a fixed test data set instead of a randomly selected one,
you can create a suitable ResampleInstance through function makeFixedHold-
outInstance.

Two learners to be compared
lrns = list(makeLearner("classif.lda"), makeLearner("classif.rpart"))

Choose the resampling strategy
rdesc = makeResampleDesc("Holdout")

Conduct the benchmark experiment

64

http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html
http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeFixedHoldoutInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeFixedHoldoutInstance.html

9.2 Accessing benchmark results 9 BENCHMARK EXPERIMENTS

bmr = benchmark(lrns, sonar.task, rdesc)
#> Task: Sonar-example, Learner: classif.lda
#> [Resample] holdout iter: 1
#> [Resample] Result: mmce.test.mean= 0.3
#> Task: Sonar-example, Learner: classif.rpart
#> [Resample] holdout iter: 1
#> [Resample] Result: mmce.test.mean=0.286

bmr
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.lda 0.3000000
#> 2 Sonar-example classif.rpart 0.2857143

In the printed table every row corresponds to one pair of Task and Learner. The
entries show the mean misclassification error (mmce), the default performance
measure for classification, on the test data set.

The result bmr is an object of class BenchmarkResult. Basically, it contains a list
of lists of ResampleResult objects, first ordered by Task and then by Learner.

9.2 Accessing benchmark results

mlr provides several accessor functions, named getBMR<WhatToExtract>, that
permit to retrieve information for further analyses. This includes for example
the performances or predictions of the learning algorithms under consideration.

9.2.1 Learner performances

Let’s have a look at the benchmark result above. getBMRPerformances returns
individual performances in resampling runs, while getBMRAggrPerformances
gives the aggregated values.

getBMRPerformances(bmr)
#> $`Sonar-example`
#> $`Sonar-example`$classif.lda
#> iter mmce
#> 1 1 0.3
#>
#> $`Sonar-example`$classif.rpart
#> iter mmce
#> 1 1 0.2857143

getBMRAggrPerformances(bmr)
#> $`Sonar-example`
#> $`Sonar-example`$classif.lda

65

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/ResampleResult.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/getBMRPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRAggrPerformances.html

9.2 Accessing benchmark results 9 BENCHMARK EXPERIMENTS

#> mmce.test.mean
#> 0.3
#>
#> $`Sonar-example`$classif.rpart
#> mmce.test.mean
#> 0.2857143

Since we used holdout as resampling strategy, individual and aggregated perfor-
mance values coincide.

Often it is more convenient to work with data.frames. You can easily convert
the result structure by setting as.df = TRUE.
getBMRPerformances(bmr, as.df = TRUE)
#> task.id learner.id iter mmce
#> 1 Sonar-example classif.lda 1 0.3000000
#> 2 Sonar-example classif.rpart 1 0.2857143

getBMRAggrPerformances(bmr, as.df = TRUE)
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.lda 0.3000000
#> 2 Sonar-example classif.rpart 0.2857143

9.2.2 Predictions

Per default, the BenchmarkResult contains the learner predictions. If you do
not want to keep them, e.g., to conserve memory, set keep.pred = FALSE when
calling benchmark.

You can access the predictions using function getBMRPredictions. Per default,
you get a list of lists of ResamplePrediction objects. In most cases you might
prefer the data.frame version.
getBMRPredictions(bmr)
#> $`Sonar-example`
#> $`Sonar-example`$classif.lda
#> Resampled Prediction for:
#> Resample description: holdout with 0.67 split rate.
#> Predict: test
#> Stratification: FALSE
#> predict.type: response
#> threshold:
#> time (mean): 0.00
#> id truth response iter set
#> 1 180 M M 1 test
#> 2 100 M R 1 test
#> 3 53 R M 1 test

66

http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRPredictions.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/ResamplePrediction.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html

9.2 Accessing benchmark results 9 BENCHMARK EXPERIMENTS

#> 4 89 R R 1 test
#> 5 92 R M 1 test
#> 6 11 R R 1 test
#> ... (70 rows, 5 cols)
#>
#>
#> $`Sonar-example`$classif.rpart
#> Resampled Prediction for:
#> Resample description: holdout with 0.67 split rate.
#> Predict: test
#> Stratification: FALSE
#> predict.type: response
#> threshold:
#> time (mean): 0.00
#> id truth response iter set
#> 1 180 M M 1 test
#> 2 100 M M 1 test
#> 3 53 R R 1 test
#> 4 89 R M 1 test
#> 5 92 R M 1 test
#> 6 11 R R 1 test
#> ... (70 rows, 5 cols)

head(getBMRPredictions(bmr, as.df = TRUE))
#> task.id learner.id id truth response iter set
#> 1 Sonar-example classif.lda 180 M M 1 test
#> 2 Sonar-example classif.lda 100 M R 1 test
#> 3 Sonar-example classif.lda 53 R M 1 test
#> 4 Sonar-example classif.lda 89 R R 1 test
#> 5 Sonar-example classif.lda 92 R M 1 test
#> 6 Sonar-example classif.lda 11 R R 1 test

It is also easily possible to access results for certain learners or tasks via their IDs.
For this purpose many “getter” functions have a learner.ids and a task.ids
argument.

head(getBMRPredictions(bmr, learner.ids = "classif.rpart", as.df =
TRUE))

#> task.id learner.id id truth response iter set
#> 1 Sonar-example classif.rpart 180 M M 1 test
#> 2 Sonar-example classif.rpart 100 M M 1 test
#> 3 Sonar-example classif.rpart 53 R R 1 test
#> 4 Sonar-example classif.rpart 89 R M 1 test
#> 5 Sonar-example classif.rpart 92 R M 1 test
#> 6 Sonar-example classif.rpart 11 R R 1 test

67

9.2 Accessing benchmark results 9 BENCHMARK EXPERIMENTS

If you don’t like the default IDs, you can set the IDs of learners and tasks via
the id option of makeLearner and make*Task. Moreover, you can conveniently
change the ID of a Learner via function setId.

9.2.3 IDs

The IDs of all Learners, Tasks and Measures in a benchmark experiment can be
retrieved as follows:

getBMRTaskIds(bmr)
#> [1] "Sonar-example"

getBMRLearnerIds(bmr)
#> [1] "classif.lda" "classif.rpart"

getBMRMeasureIds(bmr)
#> [1] "mmce"

9.2.4 Learner models

Per default the BenchmarkResult also contains the fitted models for all learners
on all tasks. If you do not want to keep them set models = FALSE when calling
benchmark. The fitted models can be retrieved by function getBMRModels. It
returns a list of lists of WrappedModel objects.

getBMRModels(bmr)
#> $`Sonar-example`
#> $`Sonar-example`$classif.lda
#> $`Sonar-example`$classif.lda[[1]]
#> Model for learner.id=classif.lda; learner.class=classif.lda
#> Trained on: task.id = Sonar-example; obs = 138; features = 60
#> Hyperparameters:
#>
#>
#> $`Sonar-example`$classif.rpart
#> $`Sonar-example`$classif.rpart[[1]]
#> Model for learner.id=classif.rpart; learner.class=classif.rpart
#> Trained on: task.id = Sonar-example; obs = 138; features = 60
#> Hyperparameters: xval=0

getBMRModels(bmr, learner.ids = "classif.lda")
#> $`Sonar-example`
#> $`Sonar-example`$classif.lda
#> $`Sonar-example`$classif.lda[[1]]
#> Model for learner.id=classif.lda; learner.class=classif.lda

68

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/setId.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRModels.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html

9.3 Merging benchmark results 9 BENCHMARK EXPERIMENTS

#> Trained on: task.id = Sonar-example; obs = 138; features = 60
#> Hyperparameters:

9.2.5 Learners and measures

Moreover, you can extract the employed Learners and Measures.

getBMRLearners(bmr)
#> $classif.lda
#> Learner classif.lda from package MASS
#> Type: classif
#> Name: Linear Discriminant Analysis; Short name: lda
#> Class: classif.lda
#> Properties: twoclass,multiclass,numerics,factors,prob
#> Predict-Type: response
#> Hyperparameters:
#>
#>
#> $classif.rpart
#> Learner classif.rpart from package rpart
#> Type: classif
#> Name: Decision Tree; Short name: rpart
#> Class: classif.rpart
#> Properties:

twoclass,multiclass,missings,numerics,factors,ordered,prob,weights,featimp
#> Predict-Type: response
#> Hyperparameters: xval=0

getBMRMeasures(bmr)
#> [[1]]
#> Name: Mean misclassification error
#> Performance measure: mmce
#> Properties: classif,classif.multi,req.pred,req.truth
#> Minimize: TRUE
#> Best: 0; Worst: 1
#> Aggregated by: test.mean
#> Note:

9.3 Merging benchmark results

Sometimes after completing a benchmark experiment it turns out that you want
to extend it by another Learner or another Task. In this case you can perform
an additional benchmark experiment and then merge the results to get a single
BenchmarkResult object that can be accessed and analyzed as usual.

69

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html

9.3 Merging benchmark results 9 BENCHMARK EXPERIMENTS

mlr provides two functions to merge results: mergeBenchmarkResultLearner
combines two or more benchmark results for different sets of learners on the
same Tasks, while mergeBenchmarkResultTask fuses results obtained with the
same Learners on different sets of Tasks.

For example in the benchmark experiment above we applied lda and rpart to
the sonar.task. We now perform a second experiment using a random forest and
quadratic discriminant analysis (qda) and use mergeBenchmarkResultLearner
to combine the results.

First benchmark result
bmr
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.lda 0.3000000
#> 2 Sonar-example classif.rpart 0.2857143

Benchmark experiment for the additional learners
lrns2 = list(makeLearner("classif.randomForest"),

makeLearner("classif.qda"))
bmr2 = benchmark(lrns2, sonar.task, rdesc, show.info = FALSE)
bmr2
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.randomForest 0.2000000
#> 2 Sonar-example classif.qda 0.5142857

Merge the results
mergeBenchmarkResultLearner(bmr, bmr2)
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.lda 0.3000000
#> 2 Sonar-example classif.rpart 0.2857143
#> 3 Sonar-example classif.randomForest 0.2000000
#> 4 Sonar-example classif.qda 0.5142857

Note that in the above examples in each case a resample description was passed
to the benchmark function. For this reason lda and rpart were most likely
evaluated on a different training/test set pair than random forest and qda.

Differing training/test set pairs across learners pose an additional source of
variation in the results, which can make it harder to detect actual performance
differences between learners. Therefore, if you suspect that you will have to
extend your benchmark experiment by another Learner later on it’s probably
easiest to work with ResampleInstances from the start. These can be stored
and used for any additional experiments.

Alternatively, if you used a resample description in the first benchmark experi-
ment you could also extract the ResampleInstances from the BenchmarkResult
bmr and pass these to all further benchmark calls.

70

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/mergeBenchmarkResultLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/mergeBenchmarkResultTask.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/MASS/functions/qda.html
http://www.rdocumentation.org/packages/mlr/functions/mergeBenchmarkResultLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/MASS/functions/qda.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

rin = getBMRPredictions(bmr)[[1]][[1]]$instance
rin
#> Resample instance for 208 cases.
#> Resample description: holdout with 0.67 split rate.
#> Predict: test
#> Stratification: FALSE

Benchmark experiment for the additional random forest
bmr3 = benchmark(lrns2, sonar.task, rin, show.info = FALSE)
bmr3
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.randomForest 0.2714286
#> 2 Sonar-example classif.qda 0.3857143

Merge the results
mergeBenchmarkResultLearner(bmr, bmr3)
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.lda 0.3000000
#> 2 Sonar-example classif.rpart 0.2857143
#> 3 Sonar-example classif.randomForest 0.2714286
#> 4 Sonar-example classif.qda 0.3857143

9.4 Benchmark analysis and visualization

mlr offers several ways to analyze the results of a benchmark experiment. This
includes visualization, ranking of learning algorithms and hypothesis tests to
assess performance differences between learners.

In order to demonstrate the functionality we conduct a slightly larger benchmark
experiment with three learning algorithms that are applied to five classification
tasks.

9.4.1 Example: Comparing lda, rpart and random Forest

We consider linear discriminant analysis (lda), classification trees (rpart), and
random forests (randomForest). Since the default learner IDs are a little long,
we choose shorter names in the R code below.

We use five classification tasks. Three are already provided by mlr, two more
data sets are taken from package mlbench and converted to Tasks by function
convertMLBenchObjToTask.

For all tasks 10-fold cross-validation is chosen as resampling strategy. This is
achieved by passing a single resample description to benchmark, which is then

71

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlbench/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/convertMLBenchObjToTask.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

instantiated automatically once for each Task. This way, the same instance is
used for all learners applied to a single task.

It is also possible to choose a different resampling strategy for each Task by
passing a list of the same length as the number of tasks that can contain both
resample descriptions and resample instances.

We use the mean misclassification error mmce as primary performance measure,
but also calculate the balanced error rate (ber) and the training time (timetrain).

Create a list of learners
lrns = list(

makeLearner("classif.lda", id = "lda"),
makeLearner("classif.rpart", id = "rpart"),
makeLearner("classif.randomForest", id = "randomForest")

)

Get additional Tasks from package mlbench
ring.task = convertMLBenchObjToTask("mlbench.ringnorm", n = 600)
wave.task = convertMLBenchObjToTask("mlbench.waveform", n = 600)

tasks = list(iris.task, sonar.task, pid.task, ring.task, wave.task)
rdesc = makeResampleDesc("CV", iters = 10)
meas = list(mmce, ber, timetrain)
bmr = benchmark(lrns, tasks, rdesc, meas, show.info = FALSE)
bmr
#> task.id learner.id mmce.test.mean

ber.test.mean
#> 1 iris-example lda 0.02000000

0.02222222
#> 2 iris-example rpart 0.08000000

0.07555556
#> 3 iris-example randomForest 0.05333333

0.05250000
#> 4 mlbench.ringnorm lda 0.35000000

0.34605671
#> 5 mlbench.ringnorm rpart 0.17333333

0.17313632
#> 6 mlbench.ringnorm randomForest 0.05833333

0.05806121
#> 7 mlbench.waveform lda 0.19000000

0.18257244
#> 8 mlbench.waveform rpart 0.28833333

0.28765247
#> 9 mlbench.waveform randomForest 0.16500000

0.16306057
#> 10 PimaIndiansDiabetes-example lda 0.22778537

72

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

0.27148893
#> 11 PimaIndiansDiabetes-example rpart 0.25133288

0.28967870
#> 12 PimaIndiansDiabetes-example randomForest 0.23685919

0.27543146
#> 13 Sonar-example lda 0.24619048

0.23986694
#> 14 Sonar-example rpart 0.30785714

0.31153361
#> 15 Sonar-example randomForest 0.17785714

0.17442696
#> timetrain.test.mean
#> 1 0.0024
#> 2 0.0029
#> 3 0.0370
#> 4 0.0061
#> 5 0.0091
#> 6 0.3819
#> 7 0.0065
#> 8 0.0081
#> 9 0.3951
#> 10 0.0035
#> 11 0.0050
#> 12 0.3399
#> 13 0.0124
#> 14 0.0097
#> 15 0.2397

From the aggregated performance values we can see that for the iris- and
PimaIndiansDiabetes-example linear discriminant analysis performs well while
for all other tasks the random forest seems superior. Training takes longer for
the random forest than for the other learners.

In order to draw any conclusions from the average performances at least their
variability has to be taken into account or, preferably, the distribution of per-
formance values across resampling iterations.

The individual performances on the 10 folds for every task, learner, and measure
are retrieved below.

perf = getBMRPerformances(bmr, as.df = TRUE)
head(perf)
#> task.id learner.id iter mmce ber timetrain
#> 1 iris-example lda 1 0.0000000 0.0000000 0.003
#> 2 iris-example lda 2 0.1333333 0.1666667 0.002
#> 3 iris-example lda 3 0.0000000 0.0000000 0.002
#> 4 iris-example lda 4 0.0000000 0.0000000 0.003

73

http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

#> 5 iris-example lda 5 0.0000000 0.0000000 0.002
#> 6 iris-example lda 6 0.0000000 0.0000000 0.002

A closer look at the result reveals that the random forest outperforms the classi-
fication tree in every instance, while linear discriminant analysis performs better
than rpart most of the time. Additionally lda sometimes even beats the ran-
dom forest. With increasing size of such benchmark experiments, those tables
become almost unreadable and hard to comprehend.

mlr features some plotting functions to visualize results of benchmark experi-
ments that you might find useful. Moreover, mlr offers statistical hypothesis
tests to assess performance differences between learners.

9.4.2 Integrated plots

Plots are generated using ggplot2. Further customization, such as renaming
plot elements or changing colors, is easily possible.

9.4.2.1 Visualizing performances

plotBMRBoxplots creates box or violin plots which show the distribution of
performance values across resampling iterations for one performance measure
and for all learners and tasks (and thus visualize the output of getBMRPerfor-
mances).

Below are both variants, box and violin plots. The first plot shows the mmce and
the second plot the balanced error rate (ber). Moreover, in the second plot we
color the boxes according to the learners to make them better distinguishable.

plotBMRBoxplots(bmr, measure = mmce)

74

http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/ggplot2/
http://www.rdocumentation.org/packages/mlr/functions/plotBMRBoxplots.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRPerformances.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

●

●

●

●

●

●

●

●●

●

●

iris−example mlbench.ringnorm mlbench.waveform

PimaIndiansDiabetes−example Sonar−example

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

lda rpart
random

Forest

lda rpart
random

Forest

M
ea

n
m

is
cl

as
si

fic
at

io
n

er
ro

r

plotBMRBoxplots(bmr, measure = ber, style = "violin", pretty.names =
FALSE) +

aes(color = learner.id)

75

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

iris−example mlbench.ringnorm mlbench.waveform

PimaIndiansDiabetes−example Sonar−example

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

lda rpart
random

Forest

lda rpart
random

Forest

be
r

learner.id

lda

rpart

randomForest

Note that by default the measure names are used as labels for the y-axis.

mmce$name
#> [1] "Mean misclassification error"
mmce$id
#> [1] "mmce"

If you prefer the shorter ids like mmce and ber set pretty.names = FALSE (as
done for the second plot). Of course you can also use the ylab function to choose
a completely different label.

Another thing which probably comes up quite often is changing the panel head-
ers (which default to the Task IDs) and the learner names on the x-axis (which
default to the Learner IDs). For example looking at the above plots we would
like to remove the “example” suffixes and the “mlbench” prefixes from the panel
headers. Moreover, compared to the other learner names “randomForest” seems
a little long. Currently, the probably simplest solution is to change the factor
levels of the plotted data as shown below.

plt = plotBMRBoxplots(bmr, measure = mmce)
head(plt$data)
#> task.id learner.id iter mmce ber timetrain
#> 1 iris-example lda 1 0.0000000 0.0000000 0.003
#> 2 iris-example lda 2 0.1333333 0.1666667 0.002

76

http://www.rdocumentation.org/packages/ggplot2/functions/labs.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

#> 3 iris-example lda 3 0.0000000 0.0000000 0.002
#> 4 iris-example lda 4 0.0000000 0.0000000 0.003
#> 5 iris-example lda 5 0.0000000 0.0000000 0.002
#> 6 iris-example lda 6 0.0000000 0.0000000 0.002

levels(plt$data$task.id) = c("Iris", "Ringnorm", "Waveform",
"Diabetes", "Sonar")

levels(plt$data$learner.id) = c("lda", "rpart", "rF")

plt + ylab("Error rate")

●

●

●

●

●

●

●

●●

●

●

Iris Ringnorm Waveform

Diabetes Sonar

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

lda rpart
rF lda rpart

rF

E
rr

or
 r

at
e

9.4.2.2 Visualizing aggregated performances

The aggregated performance values (resulting from getBMRAggrPerformances)
can be visualized by function plotBMRSummary. This plot draws one line for
each task on which the aggregated values of one performance measure for all
learners are displayed. By default, the first measure in the list of Measures
passed to benchmark is used, in our example mmce. Moreover, a small vertical
jitter is added to prevent overplotting.

plotBMRSummary(bmr)

77

http://www.rdocumentation.org/packages/mlr/functions/getBMRAggrPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/plotBMRSummary.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

● ●●

●●●

● ●●

● ●●

● ●●

iris−example

mlbench.ringnorm

mlbench.waveform

PimaIndiansDiabetes−example

Sonar−example

0.1 0.2 0.3
mmce.test.mean

learner.id

●

●

●

lda

rpart

rf

9.4.2.3 Calculating and visualizing ranks

Additional to the absolute performance, relative performance, i.e., ranking the
learners is usually of interest and might provide valuable additional insight.

Function convertBMRToRankMatrix calculates ranks based on aggregated
learner performances of one measure. We choose the mean misclassification error
(mmce). The rank structure can be visualized by plotBMRRanksAsBarChart.
m = convertBMRToRankMatrix(bmr, mmce)
m
#> iris-example mlbench.ringnorm mlbench.waveform
#> lda 1 3 2
#> rpart 3 2 3
#> randomForest 2 1 1
#> PimaIndiansDiabetes-example Sonar-example
#> lda 1 2

78

http://www.rdocumentation.org/packages/mlr/functions/convertBMRToRankMatrix.html
http://www.rdocumentation.org/packages/mlr/functions/plotBMRRanksAsBarChart.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

#> rpart 3 3
#> randomForest 2 1

Methods with best performance, i.e., with lowest mmce, are assigned the lowest
rank. Linear discriminant analysis is best for the iris and PimaIndiansDiabetes-
examples while the random forest shows best results on the remaining tasks.

plotBMRRanksAsBarChart with option pos = "tile" shows a corresponding
heat map. The ranks are displayed on the x-axis and the learners are color-
coded.

plotBMRRanksAsBarChart(bmr, pos = "tile")

iris−example

mlbench.ringnorm

mlbench.waveform

PimaIndiansDiabetes−example

Sonar−example

1 2 3
rank

learner.id

lda

rpart

rf

A similar plot can also be obtained via plotBMRSummary. With option trafo
= "rank" the ranks are displayed instead of the aggregated performances.

plotBMRSummary(bmr, trafo = "rank", jitter = 0)

79

http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/mlr/functions/plotBMRRanksAsBarChart.html
http://www.rdocumentation.org/packages/mlr/functions/plotBMRSummary.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

● ●●

●●●

● ●●

● ●●

● ●●

iris−example

mlbench.ringnorm

mlbench.waveform

PimaIndiansDiabetes−example

Sonar−example

1.0 1.5 2.0 2.5 3.0
rank of mmce.test.mean

learner.id

●

●

●

lda

rpart

rf

Alternatively, you can draw stacked bar charts (the default) or bar charts with
juxtaposed bars (pos = "dodge") that are better suited to compare the frequen-
cies of learners within and across ranks.

plotBMRRanksAsBarChart(bmr)
plotBMRRanksAsBarChart(bmr, pos = "dodge")

9.4.3 Comparing learners using hypothesis tests

Many researchers feel the need to display an algorithm’s superiority by employ-
ing some sort of hypothesis testing. As non-parametric tests seem better suited
for such benchmark results the tests provided in mlr are the Overall Friedman
test and the Friedman-Nemenyi post hoc test.

While the ad hoc Friedman test based on friedman.test from the stats package
is testing the hypothesis whether there is a significant difference between the

80

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/friedmanTestBMR.html
http://www.rdocumentation.org/packages/stats/functions/friedman.test.html
http://www.rdocumentation.org/packages/stats/

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

employed learners, the post hoc Friedman-Nemenyi test tests for significant
differences between all pairs of learners. Non parametric tests often do have less
power then their parametric counterparts but less assumptions about underlying
distributions have to be made. This often means many data sets are needed in
order to be able to show significant differences at reasonable significance levels.

In our example, we want to compare the three learners on the selected data
sets. First we might we want to test the hypothesis whether there is a difference
between the learners.

friedmanTestBMR(bmr)
#>
#> Friedman rank sum test
#>
#> data: mmce.test.mean and learner.id and task.id
#> Friedman chi-squared = 5.2, df = 2, p-value = 0.07427

In order to keep the computation time for this tutorial small, the Learners are
only evaluated on five tasks. This also means that we operate on a relatively low
significance level α = 0.1. As we can reject the null hypothesis of the Friedman
test at a reasonable significance level we might now want to test where these
differences lie exactly.

friedmanPostHocTestBMR(bmr, p.value = 0.1)
#>
#> Pairwise comparisons using Nemenyi multiple comparison test
#> with q approximation for unreplicated blocked data
#>
#> data: mmce.test.mean and learner.id and task.id
#>
#> lda rpart
#> rpart 0.254 -
#> randomForest 0.802 0.069
#>
#> P value adjustment method: none

At this level of significance, we can reject the null hypothesis that there exists
no performance difference between the decision tree (rpart) and the random
Forest.

9.4.4 Critical differences diagram

In order to visualize differently performing learners, a critical differences dia-
gram can be plotted, using either the Nemenyi test (test = "nemenyi") or the
Bonferroni-Dunn test (test = "bd").

The mean rank of learners is displayed on the x-axis.

81

http://www.rdocumentation.org/packages/mlr/functions/friedmanPostHocTestBMR.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/randomForest/functions/randomForest.html
http://www.rdocumentation.org/packages/mlr/functions/plotCritDifferences.html
http://www.rdocumentation.org/packages/mlr/functions/plotCritDifferences.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

• Choosing test = "nemenyi" compares all pairs of Learners to each other,
thus the output are groups of not significantly different learners. The
diagram connects all groups of learners where the mean ranks do not differ
by more than the critical differences. Learners that are not connected by
a bar are significantly different, and the learner(s) with the lower mean
rank can be considered “better” at the chosen significance level.

• Choosing test = "bd" performs a pairwise comparison with a baseline.
An interval which extends by the given critical difference in both directions
is drawn around the Learner chosen as baseline, though only comparisons
with the baseline are possible. All learners within the interval are not
significantly different, while the baseline can be considered better or worse
than a given learner which is outside of the interval.

The critical difference CD is calculated by

CD = qα ·
√

k(k + 1)
6N

,

where N denotes the number of tasks, k is the number of learners, and qα comes
from the studentized range statistic divided by

√
2. For details see Demsar

(2006).

Function generateCritDifferencesData does all necessary calculations while func-
tion plotCritDifferences draws the plot. See the tutorial page about visualization
for details on data generation and plotting functions.

Nemenyi test
g = generateCritDifferencesData(bmr, p.value = 0.1, test = "nemenyi")
plotCritDifferences(g) + coord_cartesian(xlim = c(-1,5), ylim =

c(0,2))

● ●●

lda

rpartrf

Critical Difference = 1.3

0 1 2 3 4
Average Rank

Bonferroni-Dunn test

82

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
http://www.rdocumentation.org/packages/mlr/functions/generateCritDifferencesData.html
http://www.rdocumentation.org/packages/mlr/functions/plotCritDifferences.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

g = generateCritDifferencesData(bmr, p.value = 0.1, test = "bd",
baseline = "randomForest")

plotCritDifferences(g) + coord_cartesian(xlim = c(-1,5), ylim =
c(0,2))

● ●●

lda

rpartrf

Critical Difference = 1.24

0 1 2 3 4
Average Rank

9.4.5 Custom plots

You can easily generate your own visualizations by customizing the ggplot ob-
jects returned by the plots above, retrieve the data from the ggplot objects and
use them as basis for your own plots, or rely on the data.frames returned by
getBMRPerformances or getBMRAggrPerformances. Here are some examples.

Instead of boxplots (as in plotBMRBoxplots) we could create density plots to
show the performance values resulting from individual resampling iterations.

perf = getBMRPerformances(bmr, as.df = TRUE)

Density plots for two tasks
qplot(mmce, colour = learner.id, facets = . ~ task.id,
data = perf[perf$task.id %in% c("iris-example",

"Sonar-example"),], geom = "density")

83

http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRAggrPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/plotBMRBoxplots.html

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

iris−example Sonar−example

0

4

8

12

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
mmce

de
ns

ity

learner.id

lda

rpart

randomForest

In order to plot multiple performance measures in parallel, perf is reshaped
to long format. Below we generate grouped boxplots showing the error rate
(mmce) and the training time timetrain.

Compare mmce and timetrain
df = reshape2::melt(perf, id.vars = c("task.id", "learner.id",

"iter"))
df = df[df$variable != "ber",]
head(df)
#> task.id learner.id iter variable value
#> 1 iris-example lda 1 mmce 0.0000000
#> 2 iris-example lda 2 mmce 0.1333333
#> 3 iris-example lda 3 mmce 0.0000000
#> 4 iris-example lda 4 mmce 0.0000000
#> 5 iris-example lda 5 mmce 0.0000000
#> 6 iris-example lda 6 mmce 0.0000000

qplot(variable, value, data = df, colour = learner.id, geom =
"boxplot",

xlab = "measure", ylab = "performance") +
facet_wrap(~ task.id, nrow = 2)

84

9.4 Benchmark analysis and visualization9 BENCHMARK EXPERIMENTS

●

●

● ●

●

●

●●

●

●

●● ●●

●

●●

●

●●

●

●

●

● ●●●
●

●

●

●●

iris−example mlbench.ringnorm mlbench.waveform

PimaIndiansDiabetes−example Sonar−example

0.0

0.2

0.4

0.0

0.2

0.4

mmce timetrain mmce timetrain
measure

pe
rf

or
m

an
ce learner.id

lda

rpart

randomForest

It might also be useful to assess if learner performances in single resampling iter-
ations, i.e., in one fold, are related. This might help to gain further insight, for
example by having a closer look at train and test sets from iterations where one
learner performs exceptionally well while another one is fairly bad. Moreover,
this might be useful for the construction of ensembles of learning algorithms.
Below, function ggpairs from package GGally is used to generate a scatterplot
matrix of mean misclassification errors (mmce) on the Sonar data set.

perf = getBMRPerformances(bmr, task.id = "Sonar-example", as.df =
TRUE)

df = reshape2::melt(perf, id.vars = c("task.id", "learner.id",
"iter"))

df = df[df$variable == "mmce",]
df = reshape2::dcast(df, task.id + iter ~ variable + learner.id)
head(df)
#> task.id iter mmce_lda mmce_rpart mmce_randomForest
#> 1 Sonar-example 1 0.2857143 0.2857143 0.14285714
#> 2 Sonar-example 2 0.2380952 0.2380952 0.23809524
#> 3 Sonar-example 3 0.3333333 0.2857143 0.28571429
#> 4 Sonar-example 4 0.2380952 0.3333333 0.04761905
#> 5 Sonar-example 5 0.1428571 0.2857143 0.19047619
#> 6 Sonar-example 6 0.4000000 0.4500000 0.25000000

85

http://www.rdocumentation.org/packages/GGally/functions/ggpairs.html
http://www.rdocumentation.org/packages/GGally/
http://www.rdocumentation.org/packages/mlr/functions/measures.md.html
http://www.rdocumentation.org/packages/mlbench/functions/Sonar.html

9.5 Further comments 9 BENCHMARK EXPERIMENTS

GGally::ggpairs(df, 3:5)
m

m
ce

_l
da

m
m

ce
_r

pa
rt

m
m

ce
_r

an
do

m
F

or
es

t

mmce_lda mmce_rpart mmce_randomForest

0

1

2

3

4

Corr:

0.145

Corr:

0.306

0.2

0.3

0.4

●

●

●

●

●

●

●

●

●

●

Corr:

0.292

0.1

0.2

0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

0.1 0.2

9.5 Further comments

• Note that for supervised classification mlr offers some more plots that
operate on BenchmarkResult objects and allow you to compare the per-
formance of learning algorithms. See for example the tutorial page on
ROC curves and functions generateThreshVsPerfData, plotROCCurves,
and plotViperCharts as well as the page about classifier calibration and
function generateCalibrationData.

• In the examples shown in this section we applied “raw” learning algorithms,
but often things are more complicated. At the very least, many learners
have hyperparameters that need to be tuned to get sensible results. Reli-
able performance estimates can be obtained by nested resampling, i.e., by

86

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/plotViperCharts.html
http://www.rdocumentation.org/packages/mlr/functions/generateCalibrationData.html

10 PARALLELIZATION

doing the tuning in an inner resampling loop while estimating the perfor-
mance in an outer loop. Moreover, you might want to combine learners
with pre-processing steps like imputation, scaling, outlier removal, dimen-
sionality reduction or feature selection and so on. All this can be easily
done using mlr’s wrapper functionality. The general principle is explained
in the section about wrapped learners in the Advanced part of this tutorial.
There are also several sections devoted to common pre-processing steps.

• Benchmark experiments can very quickly become computationally
demanding. mlr offers some possibilities for parallelization.

10 Parallelization

R by default does not make use of parallelization. With the integration of paral-
lelMap into mlr, it becomes easy to activate the parallel computing capabilities
already supported by mlr. parallelMap supports all major parallelization back-
ends: local multicore execution using parallel, socket and MPI clusters using
snow, makeshift SSH-clusters using BatchJobs and high performance comput-
ing clusters (managed by a scheduler like SLURM, Torque/PBS, SGE or LSF)
also using BatchJobs.

All you have to do is select a backend by calling one of the parallelStart* func-
tions. The first loop mlr encounters which is marked as parallel executable will
be automatically parallelized. It is good practice to call parallelStop at the end
of your script.

library("parallelMap")
parallelStartSocket(2)
#> Starting parallelization in mode=socket with cpus=2.

rdesc = makeResampleDesc("CV", iters = 3)
r = resample("classif.lda", iris.task, rdesc)
#> Exporting objects to slaves for mode socket: .mlr.slave.options
#> Mapping in parallel: mode = socket; cpus = 2; elements = 3.
#> [Resample] Result: mmce.test.mean=0.02

parallelStop()
#> Stopped parallelization. All cleaned up.

On Linux or Mac OS X, you may want to use parallelStartMulticore instead.

10.1 Parallelization levels

We offer different parallelization levels for fine grained control over the par-
allelization. E.g., if you do not want to parallelize the benchmark function

87

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/wrapper.md.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/parallelMap/
http://www.rdocumentation.org/packages/parallelMap/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/parallelMap/
http://www.rdocumentation.org/packages/parallel/
http://www.rdocumentation.org/packages/snow/
http://www.rdocumentation.org/packages/BatchJobs/
http://www.rdocumentation.org/packages/BatchJobs/
http://www.rdocumentation.org/packages/parallelMap/functions/parallelStart.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/parallelMap/functions/parallelStop.html
http://www.rdocumentation.org/packages/parallelMap/functions/parallelStart.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html

10.2 Custom learners and parallelization 10 PARALLELIZATION

because it has only very few iterations but want to parallelize the resampling
of each learner instead, you can specifically pass the level "mlr.resample" to
the parallelStart* function. Currently the following levels are supported:

parallelGetRegisteredLevels()
#> mlr: mlr.benchmark, mlr.resample, mlr.selectFeatures,

mlr.tuneParams

Here is a brief explanation of what these levels do:

• "mlr.resample": Each resampling iteration (a train / test step) is a par-
allel job.

• "mlr.benchmark": Each experiment “run this learner on this data set” is
a parallel job.

• "mlr.tuneParams": Each evaluation in hyperparameter space “resample
with these parameter settings” is a parallel job. How many of these can be
run independently in parallel, depends on the tuning algorithm. For grid
search or random search this is no problem, but for other tuners it depends
on how many points are produced in each iteration of the optimization. If
a tuner works in a purely sequential fashion, we cannot work magic and
the hyperparameter evaluation will also run sequentially. But note that
you can still parallelize the underlying resampling.

• "mlr.selectFeatures": Each evaluation in feature space “resample
with this feature subset” is a parallel job. The same comments as for
"mlr.tuneParams" apply here.

10.2 Custom learners and parallelization

If you have implemented a custom learner yourself, locally, you currently need
to export this to the slave. So if you see an error after calling, e.g., a parallelized
version of resample like this:

no applicable method for 'trainLearner' applied to an object of
class <my_new_learner>

simply add the following line somewhere after calling parallelStart.

parallelExport("trainLearner.<my_new_learner>",
"predictLearner.<my_new_learner>")

10.3 The end

For further details, consult the parallelMap tutorial and help.

88

http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/parallelMap/functions/parallelStart.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/parallelMap/functions/parallelStart.html
https://github.com/berndbischl/parallelMap#parallelmap
http://www.rdocumentation.org/packages/parallelMap/

11 VISUALIZATION

11 Visualization

11.1 Generation and plotting functions

mlr’s visualization capabilities rely on generation functions which generate data
for plots, and plotting functions which plot this output using either ggplot2 or
ggvis (the latter being currently experimental).

This separation allows users to easily make custom visualizations by taking
advantage of the generation functions. The only data transformation that is
handled inside plotting functions is reshaping. The reshaped data is also acces-
sible by calling the plotting functions and then extracting the data from the
ggplot object.

The functions are named accordingly.

• Names of generation functions start with generate and are followed by
a title-case description of their FunctionPurpose, followed by Data, i.e.,
generateFunctionPurposeData. These functions output objects of class
FunctionPurposeData.

• Plotting functions are prefixed by plot followed by their purpose, i.e.,
plotFunctionPurpose.

• ggvis plotting functions have an additional suffix GGVIS, i.e., plotFunctionPurposeGGVIS.

11.1.1 Some examples

In the example below we create a plot of classifier performance as function of the
decision threshold for the binary classification problem sonar.task. The genera-
tion function generateThreshVsPerfData creates an object of class ThreshVsPerf-
Data which contains the data for the plot in slot $data.

lrn = makeLearner("classif.lda", predict.type = "prob")
n = getTaskSize(sonar.task)
mod = train(lrn, task = sonar.task, subset = seq(1, n, by = 2))
pred = predict(mod, task = sonar.task, subset = seq(2, n, by = 2))
d = generateThreshVsPerfData(pred, measures = list(fpr, fnr, mmce))

class(d)
#> [1] "ThreshVsPerfData"

head(d$data)
#> fpr fnr mmce threshold
#> 1 1.0000000 0.0000000 0.4615385 0.00000000
#> 2 0.3541667 0.1964286 0.2692308 0.01010101
#> 3 0.3333333 0.2321429 0.2788462 0.02020202
#> 4 0.3333333 0.2321429 0.2788462 0.03030303

89

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/ggplot2/
http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html

11.1 Generation and plotting functions 11 VISUALIZATION

#> 5 0.3333333 0.2321429 0.2788462 0.04040404
#> 6 0.3125000 0.2321429 0.2692308 0.05050505

For plotting we can use the built-in mlr function plotThreshVsPerf.

plotThreshVsPerf(d)

False positive rate False negative rate Mean misclassification error

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
threshold

pe
rf

or
m

an
ce

Note that by default the Measure names are used to annotate the panels.

fpr$name
#> [1] "False positive rate"

fpr$id
#> [1] "fpr"

This does not only apply to plotThreshVsPerf, but to other plot functions that
show performance measures as well, for example plotLearningCurve. You can
use the ids instead of the names by setting pretty.names = FALSE.

11.1.2 Customizing plots

As mentioned above it is easily possible to customize the built-in plots or making
your own visualizations from scratch based on the generated data.

What will probably come up most often is changing labels and annotations.
Generally, this can be done by manipulating the ggplot object, in this example
the object returned by plotThreshVsPerf, using the usual ggplot2 functions like
ylab or labeller. Moreover, you can change the underlying data, either d$data
(resulting from generateThreshVsPerfData) or the possibly reshaped data con-
tained in the ggplot object (resulting from plotThreshVsPerf), most often by
renaming columns or factor levels.

90

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurve.html
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/ggplot2/
http://www.rdocumentation.org/packages/ggplot2/functions/labs.html
http://www.rdocumentation.org/packages/ggplot2/functions/labeller.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html

11.1 Generation and plotting functions 11 VISUALIZATION

Below are two examples of how to alter the axis and panel labels of the above
plot.

Imagine you want to change the order of the panels and also are not satisfied
with the panel names, for example you find that “Mean misclassification error”
is too long and you prefer “Error rate” instead. Moreover, you want the error
rate to be displayed first.
plt = plotThreshVsPerf(d, pretty.names = FALSE)

Reshaped version of the underlying data d
head(plt$data)
#> threshold measure performance
#> 1 0.00000000 fpr 1.0000000
#> 2 0.01010101 fpr 0.3541667
#> 3 0.02020202 fpr 0.3333333
#> 4 0.03030303 fpr 0.3333333
#> 5 0.04040404 fpr 0.3333333
#> 6 0.05050505 fpr 0.3125000

levels(plt$data$measure)
#> [1] "fpr" "fnr" "mmce"

Rename and reorder factor levels
plt$data$measure = factor(plt$data$measure, levels = c("mmce",

"fpr", "fnr"),
labels = c("Error rate", "False positive rate", "False negative

rate"))
plt = plt + xlab("Cutoff") + ylab("Performance")
plt

Error rate False positive rate False negative rate

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Cutoff

P
er

fo
rm

an
ce

Using the labeller function requires calling facet_wrap (or facet_grid), which

91

ggplot2::labeller
http://www.rdocumentation.org/packages/ggplot2/functions/facet_wrap.html
http://www.rdocumentation.org/packages/ggplot2/functions/facet_grid.html

11.1 Generation and plotting functions 11 VISUALIZATION

can be useful if you want to change how the panels are positioned (number of
rows and columns) or influence the axis limits.

plt = plotThreshVsPerf(d, pretty.names = FALSE)

measure_names = c(
fpr = "False positive rate",
fnr = "False negative rate",
mmce = "Error rate"

)
Manipulate the measure names via the labeller function and
arrange the panels in two columns and choose common axis limits

for all panels
plt = plt + facet_wrap(~ measure, labeller = labeller(measure =

measure_names), ncol = 2)
plt = plt + xlab("Decision threshold") + ylab("Performance")
plt

92

11.1 Generation and plotting functions 11 VISUALIZATION

False positive rate False negative rate

Error rate

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Decision threshold

P
er

fo
rm

an
ce

Instead of using the built-in function plotThreshVsPerf we could also manually
create the plot based on the output of generateThreshVsPerfData: in this case
to plot only one measure.

ggplot(d$data, aes(threshold, fpr)) + geom_line()

93

http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html

11.1 Generation and plotting functions 11 VISUALIZATION

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
threshold

fp
r

The decoupling of generation and plotting functions is especially practical if you
prefer traditional graphics or lattice. Here is a lattice plot which gives a result
similar to that of plotThreshVsPerf.

lattice::xyplot(fpr + fnr + mmce ~ threshold, data = d$data, type =
"l", ylab = "performance",

outer = TRUE, scales = list(relation = "free"),
strip = strip.custom(factor.levels = sapply(d$measures,

function(x) x$name)))

threshold

pe
rf

or
m

an
ce

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

False negative rate

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.0 0.2 0.4 0.6 0.8 1.0

Mean misclassification error

Let’s conclude with a brief look on a second example. Here we use plotPar-

94

http://www.rdocumentation.org/packages/graphics/
http://www.rdocumentation.org/packages/lattice/
http://www.rdocumentation.org/packages/lattice/
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html

11.1 Generation and plotting functions 11 VISUALIZATION

tialDependence but extract the data from the ggplot object pltand use it to
create a traditional graphics::plot, additional to the ggplot2 plot.

sonar = getTaskData(sonar.task)
pd = generatePartialDependenceData(mod, sonar, "V11")
plt = plotPartialDependence(pd)
head(plt$data)
#> Class Probability Feature Value
#> 1 M 0.001315942 V11 0.0289000
#> 2 M 0.001774024 V11 0.1072667
#> 3 M 0.002291222 V11 0.1856333
#> 4 M 0.002760208 V11 0.2640000
#> 5 M 0.003152816 V11 0.3423667
#> 6 M 0.003551905 V11 0.4207333

plt

●

●

●

●

●

●

●

●

●

●

0.002

0.003

0.004

0.0 0.2 0.4 0.6
V11

P
ro

ba
bi

lit
y

Class
● M

plot(Probability ~ Value, data = plt$data, type = "b", xlab =
plt$data$Feature[1])

95

http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html
http://www.rdocumentation.org/packages/graphics/functions/plot.html
http://www.rdocumentation.org/packages/ggplot2/

11.2 Available generation and plotting functions 11 VISUALIZATION

●

●

●

●

●

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

15
0.

00
25

0.
00

35
0.

00
45

V11

P
ro

ba
bi

lit
y

11.2 Available generation and plotting functions

The table shows the currently available generation and plotting functions. It
also references tutorial pages that provide in depth descriptions of the listed
functions.

Note that some plots, e.g., plotTuneMultiCritResult are not described here since
they lack a generation function. Both plotThreshVsPerf and plotROCCurves
operate on the result of generateThreshVsPerfData.

The ggvis functions are experimental and are subject to change, though they
should work. Most generate interactive shiny applications, that automatically
start and run locally.

generation
function

ggplot2
plotting
function

ggvis plotting
function tutorial page

generateThreshVsPerfDataplotThresVsPerfplotThreshVsPerfGGVISPerformance
plotROCCurves– ROC Analysis

generateCritDifferencesDataplotCritDifferences– Benchmark Experiments

96

http://www.rdocumentation.org/packages/mlr/functions/plotTuneMultiCritResult.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/shiny/
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotThresVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerfGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/generateCritDifferencesData.html
http://www.rdocumentation.org/packages/mlr/functions/plotCritDifferences.html

12 CONFIGURING MLR

generation
function

ggplot2
plotting
function

ggvis plotting
function tutorial page

generateHyperParsEffectDataplotHyperParsEffect Tuning
generateFilterValuesDataplotFilterValuesplotFilterValuesGGVISFeature Selection
generateLearningCurveDataplotLearningCurveplotLearningCurveGGVISLearning Curves
generatePartialDependenceDataplotPartialDependenceplotPartialDependenceGGVISPartial Dependence Plots
generateFunctionalANOVAData
generateCalibrationDataplotCalibration– Classifier Calibration Plots

12 Configuring mlr

mlr is designed to make usage errors due to typos or invalid parameter values as
unlikely as possible. Occasionally, you might want to break those barriers and
get full access, for example to reduce the amount of output on the console or to
turn off checks. For all available options simply refer to the documentation of
configureMlr. In the following we show some common use cases.

Generally, function configureMlr permits to set options globally for your current
R session.

It is also possible to set options locally.

• All options referring to the behavior of learners (these are all options
except show.info) can be set for an individual learner via the config
argument of makeLearner. The local precedes the global configuration.

• Some functions like resample, benchmark, selectFeatures, tuneParams,
and tuneParamsMultiCrit have a show.info flag that controls if progress
messages are shown. The default value of show.info can be set by con-
figureMlr.

12.1 Example: Reducing the output on the console

You are bothered by all the output on the console like in this example?

rdesc = makeResampleDesc("Holdout")
r = resample("classif.multinom", iris.task, rdesc)
#> [Resample] holdout iter: 1
#> # weights: 18 (10 variable)
#> initial value 109.861229
#> iter 10 value 12.256619
#> iter 20 value 3.638740
#> iter 30 value 3.228628
#> iter 40 value 2.951100

97

http://www.rdocumentation.org/packages/mlr/functions/generateHyperParsEffectData.html
http://www.rdocumentation.org/packages/mlr/functions/plotHyperParsEffect.html
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/mlr/functions/plotFilterValues.html
http://www.rdocumentation.org/packages/mlr/functions/plotFilterValuesGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurve.html
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurveGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependenceGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/generateFunctionalANOVAData.html
http://www.rdocumentation.org/packages/mlr/functions/generateCalibrationData.html
http://www.rdocumentation.org/packages/mlr/functions/plotCalibration.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html
http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/selectFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/tuneParams.html
http://www.rdocumentation.org/packages/mlr/functions/tuneParamsMultiCrit.html
http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html
http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html

12.2 Accessing and resetting the configuration 12 CONFIGURING MLR

#> iter 50 value 2.806521
#> iter 60 value 2.739076
#> iter 70 value 2.522206
#> iter 80 value 2.485225
#> iter 90 value 2.381397
#> iter 100 value 2.360602
#> final value 2.360602
#> stopped after 100 iterations
#> [Resample] Result: mmce.test.mean=0.02

You can suppress the output for this Learner and this resample call as follows:
lrn = makeLearner("classif.multinom", config =

list(show.learner.output = FALSE))
r = resample(lrn, iris.task, rdesc, show.info = FALSE)

(Note that multinom has a trace switch that can alternatively be used to turn
off the progress messages.)

To globally suppress the output for all subsequent learners and calls to resample,
benchmark etc. do the following:
configureMlr(show.learner.output = FALSE, show.info = FALSE)
r = resample("classif.multinom", iris.task, rdesc)

12.2 Accessing and resetting the configuration

Function getMlrOptions returns a list with the current configuration.
getMlrOptions()
#> $on.learner.error
#> [1] "stop"
#>
#> $on.learner.warning
#> [1] "warn"
#>
#> $on.par.out.of.bounds
#> [1] "stop"
#>
#> $on.par.without.desc
#> [1] "stop"
#>
#> $show.info
#> [1] FALSE
#>
#> $show.learner.output
#> [1] FALSE

98

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/nnet/functions/multinom.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/getMlrOptions.html
http://www.rdocumentation.org/packages/base/functions/list.html

12.3 Example: Turning off parameter checking 12 CONFIGURING MLR

To restore the default configuration call configureMlr with an empty argument
list.

configureMlr()

getMlrOptions()
#> $on.learner.error
#> [1] "stop"
#>
#> $on.learner.warning
#> [1] "warn"
#>
#> $on.par.out.of.bounds
#> [1] "stop"
#>
#> $on.par.without.desc
#> [1] "stop"
#>
#> $show.info
#> [1] TRUE
#>
#> $show.learner.output
#> [1] TRUE

12.3 Example: Turning off parameter checking

It might happen that you want to set a parameter of a Learner, but the param-
eter is not registered in the learner’s parameter set yet. In this case you might
want to contact us or open an issue as well! But until the problem is fixed
you can turn off mlr’s parameter checking. The parameter setting will then be
passed to the underlying function without further ado.

Support Vector Machine with linear kernel and new parameter
'newParam'

lrn = makeLearner("classif.ksvm", kernel = "vanilladot", newParam =
3)

#> Error in setHyperPars2.Learner(learner, insert(par.vals, args)):
classif.ksvm: Setting parameter newParam without available
description object!

#> Did you mean one of these hyperparameters instead: degree scaled
kernel

#> You can switch off this check by using configureMlr!

Turn off parameter checking completely
configureMlr(on.par.without.desc = "quiet")

99

http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
https://github.com/mlr-org/mlr#get-in-touch
https://github.com/mlr-org/mlr/issues/new
http://www.rdocumentation.org/packages/mlr/

12.4 Example: Handling errors in a learning method12 CONFIGURING MLR

lrn = makeLearner("classif.ksvm", kernel = "vanilladot", newParam =
3)

train(lrn, iris.task)
#> Setting default kernel parameters
#> Model for learner.id=classif.ksvm; learner.class=classif.ksvm
#> Trained on: task.id = iris-example; obs = 150; features = 4
#> Hyperparameters: fit=FALSE,kernel=vanilladot,newParam=3

Option "quiet" also masks typos
lrn = makeLearner("classif.ksvm", kernl = "vanilladot")
train(lrn, iris.task)
#> Model for learner.id=classif.ksvm; learner.class=classif.ksvm
#> Trained on: task.id = iris-example; obs = 150; features = 4
#> Hyperparameters: fit=FALSE,kernl=vanilladot

Alternatively turn off parameter checking, but still see warnings
configureMlr(on.par.without.desc = "warn")
lrn = makeLearner("classif.ksvm", kernl = "vanilladot", newParam = 3)
#> Warning in setHyperPars2.Learner(learner, insert(par.vals,

args)): classif.ksvm: Setting parameter kernl without available
description object!

#> Did you mean one of these hyperparameters instead: kernel nu
degree

#> You can switch off this check by using configureMlr!
#> Warning in setHyperPars2.Learner(learner, insert(par.vals,

args)): classif.ksvm: Setting parameter newParam without
available description object!

#> Did you mean one of these hyperparameters instead: degree scaled
kernel

#> You can switch off this check by using configureMlr!

train(lrn, iris.task)
#> Model for learner.id=classif.ksvm; learner.class=classif.ksvm
#> Trained on: task.id = iris-example; obs = 150; features = 4
#> Hyperparameters: fit=FALSE,kernl=vanilladot,newParam=3

12.4 Example: Handling errors in a learning method

If a learning method throws an error the default behavior of mlr is to generate
an exception as well. However, in some situations, for example if you conduct a
larger benchmark study with multiple data sets and learners, you usually don’t
want the whole experiment stopped due to one error. You can prevent this using
the on.learner.error option of configureMlr.

100

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/configureMlr.html

12.4 Example: Handling errors in a learning method12 CONFIGURING MLR

This call gives an error caused by the low number of observations
in class "virginica"

train("classif.qda", task = iris.task, subset = 1:104)
#> Error in qda.default(x, grouping, ...): some group is too small

for 'qda'
#> Timing stopped at: 0.003 0 0.002

Get a warning instead of an error
configureMlr(on.learner.error = "warn")
mod = train("classif.qda", task = iris.task, subset = 1:104)
#> Warning in train("classif.qda", task = iris.task, subset =

1:104): Could not train learner classif.qda: Error in
qda.default(x, grouping, ...) :

#> some group is too small for 'qda'

mod
#> Model for learner.id=classif.qda; learner.class=classif.qda
#> Trained on: task.id = iris-example; obs = 104; features = 4
#> Hyperparameters:
#> Training failed: Error in qda.default(x, grouping, ...) :
#> some group is too small for 'qda'
#>
#> Training failed: Error in qda.default(x, grouping, ...) :
#> some group is too small for 'qda'

mod is an object of class FailureModel
isFailureModel(mod)
#> [1] TRUE

Retrieve the error message
getFailureModelMsg(mod)
#> [1] "Error in qda.default(x, grouping, ...) : \n some group is

too small for 'qda'\n"

predict and performance return NA's
pred = predict(mod, iris.task)
pred
#> Prediction: 150 observations
#> predict.type: response
#> threshold:
#> time: NA
#> id truth response
#> 1 1 setosa <NA>
#> 2 2 setosa <NA>
#> 3 3 setosa <NA>
#> 4 4 setosa <NA>

101

13 WRAPPER

#> 5 5 setosa <NA>
#> 6 6 setosa <NA>
#> ... (150 rows, 3 cols)

performance(pred)
#> mmce
#> NA

If on.learner.error = "warn" a warning is issued instead of an exception and
an object of class FailureModel is created. You can extract the error message
using function getFailureModelMsg. All further steps like prediction and per-
formance calculation work and return NA's.

13 Wrapper

Wrappers can be employed to extend integrated learners with new functionality.
The broad scope of operations and methods which are implemented as wrappers
underline the flexibility of the wrapping approach:

• Data preprocessing
• Imputation
• Bagging
• Tuning
• Feature selection
• Cost-sensitive classification
• Over- and undersampling for imbalanced classification problems
• Multiclass extension for binary-class learners
• Multilabel binary relevance wrapper for multilabel classification with the

binary relevance method

All these operations and methods have a few things in common: First, they all
wrap around mlr learners and they return a new learner. Therefore learners
can be wrapped multiple times. Second, they are implemented using a train
(pre-model hook) and predict (post-model hook) method.

13.1 Example: Bagging wrapper

In this section we exemplary describe the bagging wrapper to create a random
forest which supports weights. To achieve that we combine several decision trees
from the rpart package to create our own custom random forest.

First, we create a weighted toy task.

data(iris)

102

http://www.rdocumentation.org/packages/mlr/functions/FailureModel.html
http://www.rdocumentation.org/packages/mlr/functions/getFailureModelMsg.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeMulticlassWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelBinaryRelevanceWrapper.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/rpart/

13.1 Example: Bagging wrapper 13 WRAPPER

task = makeClassifTask(data = iris, target = "Species", weights =
as.integer(iris$Species))

Next, we use makeBaggingWrapper to create the base learners and the bagged
learner. We choose to set equivalents of ntree (100 base learners) and mtry
(proportion of randomly selected features).

base.lrn = makeLearner("classif.rpart")
wrapped.lrn = makeBaggingWrapper(base.lrn, bw.iters = 100, bw.feats

= 0.5)
print(wrapped.lrn)
#> Learner classif.rpart.bagged from package rpart
#> Type: classif
#> Name: ; Short name:
#> Class: BaggingWrapper
#> Properties:

twoclass,multiclass,missings,numerics,factors,ordered,prob,weights,featimp
#> Predict-Type: response
#> Hyperparameters: xval=0,bw.iters=100,bw.feats=0.5

As we can see in the output, the wrapped learner inherited all properties from
the base learner, especially the “weights” attribute is still present. We can use
this newly constructed learner like all base learners, i.e. we can use it in train,
benchmark, resample, etc.

benchmark(tasks = task, learners = list(base.lrn, wrapped.lrn))
#> Task: iris, Learner: classif.rpart
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] cross-validation iter: 4
#> [Resample] cross-validation iter: 5
#> [Resample] cross-validation iter: 6
#> [Resample] cross-validation iter: 7
#> [Resample] cross-validation iter: 8
#> [Resample] cross-validation iter: 9
#> [Resample] cross-validation iter: 10
#> [Resample] Result: mmce.test.mean=0.0667
#> Task: iris, Learner: classif.rpart.bagged
#> [Resample] cross-validation iter: 1
#> [Resample] cross-validation iter: 2
#> [Resample] cross-validation iter: 3
#> [Resample] cross-validation iter: 4
#> [Resample] cross-validation iter: 5
#> [Resample] cross-validation iter: 6
#> [Resample] cross-validation iter: 7
#> [Resample] cross-validation iter: 8

103

http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html

13.1 Example: Bagging wrapper 13 WRAPPER

#> [Resample] cross-validation iter: 9
#> [Resample] cross-validation iter: 10
#> [Resample] Result: mmce.test.mean=0.06
#> task.id learner.id mmce.test.mean
#> 1 iris classif.rpart 0.06666667
#> 2 iris classif.rpart.bagged 0.06000000

That far we are quite happy with our new learner. But we hope for a better
performance by tuning some hyperparameters of both the decision trees and
bagging wrapper. Let’s have a look at the available hyperparameters of the
fused learner:

getParamSet(wrapped.lrn)
#> Type len Def Constr Req Tunable Trafo
#> bw.iters integer - 10 1 to Inf - TRUE -
#> bw.replace logical - TRUE - - TRUE -
#> bw.size numeric - - 0 to 1 - TRUE -
#> bw.feats numeric - 0.667 0 to 1 - TRUE -
#> minsplit integer - 20 1 to Inf - TRUE -
#> minbucket integer - - 1 to Inf - TRUE -
#> cp numeric - 0.01 0 to 1 - TRUE -
#> maxcompete integer - 4 0 to Inf - TRUE -
#> maxsurrogate integer - 5 0 to Inf - TRUE -
#> usesurrogate discrete - 2 0,1,2 - TRUE -
#> surrogatestyle discrete - 0 0,1 - TRUE -
#> maxdepth integer - 30 1 to 30 - TRUE -
#> xval integer - 10 0 to Inf - FALSE -
#> parms untyped - - - - TRUE -

We choose to tune the parameters minsplit and bw.feats for the mmce using
a random search in a 3-fold CV:

ctrl = makeTuneControlRandom(maxit = 10)
rdesc = makeResampleDesc("CV", iters = 3)
par.set = makeParamSet(

makeIntegerParam("minsplit", lower = 1, upper = 10),
makeNumericParam("bw.feats", lower = 0.25, upper = 1)

)
tuned.lrn = makeTuneWrapper(wrapped.lrn, rdesc, mmce, par.set, ctrl)
print(tuned.lrn)
#> Learner classif.rpart.bagged.tuned from package rpart
#> Type: classif
#> Name: ; Short name:
#> Class: TuneWrapper
#> Properties:

numerics,factors,ordered,missings,weights,prob,twoclass,multiclass,featimp
#> Predict-Type: response

104

http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html

13.1 Example: Bagging wrapper 13 WRAPPER

#> Hyperparameters: xval=0,bw.iters=100,bw.feats=0.5

Calling the train method of the newly constructed learner performs the following
steps:

1. The tuning wrapper sets parameters for the underlying model in slot
$next.learner and calls its train method.

2. Next learner is the bagging wrapper. The passed down argument
bw.feats is used in the bagging wrapper training function, the argument
minsplit gets passed down to $next.learner. The base wrapper
function calls the base learner bw.iters times and stores the resulting
models.

3. The bagged models are evaluated using the mean mmce (default aggrega-
tion for this performance measure) and new parameters are selected using
the tuning method.

4. This is repeated until the tuner terminates. Output is a tuned bagged
learner.

lrn = train(tuned.lrn, task = task)
#> [Tune] Started tuning learner classif.rpart.bagged for parameter

set:
#> Type len Def Constr Req Tunable Trafo
#> minsplit integer - - 1 to 10 - TRUE -
#> bw.feats numeric - - 0.25 to 1 - TRUE -
#> With control class: TuneControlRandom
#> Imputation value: 1
#> [Tune-x] 1: minsplit=5; bw.feats=0.935
#> [Tune-y] 1: mmce.test.mean=0.0467; time: 0.1 min; memory: 178Mb

use, 719Mb max
#> [Tune-x] 2: minsplit=9; bw.feats=0.675
#> [Tune-y] 2: mmce.test.mean=0.0467; time: 0.1 min; memory: 178Mb

use, 719Mb max
#> [Tune-x] 3: minsplit=2; bw.feats=0.847
#> [Tune-y] 3: mmce.test.mean=0.0467; time: 0.1 min; memory: 179Mb

use, 719Mb max
#> [Tune-x] 4: minsplit=4; bw.feats=0.761
#> [Tune-y] 4: mmce.test.mean=0.0467; time: 0.1 min; memory: 179Mb

use, 719Mb max
#> [Tune-x] 5: minsplit=6; bw.feats=0.338
#> [Tune-y] 5: mmce.test.mean=0.0867; time: 0.1 min; memory: 179Mb

use, 719Mb max
#> [Tune-x] 6: minsplit=1; bw.feats=0.637
#> [Tune-y] 6: mmce.test.mean=0.0467; time: 0.1 min; memory: 179Mb

use, 719Mb max
#> [Tune-x] 7: minsplit=1; bw.feats=0.998
#> [Tune-y] 7: mmce.test.mean=0.0467; time: 0.1 min; memory: 179Mb

use, 719Mb max

105

14 DATA PREPROCESSING

#> [Tune-x] 8: minsplit=4; bw.feats=0.698
#> [Tune-y] 8: mmce.test.mean=0.0467; time: 0.0 min; memory: 179Mb

use, 719Mb max
#> [Tune-x] 9: minsplit=3; bw.feats=0.836
#> [Tune-y] 9: mmce.test.mean=0.0467; time: 0.0 min; memory: 179Mb

use, 719Mb max
#> [Tune-x] 10: minsplit=10; bw.feats=0.529
#> [Tune-y] 10: mmce.test.mean=0.0533; time: 0.0 min; memory: 179Mb

use, 719Mb max
#> [Tune] Result: minsplit=1; bw.feats=0.998 : mmce.test.mean=0.0467
print(lrn)
#> Model for learner.id=classif.rpart.bagged.tuned;

learner.class=TuneWrapper
#> Trained on: task.id = iris; obs = 150; features = 4
#> Hyperparameters: xval=0,bw.iters=100,bw.feats=0.5

14 Data Preprocessing

Data preprocessing refers to any transformation of the data done before applying
a learning algorithm. This comprises for example finding and resolving inconsis-
tencies, imputation of missing values, identifying, removing or replacing outliers,
discretizing numerical data or generating numerical dummy variables for cate-
gorical data, any kind of transformation like standardization of predictors or
Box-Cox, dimensionality reduction and feature extraction and/or selection.

mlr offers several options for data preprocessing. Some of the following simple
methods to change a Task (or data.frame) were already mentioned on the page
about learning tasks:

• capLargeValues: Convert large/infinite numeric values.
• createDummyFeatures: Generate dummy variables for factor features.
• dropFeatures: Remove selected features.
• joinClassLevels: Only for classification: Merge existing classes to new,

larger classes.
• mergeSmallFactorLevels: Merge infrequent levels of factor features.
• normalizeFeatures: Normalize features by different methods, e.g., stan-

dardization or scaling to a certain range.
• removeConstantFeatures: Remove constant features.
• subsetTask: Remove observations and/or features from a Task.

Moreover, there are tutorial pages devoted to

• Feature selection and
• Imputation of missing values.

106

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/capLargeValues.html
http://www.rdocumentation.org/packages/mlr/functions/createDummyFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/dropFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/joinClassLevels.html
http://www.rdocumentation.org/packages/mlr/functions/mergeSmallFactorLevels.html
http://www.rdocumentation.org/packages/mlr/functions/normalizeFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/removeConstantFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/subsetTask.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

14.1 Fusing learners with preprocessing 14 DATA PREPROCESSING

14.1 Fusing learners with preprocessing

mlr’s wrapper functionality permits to combine learners with preprocessing
steps. This means that the preprocessing “belongs” to the learner and is done
any time the learner is trained or predictions are made.

This is, on the one hand, very practical. You don’t need to change any data
or learning Tasks and it’s quite easy to combine different learners with different
preprocessing steps.

On the other hand this helps to avoid a common mistake in evaluating the
performance of a learner with preprocessing: Preprocessing is often seen as com-
pletely independent of the later applied learning algorithms. When estimating
the performance of the a learner, e.g., by cross-validation all preprocessing is
done beforehand on the full data set and only training/predicting the learner is
done on the train/test sets. Depending on what exactly is done as preprocess-
ing this can lead to overoptimistic results. For example if imputation by the
mean is done on the whole data set before evaluating the learner performance
you are using information from the test data during training, which can cause
overoptimistic performance results.

To clarify things one should distinguish between data-dependent and data-
independent preprocessing steps: Data-dependent steps in some way learn
from the data and give different results when applied to different data sets.
Data-independent steps always lead to the same results. Clearly, correcting
errors in the data or removing data columns like Ids that should not be used
for learning, is data-independent. Imputation of missing values by the mean, as
mentioned above, is data-dependent. Imputation by a fixed constant, however,
is not.

To get a honest estimate of learner performance combined with preprocessing,
all data-dependent preprocessing steps must be included in the resampling. This
is automatically done when fusing a learner with preprocessing.

To this end mlr provides two wrappers:

• makePreprocWrapperCaret is an interface to all preprocessing options of-
fered by caret’s preProcess function.

• makePreprocWrapper permits to write your own custom preprocessing
methods by defining the actions to be taken before training and before
prediction.

As mentioned above the specified preprocessing steps then “belong” to the
wrapped Learner. In contrast to the preprocessing options listed above like
normalizeFeatures

• the Task itself remains unchanged,
• the preprocessing is not done globally, i.e., for the whole data set, but for

every pair of training/test data sets in, e.g., resampling,

107

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/caret/
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/normalizeFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

14.2 Preprocessing with makePreprocWrapperCaret14 DATA PREPROCESSING

• any parameters controlling the preprocessing as, e.g., the percentage of
outliers to be removed can be tuned together with the base learner param-
eters.

We start with some examples for makePreprocWrapperCaret.

14.2 Preprocessing with makePreprocWrapperCaret

makePreprocWrapperCaret is an interface to caret’s preProcess function that
provides many different options like imputation of missing values, data transfor-
mations as scaling the features to a certain range or Box-Cox and dimensionality
reduction via Independent or Principal Component Analysis. For all possible
options see the help page of function preProcess.

Note that the usage of makePreprocWrapperCaret is slightly different than that
of preProcess.

• makePreprocWrapperCaret takes (almost) the same formal arguments as
preProcess, but their names are prefixed by ppc..

• The only exception: makePreprocWrapperCaret does not have a method
argument. Instead all preprocessing options that would be passed to pre-
Process’s method argument are given as individual logical parameters to
makePreprocWrapperCaret.

For example the following call to preProcess

preProcess(x, method = c("knnImpute", "pca"), pcaComp = 10)

with x being a matrix or data.frame would thus translate into

makePreprocWrapperCaret(learner, ppc.knnImpute = TRUE, ppc.pca =
TRUE, ppc.pcaComp = 10)

where learner is a mlr Learner or the name of a learner class like
"classif.lda".

If you enable multiple preprocessing options (like knn imputation and principal
component analysis above) these are executed in a certain order detailed on the
help page of function preProcess.

In the following we show an example where principal components analysis (PCA)
is used for dimensionality reduction. This should never be applied blindly, but
can be beneficial with learners that get problems with high dimensionality or
those that can profit from rotating the data.

We consider the sonar.task, which poses a binary classification problem with
208 observations and 60 features.

sonar.task
#> Supervised task: Sonar-example

108

http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/caret/
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
&caret:preProcess
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/base/functions/matrix.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html

14.2 Preprocessing with makePreprocWrapperCaret14 DATA PREPROCESSING

#> Type: classif
#> Target: Class
#> Observations: 208
#> Features:
#> numerics factors ordered
#> 60 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 2
#> M R
#> 111 97
#> Positive class: M

Below we fuse quadratic discriminant analysis from package MASS with a princi-
pal components preprocessing step. The threshold is set to 0.9, i.e., the principal
components necessary to explain a cumulative percentage of 90% of the total
variance are kept. The data are automatically standardized prior to PCA.

lrn = makePreprocWrapperCaret("classif.qda", ppc.pca = TRUE,
ppc.thresh = 0.9)

lrn
#> Learner classif.qda.preproc from package MASS
#> Type: classif
#> Name: ; Short name:
#> Class: PreprocWrapperCaret
#> Properties: twoclass,multiclass,numerics,factors,prob
#> Predict-Type: response
#> Hyperparameters:

ppc.BoxCox=FALSE,ppc.YeoJohnson=FALSE,ppc.expoTrans=FALSE,ppc.center=TRUE,ppc.scale=TRUE,ppc.range=FALSE,ppc.knnImpute=FALSE,ppc.bagImpute=FALSE,ppc.medianImpute=FALSE,ppc.pca=TRUE,ppc.ica=FALSE,ppc.spatialSign=FALSE,ppc.thresh=0.9,ppc.na.remove=TRUE,ppc.k=5,ppc.fudge=0.2,ppc.numUnique=3

The wrapped learner is trained on the sonar.task. By inspecting the underlying
qda model, we see that the first 22 principal components have been used for
training.

mod = train(lrn, sonar.task)
mod
#> Model for learner.id=classif.qda.preproc;

learner.class=PreprocWrapperCaret
#> Trained on: task.id = Sonar-example; obs = 208; features = 60
#> Hyperparameters:

ppc.BoxCox=FALSE,ppc.YeoJohnson=FALSE,ppc.expoTrans=FALSE,ppc.center=TRUE,ppc.scale=TRUE,ppc.range=FALSE,ppc.knnImpute=FALSE,ppc.bagImpute=FALSE,ppc.medianImpute=FALSE,ppc.pca=TRUE,ppc.ica=FALSE,ppc.spatialSign=FALSE,ppc.thresh=0.9,ppc.na.remove=TRUE,ppc.k=5,ppc.fudge=0.2,ppc.numUnique=3

getLearnerModel(mod)
#> Model for learner.id=classif.qda; learner.class=classif.qda
#> Trained on: task.id = Sonar-example; obs = 208; features = 22
#> Hyperparameters:

109

http://www.rdocumentation.org/packages/MASS/functions/qda.html
http://www.rdocumentation.org/packages/MASS/
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/MASS/functions/qda.html

14.2 Preprocessing with makePreprocWrapperCaret14 DATA PREPROCESSING

getLearnerModel(mod, more.unwrap = TRUE)
#> Call:
#> qda(f, data = getTaskData(.task, .subset, recode.target =

"drop.levels"))
#>
#> Prior probabilities of groups:
#> M R
#> 0.5336538 0.4663462
#>
#> Group means:
#> PC1 PC2 PC3 PC4 PC5

PC6
#> M 0.5976122 -0.8058235 0.9773518 0.03794232 -0.04568166

-0.06721702
#> R -0.6838655 0.9221279 -1.1184128 -0.04341853 0.05227489

0.07691845
#> PC7 PC8 PC9 PC10 PC11

PC12
#> M 0.2278162 -0.01034406 -0.2530606 -0.1793157 -0.04084466

-0.0004789888
#> R -0.2606969 0.01183702 0.2895848 0.2051963 0.04673977

0.0005481212
#> PC13 PC14 PC15 PC16 PC17

PC18
#> M -0.06138758 -0.1057137 0.02808048 0.05215865 -0.07453265

0.03869042
#> R 0.07024765 0.1209713 -0.03213333 -0.05968671 0.08528994

-0.04427460
#> PC19 PC20 PC21 PC22
#> M -0.01192247 0.006098658 0.01263492 -0.001224809
#> R 0.01364323 -0.006978877 -0.01445851 0.001401586

Below the performances of qda with and without PCA preprocessing are com-
pared in a benchmark experiment. Note that we use stratified resampling to
prevent errors in qda due to a too small number of observations from either
class.
rin = makeResampleInstance("CV", iters = 3, stratify = TRUE, task =

sonar.task)
res = benchmark(list(makeLearner("classif.qda"), lrn), sonar.task,

rin, show.info = FALSE)
res
#> task.id learner.id mmce.test.mean
#> 1 Sonar-example classif.qda 0.3941339
#> 2 Sonar-example classif.qda.preproc 0.2643202

110

http://www.rdocumentation.org/packages/MASS/functions/qda.html
http://www.rdocumentation.org/packages/MASS/functions/qda.html

14.2 Preprocessing with makePreprocWrapperCaret14 DATA PREPROCESSING

PCA preprocessing in this case turns out to be really beneficial for the perfor-
mance of Quadratic Discriminant Analysis.

14.2.1 Joint tuning of preprocessing options and learner parameters

Let’s see if we can optimize this a bit. The threshold value of 0.9 above was
chosen arbitrarily and led to 22 out of 60 principal components. But maybe
a lower or higher number of principal components should be used. Moreover,
qda has several options that control how the class covariance matrices or class
probabilities are estimated.

Those preprocessing and learner parameters can be tuned jointly. Before doing
this let’s first get an overview of all the parameters of the wrapped learner using
function getParamSet.

getParamSet(lrn)
#> Type len Def Constr

Req
#> ppc.BoxCox logical - FALSE -

-
#> ppc.YeoJohnson logical - FALSE -

-
#> ppc.expoTrans logical - FALSE -

-
#> ppc.center logical - TRUE -

-
#> ppc.scale logical - TRUE -

-
#> ppc.range logical - FALSE -

-
#> ppc.knnImpute logical - FALSE -

-
#> ppc.bagImpute logical - FALSE -

-
#> ppc.medianImpute logical - FALSE -

-
#> ppc.pca logical - FALSE -

-
#> ppc.ica logical - FALSE -

-
#> ppc.spatialSign logical - FALSE -

-
#> ppc.thresh numeric - 0.95 0 to Inf

-
#> ppc.pcaComp integer - - 1 to Inf

-

111

http://www.rdocumentation.org/packages/MASS/functions/qda.html
http://www.rdocumentation.org/packages/mlr/functions/getParamSet.html

14.2 Preprocessing with makePreprocWrapperCaret14 DATA PREPROCESSING

#> ppc.na.remove logical - TRUE -
-

#> ppc.k integer - 5 1 to Inf
-

#> ppc.fudge numeric - 0.2 0 to Inf
-

#> ppc.numUnique integer - 3 1 to Inf
-

#> ppc.n.comp integer - - 1 to Inf
-

#> method discrete - moment moment,mle,mve,t
-

#> nu numeric - 5 2 to Inf
Y

#> predict.method discrete - plug-in plug-in,predictive,debiased
-

#> Tunable Trafo
#> ppc.BoxCox TRUE -
#> ppc.YeoJohnson TRUE -
#> ppc.expoTrans TRUE -
#> ppc.center TRUE -
#> ppc.scale TRUE -
#> ppc.range TRUE -
#> ppc.knnImpute TRUE -
#> ppc.bagImpute TRUE -
#> ppc.medianImpute TRUE -
#> ppc.pca TRUE -
#> ppc.ica TRUE -
#> ppc.spatialSign TRUE -
#> ppc.thresh TRUE -
#> ppc.pcaComp TRUE -
#> ppc.na.remove TRUE -
#> ppc.k TRUE -
#> ppc.fudge TRUE -
#> ppc.numUnique TRUE -
#> ppc.n.comp TRUE -
#> method TRUE -
#> nu TRUE -
#> predict.method TRUE -

The parameters prefixed by ppc. belong to preprocessing. method, nu and
predict.method are qda parameters.

Instead of tuning the PCA threshold (ppc.thresh) we tune the number of princi-
pal components (ppc.pcaComp) directly. Moreover, for qda we try two different
ways to estimate the posterior probabilities (parameter predict.method): the

112

http://www.rdocumentation.org/packages/MASS/functions/qda.html
http://www.rdocumentation.org/packages/MASS/functions/qda.html

14.2 Preprocessing with makePreprocWrapperCaret14 DATA PREPROCESSING

usual plug-in estimates and unbiased estimates.

We perform a grid search and set the resolution to 10. This is for demonstration.
You might want to use a finer resolution.

ps = makeParamSet(
makeIntegerParam("ppc.pcaComp", lower = 1, upper =

getTaskNFeats(sonar.task)),
makeDiscreteParam("predict.method", values = c("plug-in",

"debiased"))
)
ctrl = makeTuneControlGrid(resolution = 10)
res = tuneParams(lrn, sonar.task, rin, par.set = ps, control = ctrl,

show.info = FALSE)
res
#> Tune result:
#> Op. pars: ppc.pcaComp=8; predict.method=plug-in
#> mmce.test.mean=0.192

as.data.frame(res$opt.path)[1:3]
#> ppc.pcaComp predict.method mmce.test.mean
#> 1 1 plug-in 0.4757074
#> 2 8 plug-in 0.1920635
#> 3 14 plug-in 0.2162871
#> 4 21 plug-in 0.2643202
#> 5 27 plug-in 0.2454106
#> 6 34 plug-in 0.2645273
#> 7 40 plug-in 0.2742581
#> 8 47 plug-in 0.3173223
#> 9 53 plug-in 0.3512767
#> 10 60 plug-in 0.3941339
#> 11 1 debiased 0.5336094
#> 12 8 debiased 0.2450656
#> 13 14 debiased 0.2403037
#> 14 21 debiased 0.2546584
#> 15 27 debiased 0.3075224
#> 16 34 debiased 0.3172533
#> 17 40 debiased 0.3125604
#> 18 47 debiased 0.2979986
#> 19 53 debiased 0.3079365
#> 20 60 debiased 0.3654244

There seems to be a preference for a lower number of principal components
(<27) for both "plug-in" and "debiased" with "plug-in" achieving slightly
lower error rates.

113

14.3 Writing a custom preprocessing wrapper 14 DATA PREPROCESSING

14.3 Writing a custom preprocessing wrapper

If the options offered by makePreprocWrapperCaret are not enough, you can
write your own preprocessing wrapper using function makePreprocWrapper.

As described in the tutorial section about wrapped learners wrappers are imple-
mented using a train and a predict method. In case of preprocessing wrappers
these methods specify how to transform the data before training and before
prediction and are completely user-defined.

Below we show how to create a preprocessing wrapper that centers and scales
the data before training/predicting. Some learning methods as, e.g., k nearest
neighbors, support vector machines or neural networks usually require scaled
features. Many, but not all, have a built-in scaling option where the training
data set is scaled before model fitting and the test data set is scaled accordingly,
that is by using the scaling parameters from the training stage, before making
predictions. In the following we show how to add a scaling option to a Learner
by coupling it with function scale.

Note that we chose this simple example for demonstration. Centering/scaling
the data is also possible with makePreprocWrapperCaret.

14.3.1 Specifying the train function

The train function has to be a function with the following arguments:

• data is a data.frame with columns for all features and the target variable.
• target is a string and denotes the name of the target variable in data.
• args is a list of further arguments and parameters that influence the

preprocessing.

It must return a list with elements $data and $control, where $data is the
preprocessed data set and $control stores all information required to preprocess
the data before prediction.

The train function for the scaling example is given below. It calls scale on the
numerical features and returns the scaled training data and the corresponding
scaling parameters.

args contains the center and scale arguments of function scale and slot
$control stores the scaling parameters to be used in the prediction stage.

Regarding the latter note that the center and scale arguments of scale can
be either a logical value or a numeric vector of length equal to the number of
the numeric columns in data, respectively. If a logical value was passed to args
we store the column means and standard deviations/ root mean squares in the
$center and $scale slots of the returned $control object.

trainfun = function(data, target, args = list(center, scale)) {

114

http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/base/functions/scale.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/base/functions/scale.html
http://www.rdocumentation.org/packages/base/functions/scale.html
http://www.rdocumentation.org/packages/base/functions/scale.html

14.3 Writing a custom preprocessing wrapper 14 DATA PREPROCESSING

Identify numerical features
cns = colnames(data)
nums = setdiff(cns[sapply(data, is.numeric)], target)
Extract numerical features from the data set and call scale
x = as.matrix(data[, nums, drop = FALSE])
x = scale(x, center = args$center, scale = args$scale)
Store the scaling parameters in control
These are needed to preprocess the data before prediction
control = args
if (is.logical(control$center) && control$center)
control$center = attr(x, "scaled:center")

if (is.logical(control$scale) && control$scale)
control$scale = attr(x, "scaled:scale")

Recombine the data
data = data[, setdiff(cns, nums), drop = FALSE]
data = cbind(data, as.data.frame(x))
return(list(data = data, control = control))

}

14.3.2 Specifying the predict function

The predict function has the following arguments:

• data is a data.frame containing only feature values (as for prediction the
target values naturally are not known).

• target is a string indicating the name of the target variable.
• args are the args that were passed to the train function.
• control is the object returned by the train function.

It returns the preprocessed data.

In our scaling example the predict function scales the numerical features using
the parameters from the training stage stored in control.

predictfun = function(data, target, args, control) {
Identify numerical features
cns = colnames(data)
nums = cns[sapply(data, is.numeric)]
Extract numerical features from the data set and call scale
x = as.matrix(data[, nums, drop = FALSE])
x = scale(x, center = control$center, scale = control$scale)
Recombine the data
data = data[, setdiff(cns, nums), drop = FALSE]
data = cbind(data, as.data.frame(x))
return(data)

}

115

http://www.rdocumentation.org/packages/base/functions/data.frame.html

14.3 Writing a custom preprocessing wrapper 14 DATA PREPROCESSING

14.3.3 Creating the preprocessing wrapper

Below we create a preprocessing wrapper with a regression neural network
(which itself does not have a scaling option) as base learner.

The train and predict functions defined above are passed to makePreprocWrap-
per via the train and predict arguments. par.vals is a list of parameter
values that is relayed to the args argument of the train function.

lrn = makeLearner("regr.nnet", trace = FALSE, decay = 1e-02)
lrn = makePreprocWrapper(lrn, train = trainfun, predict = predictfun,
par.vals = list(center = TRUE, scale = TRUE))

lrn
#> Learner regr.nnet.preproc from package nnet
#> Type: regr
#> Name: ; Short name:
#> Class: PreprocWrapper
#> Properties: numerics,factors,weights
#> Predict-Type: response
#> Hyperparameters: size=3,trace=FALSE,decay=0.01

Let’s compare the cross-validated mean squared error (mse) on the Boston Hous-
ing data set with and without scaling.

rdesc = makeResampleDesc("CV", iters = 3)

r = resample(lrn, bh.task, resampling = rdesc, show.info = FALSE)
r
#> Resample Result
#> Task: BostonHousing-example
#> Learner: regr.nnet.preproc
#> Aggr perf: mse.test.mean=20.6
#> Runtime: 0.0946095

lrn = makeLearner("regr.nnet", trace = FALSE, decay = 1e-02)
r = resample(lrn, bh.task, resampling = rdesc, show.info = FALSE)
r
#> Resample Result
#> Task: BostonHousing-example
#> Learner: regr.nnet
#> Aggr perf: mse.test.mean=55.1
#> Runtime: 0.0702162

116

http://www.rdocumentation.org/packages/nnet/functions/nnet.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapper.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html

14.3 Writing a custom preprocessing wrapper 14 DATA PREPROCESSING

14.3.4 Joint tuning of preprocessing and learner parameters

Often it’s not clear which preprocessing options work best with a certain learn-
ing algorithm. As already shown for the number of principal components in
makePreprocWrapperCaret we can tune them easily together with other hyper-
parameters of the learner.

In our scaling example we can try if nnet works best with both centering and
scaling the data or if it’s better to omit one of the two operations or do no pre-
processing at all. In order to tune center and scale we have to add appropriate
LearnerParams to the parameter set of the wrapped learner.

As mentioned above scale allows for numeric and logical center and scale
arguments. As we want to use the latter option we declare center and scale
as logical learner parameters.

lrn = makeLearner("regr.nnet", trace = FALSE)
lrn = makePreprocWrapper(lrn, train = trainfun, predict = predictfun,
par.set = makeParamSet(

makeLogicalLearnerParam("center"),
makeLogicalLearnerParam("scale")

),
par.vals = list(center = TRUE, scale = TRUE))

lrn
#> Learner regr.nnet.preproc from package nnet
#> Type: regr
#> Name: ; Short name:
#> Class: PreprocWrapper
#> Properties: numerics,factors,weights
#> Predict-Type: response
#> Hyperparameters: size=3,trace=FALSE,center=TRUE,scale=TRUE

getParamSet(lrn)
#> Type len Def Constr Req Tunable Trafo
#> center logical - - - - TRUE -
#> scale logical - - - - TRUE -
#> size integer - 3 0 to Inf - TRUE -
#> maxit integer - 100 1 to Inf - TRUE -
#> linout logical - FALSE - Y TRUE -
#> entropy logical - FALSE - Y TRUE -
#> softmax logical - FALSE - Y TRUE -
#> censored logical - FALSE - Y TRUE -
#> skip logical - FALSE - - TRUE -
#> rang numeric - 0.7 -Inf to Inf - TRUE -
#> decay numeric - 0 0 to Inf - TRUE -
#> Hess logical - FALSE - - TRUE -

117

http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/nnet/functions/nnet.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/LearnerParam.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/ParamSet.html
http://www.rdocumentation.org/packages/base/functions/scale.html

14.3 Writing a custom preprocessing wrapper 14 DATA PREPROCESSING

#> trace logical - TRUE - - FALSE -
#> MaxNWts integer - 1000 1 to Inf - TRUE -
#> abstoll numeric - 0.0001 -Inf to Inf - TRUE -
#> reltoll numeric - 1e-08 -Inf to Inf - TRUE -

Now we do a simple grid search for the decay parameter of nnet and the center
and scale parameters.

rdesc = makeResampleDesc("Holdout")
ps = makeParamSet(

makeDiscreteParam("decay", c(0, 0.05, 0.1)),
makeLogicalParam("center"),
makeLogicalParam("scale")

)
ctrl = makeTuneControlGrid()
res = tuneParams(lrn, bh.task, rdesc, par.set = ps, control = ctrl,

show.info = FALSE)

res
#> Tune result:
#> Op. pars: decay=0.05; center=FALSE; scale=TRUE
#> mse.test.mean=14.8

as.data.frame(res$opt.path)
#> decay center scale mse.test.mean dob eol error.message

exec.time
#> 1 0 TRUE TRUE 49.38128 1 NA <NA>

0.037
#> 2 0.05 TRUE TRUE 20.64761 2 NA <NA>

0.047
#> 3 0.1 TRUE TRUE 22.42986 3 NA <NA>

0.042
#> 4 0 FALSE TRUE 96.25474 4 NA <NA>

0.020
#> 5 0.05 FALSE TRUE 14.84306 5 NA <NA>

0.045
#> 6 0.1 FALSE TRUE 16.65383 6 NA <NA>

0.040
#> 7 0 TRUE FALSE 40.51518 7 NA <NA>

0.041
#> 8 0.05 TRUE FALSE 68.00069 8 NA <NA>

0.039
#> 9 0.1 TRUE FALSE 55.42210 9 NA <NA>

0.042
#> 10 0 FALSE FALSE 96.25474 10 NA <NA>

0.019

118

http://www.rdocumentation.org/packages/nnet/functions/nnet.html

14.3 Writing a custom preprocessing wrapper 14 DATA PREPROCESSING

#> 11 0.05 FALSE FALSE 56.25758 11 NA <NA>
0.042

#> 12 0.1 FALSE FALSE 42.85529 12 NA <NA>
0.039

14.3.5 Preprocessing wrapper functions

If you have written a preprocessing wrapper that you might want to use from
time to time it’s a good idea to encapsulate it in an own function as shown
below. If you think your preprocessing method is something others might want
to use as well and should be integrated into mlr just contact us.

makePreprocWrapperScale = function(learner, center = TRUE, scale =
TRUE) {

trainfun = function(data, target, args = list(center, scale)) {
cns = colnames(data)
nums = setdiff(cns[sapply(data, is.numeric)], target)
x = as.matrix(data[, nums, drop = FALSE])
x = scale(x, center = args$center, scale = args$scale)
control = args
if (is.logical(control$center) && control$center)
control$center = attr(x, "scaled:center")

if (is.logical(control$scale) && control$scale)
control$scale = attr(x, "scaled:scale")

data = data[, setdiff(cns, nums), drop = FALSE]
data = cbind(data, as.data.frame(x))
return(list(data = data, control = control))

}
predictfun = function(data, target, args, control) {

cns = colnames(data)
nums = cns[sapply(data, is.numeric)]
x = as.matrix(data[, nums, drop = FALSE])
x = scale(x, center = control$center, scale = control$scale)
data = data[, setdiff(cns, nums), drop = FALSE]
data = cbind(data, as.data.frame(x))
return(data)

}
makePreprocWrapper(

learner,
train = trainfun,
predict = predictfun,
par.set = makeParamSet(

makeLogicalLearnerParam("center"),
makeLogicalLearnerParam("scale")

),

119

http://www.rdocumentation.org/packages/mlr/
https://github.com/mlr-org/mlr/issues

15 IMPUTATION OF MISSING VALUES

par.vals = list(center = center, scale = scale)
)

}

lrn = makePreprocWrapperScale("classif.lda")
train(lrn, iris.task)
#> Model for learner.id=classif.lda.preproc;

learner.class=PreprocWrapper
#> Trained on: task.id = iris-example; obs = 150; features = 4
#> Hyperparameters: center=TRUE,scale=TRUE

15 Imputation of Missing Values

mlr provides several imputation methods which are listed on the help page
imputations. These include standard techniques as imputation by a constant
value (like a fixed constant, the mean, median or mode) and random numbers
(either from the empirical distribution of the feature under consideration or
a certain distribution family). Moreover, missing values in one feature can be
replaced based on the other features by predictions from any supervised Learner
integrated into mlr.

If your favourite option is not implemented in mlr yet, you can easily create
your own imputation method.

Also note that some of the learning algorithms included in mlr can deal with
missing values in a sensible way, i.e., other than simply deleting observations
with missing values. Those Learners have the property "missings" and thus
can be identified using listLearners.

Regression learners that can deal with missing values
listLearners("regr", properties = "missings")[c("class", "package")]
#> class package
#> 1 regr.blackboost mboost,party
#> 2 regr.cforest party
#> 3 regr.ctree party
#> 4 regr.cubist Cubist
#> 5 regr.gbm gbm
#> 6 regr.randomForestSRC randomForestSRC
#> 7 regr.randomForestSRCSyn randomForestSRC
#> 8 regr.rpart rpart

See also the list of integrated learners in the Appendix.

120

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/imputations.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/listLearners.html

15.1 Imputation and reimputation15 IMPUTATION OF MISSING VALUES

15.1 Imputation and reimputation

Imputation can be done by function impute. You can specify an imputation
method for each feature individually or for classes of features like numerics or
factors. Moreover, you can generate dummy variables that indicate which values
are missing, also either for classes of features or for individual features. These
allow to identify the patterns and reasons for missing data and permit to treat
imputed and observed values differently in a subsequent analysis.

Let’s have a look at the airquality data set.

data(airquality)
summary(airquality)
#> Ozone Solar.R Wind Temp
#> Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
#> 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
#> Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
#> Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
#> 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
#> Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
#> NA's :37 NA's :7
#> Month Day
#> Min. :5.000 Min. : 1.0
#> 1st Qu.:6.000 1st Qu.: 8.0
#> Median :7.000 Median :16.0
#> Mean :6.993 Mean :15.8
#> 3rd Qu.:8.000 3rd Qu.:23.0
#> Max. :9.000 Max. :31.0
#>

There are 37 NA's in variable Ozone (ozone pollution) and 7 NA's in variable
Solar.R (solar radiation). For demonstration purposes we insert artificial NA's
in column Wind (wind speed) and coerce it into a factor.

airq = airquality
ind = sample(nrow(airq), 10)
airq$Wind[ind] = NA
airq$Wind = cut(airq$Wind, c(0,8,16,24))
summary(airq)
#> Ozone Solar.R Wind Temp
#> Min. : 1.00 Min. : 7.0 (0,8] :51 Min. :56.00
#> 1st Qu.: 18.00 1st Qu.:115.8 (8,16] :86 1st Qu.:72.00
#> Median : 31.50 Median :205.0 (16,24]: 6 Median :79.00
#> Mean : 42.13 Mean :185.9 NA's :10 Mean :77.88
#> 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:85.00
#> Max. :168.00 Max. :334.0 Max. :97.00
#> NA's :37 NA's :7

121

http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/datasets/functions/airquality.html
http://www.rdocumentation.org/packages/base/functions/factor.html

15.1 Imputation and reimputation15 IMPUTATION OF MISSING VALUES

#> Month Day
#> Min. :5.000 Min. : 1.0
#> 1st Qu.:6.000 1st Qu.: 8.0
#> Median :7.000 Median :16.0
#> Mean :6.993 Mean :15.8
#> 3rd Qu.:8.000 3rd Qu.:23.0
#> Max. :9.000 Max. :31.0
#>

If you want to impute NA's in all integer features (these include Ozone and
Solar.R) by the mean, in all factor features (Wind) by the mode and additionally
generate dummy variables for all integer features, you can do this as follows:

imp = impute(airq, classes = list(integer = imputeMean(), factor =
imputeMode()),

dummy.classes = "integer")

impute returns a list where slot $data contains the imputed data set. Per
default, the dummy variables are factors with levels "TRUE" and "FALSE". It is
also possible to create numeric zero-one indicator variables.

head(imp$data, 10)
#> Ozone Solar.R Wind Temp Month Day Ozone.dummy

Solar.R.dummy
#> 1 41.00000 190.0000 (0,8] 67 5 1 FALSE

FALSE
#> 2 36.00000 118.0000 (0,8] 72 5 2 FALSE

FALSE
#> 3 12.00000 149.0000 (8,16] 74 5 3 FALSE

FALSE
#> 4 18.00000 313.0000 (8,16] 62 5 4 FALSE

FALSE
#> 5 42.12931 185.9315 (8,16] 56 5 5 TRUE

TRUE
#> 6 28.00000 185.9315 (8,16] 66 5 6 FALSE

TRUE
#> 7 23.00000 299.0000 (8,16] 65 5 7 FALSE

FALSE
#> 8 19.00000 99.0000 (8,16] 59 5 8 FALSE

FALSE
#> 9 8.00000 19.0000 (16,24] 61 5 9 FALSE

FALSE
#> 10 42.12931 194.0000 (8,16] 69 5 10 TRUE

FALSE

Slot $desc is an ImputationDesc object that stores all relevant information
about the imputation. For the current example this includes the means and the

122

http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/impute.html

15.1 Imputation and reimputation15 IMPUTATION OF MISSING VALUES

mode computed on the non-missing data.
imp$desc
#> Imputation description
#> Target:
#> Features: 6; Imputed: 6
#> impute.new.levels: TRUE
#> recode.factor.levels: TRUE
#> dummy.type: factor

The imputation description shows the name of the target variable (not present),
the number of features and the number of imputed features. Note that the latter
number refers to the features for which an imputation method was specified
(five integers plus one factor) and not to the features actually containing NA's.
dummy.type indicates that the dummy variables are factors. For details on
impute.new.levels and recode.factor.levels see the help page of function
impute.

Let’s have a look at another example involving a target variable. A possible
learning task associated with the airquality data is to predict the ozone pollution
based on the meteorological features. Since we do not want to use columns Day
and Month we remove them.
airq = subset(airq, select = 1:4)

The first 100 observations are used as training data set.
airq.train = airq[1:100,]
airq.test = airq[-c(1:100),]

In case of a supervised learning problem you need to pass the name of the target
variable to impute. This prevents imputation and creation of a dummy variable
for the target variable itself and makes sure that the target variable is not used
to impute the features.

In contrast to the example above we specify imputation methods for individual
features instead of classes of features.

Missing values in Solar.R are imputed by random numbers drawn from the
empirical distribution of the non-missing observations.

Function imputeLearner allows to use all supervised learning algorithms inte-
grated into mlr for imputation. The type of the Learner (regr, classif) must
correspond to the class of the feature to be imputed. The missing values in
Wind are replaced by the predictions of a classification tree (rpart). Per default,
all available columns in airq.train except the target variable (Ozone) and the
variable to be imputed (Wind) are used as features in the classification tree, here
Solar.R and Temp. You can also select manually which columns to use. Note
that rpart can deal with missing feature values, therefore the NA's in column
Solar.R do not pose a problem.

123

http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/datasets/functions/airquality.html
http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/mlr/functions/imputations.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/rpart/functions/rpart.html

15.1 Imputation and reimputation15 IMPUTATION OF MISSING VALUES

imp = impute(airq.train, target = "Ozone", cols = list(Solar.R =
imputeHist(),

Wind = imputeLearner(makeLearner("classif.rpart"))), dummy.cols =
c("Solar.R", "Wind"))

summary(imp$data)
#> Ozone Solar.R Wind Temp
#> Min. : 1.00 Min. : 7.00 (0,8] :34 Min. :56.00
#> 1st Qu.: 16.00 1st Qu.: 98.75 (8,16] :61 1st Qu.:69.00
#> Median : 34.00 Median :221.50 (16,24]: 5 Median :79.50
#> Mean : 41.59 Mean :191.54 Mean :76.87
#> 3rd Qu.: 63.00 3rd Qu.:274.25 3rd Qu.:84.00
#> Max. :135.00 Max. :334.00 Max. :93.00
#> NA's :31
#> Solar.R.dummy Wind.dummy
#> FALSE:93 FALSE:92
#> TRUE : 7 TRUE : 8
#>
#>
#>
#>
#>

imp$desc
#> Imputation description
#> Target: Ozone
#> Features: 3; Imputed: 2
#> impute.new.levels: TRUE
#> recode.factor.levels: TRUE
#> dummy.type: factor

The ImputationDesc object can be used by function reimpute to impute the test
data set the same way as the training data.
airq.test.imp = reimpute(airq.test, imp$desc)
head(airq.test.imp)
#> Ozone Solar.R Wind Temp Solar.R.dummy Wind.dummy
#> 1 110 207 (0,8] 90 FALSE FALSE
#> 2 NA 222 (8,16] 92 FALSE FALSE
#> 3 NA 137 (8,16] 86 FALSE FALSE
#> 4 44 192 (8,16] 86 FALSE FALSE
#> 5 28 273 (8,16] 82 FALSE FALSE
#> 6 65 157 (8,16] 80 FALSE FALSE

Especially when evaluating a machine learning method by some resampling
technique you might want that impute/reimpute are called automatically each
time before training/prediction. This can be achieved by creating an imputation
wrapper.

124

http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/mlr/functions/reimpute.html
http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/mlr/functions/reimpute.html

15.2 Fusing a learner with imputation15 IMPUTATION OF MISSING VALUES

15.2 Fusing a learner with imputation

You can couple a Learner with imputation by function makeImputeWrapper
which basically has the same formal arguments as impute. Like in the example
above we impute Solar.R by random numbers from its empirical distribution,
Wind by the predictions of a classification tree and generate dummy variables
for both features.

lrn = makeImputeWrapper("regr.lm", cols = list(Solar.R =
imputeHist(),

Wind = imputeLearner(makeLearner("classif.rpart"))), dummy.cols =
c("Solar.R", "Wind"))

lrn
#> Learner regr.lm.preproc from package stats
#> Type: regr
#> Name: ; Short name:
#> Class: ImputeWrapper
#> Properties: numerics,factors,se,weights,missings
#> Predict-Type: response
#> Hyperparameters:

Before training the resulting Learner, impute is applied to the training set.
Before prediction reimpute is called on the test set and the ImputationDesc
object from the training stage.

We again aim to predict the ozone pollution from the meteorological variables.
In order to create the Task we need to delete observations with missing values
in the target variable.

airq = subset(airq, subset = !is.na(airq$Ozone))
task = makeRegrTask(data = airq, target = "Ozone")

In the following the 3-fold cross-validated mean squared error is calculated.

rdesc = makeResampleDesc("CV", iters = 3)
r = resample(lrn, task, resampling = rdesc, show.info = FALSE,

models = TRUE)
r$aggr
#> mse.test.mean
#> 524.3392

lapply(r$models, getLearnerModel, more.unwrap = TRUE)
#> [[1]]
#>
#> Call:
#> stats::lm(formula = f, data = d)
#>
#> Coefficients:

125

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeImputeWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/mlr/functions/reimpute.html
http://www.rdocumentation.org/packages/mlr/functions/impute.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

16 GENERIC BAGGING

#> (Intercept) Solar.R Wind(8,16]
#> -117.0954 0.0853 -27.6763
#> Wind(16,24] Temp Solar.R.dummyTRUE
#> -9.0988 2.0505 -27.4152
#> Wind.dummyTRUE
#> 2.2535
#>
#>
#> [[2]]
#>
#> Call:
#> stats::lm(formula = f, data = d)
#>
#> Coefficients:
#> (Intercept) Solar.R Wind(8,16]
#> -94.84542 0.03936 -16.26255
#> Wind(16,24] Temp Solar.R.dummyTRUE
#> -7.00707 1.79513 -11.08578
#> Wind.dummyTRUE
#> -0.68340
#>
#>
#> [[3]]
#>
#> Call:
#> stats::lm(formula = f, data = d)
#>
#> Coefficients:
#> (Intercept) Solar.R Wind(8,16]
#> -57.30438 0.07426 -30.70737
#> Wind(16,24] Temp Solar.R.dummyTRUE
#> -18.25055 1.35898 -2.16654
#> Wind.dummyTRUE
#> -5.56400

A second possibility to fuse a learner with imputation is provided by makePre-
procWrapperCaret, which is an interface to caret’s preProcess function. pre-
Process only works for numeric features and offers imputation by k-nearest
neighbors, bagged trees, and by the median.

16 Generic Bagging

One reason why random forests perform so well is that they are using bagging
as a technique to gain more stability. But why do you want to limit yourself

126

http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/mlr/functions/makePreprocWrapperCaret.html
http://www.rdocumentation.org/packages/caret/
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html
http://www.rdocumentation.org/packages/caret/functions/preProcess.html

16 GENERIC BAGGING

to the classifiers already implemented in well known random forests when it is
really easy to build your own with mlr?

Just bag an mlr learner already makeBaggingWrapper.

As in a random forest, we need a Learner which is trained on a subset of the data
during each iteration of the bagging process. The subsets are chosen according
to the parameters given to makeBaggingWrapper:

• bw.iters On how many subsets (samples) do we want to train our
Learner?

• bw.replace Sample with replacement (also known as bootstrapping)?
• bw.size Percentage size of the samples. If bw.replace = TRUE, bw.size

= 1 is the default. This does not mean that one sample will contain all
the observations as observations will occur multiple times in each sample.

• bw.feats Percentage size of randomly selected features for each iteration.

Of course we also need a Learner which we have to pass to makeBaggingWrap-
per.

lrn = makeLearner("classif.rpart")
bag.lrn = makeBaggingWrapper(lrn, bw.iters = 50, bw.replace = TRUE,

bw.size = 0.8, bw.feats = 3/4)

Now we can compare the performance with and without bagging. First let’s try
it without bagging:

rdesc = makeResampleDesc("CV", iters = 10)
r = resample(learner = lrn, task = sonar.task, resampling = rdesc,

show.info = FALSE)
r$aggr
#> mmce.test.mean
#> 0.2735714

And now with bagging:

rdesc = makeResampleDesc("CV", iters = 10)
result = resample(learner = bag.lrn, task = sonar.task, resampling =

rdesc, show.info = FALSE)
result$aggr
#> mmce.test.mean
#> 0.2069048

Training more learners takes more time, but can outperform pure learners on
noisy data with many features.

127

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html

16.1 Changing the type of prediction 16 GENERIC BAGGING

16.1 Changing the type of prediction

In case of a classification problem the predicted class labels are determined by
majority voting over the predictions of the individual models. Additionally, pos-
terior probabilities can be estimated as the relative proportions of the predicted
class labels. For this purpose you have to change the predict type of the bagging
learner as follows.

bag.lrn = setPredictType(bag.lrn, predict.type = "prob")

Note that it is not relevant if the base learner itself can predict probabilities
and that for this reason the predict type of the base learner always has to be
"response".

For regression the mean value across predictions is computed. Moreover, the
standard deviation across predictions is estimated if the predict type of the bag-
ging learner is changed to "se". Below, we give a small example for regression.

n = getTaskSize(bh.task)
train.inds = seq(1, n, 3)
test.inds = setdiff(1:n, train.inds)
lrn = makeLearner("regr.rpart")
bag.lrn = makeBaggingWrapper(lrn)
bag.lrn = setPredictType(bag.lrn, predict.type = "se")
mod = train(learner = bag.lrn, task = bh.task, subset = train.inds)

With function getLearnerModel, you can access the models fitted in the individ-
ual iterations.

head(getLearnerModel(mod), 2)
#> [[1]]
#> Model for learner.id=regr.rpart; learner.class=regr.rpart
#> Trained on: task.id = BostonHousing-example; obs = 169; features

= 13
#> Hyperparameters: xval=0
#>
#> [[2]]
#> Model for learner.id=regr.rpart; learner.class=regr.rpart
#> Trained on: task.id = BostonHousing-example; obs = 169; features

= 13
#> Hyperparameters: xval=0

Predict the response and calculate the standard deviation:

pred = predict(mod, task = bh.task, subset = test.inds)
head(as.data.frame(pred))
#> id truth response se
#> 2 2 21.6 21.98377 1.2516733

128

http://www.rdocumentation.org/packages/mlr/functions/getLearnerModel.html

16.1 Changing the type of prediction 16 GENERIC BAGGING

#> 3 3 34.7 32.85076 1.0323484
#> 5 5 36.2 32.85076 1.0323484
#> 6 6 28.7 24.18223 0.6522748
#> 8 8 27.1 16.15829 2.7856383
#> 9 9 16.5 14.42388 3.7821479

In the column labelled se the standard deviation for each prediction is given.

Let’s visualise this a bit using ggplot2. Here we plot the percentage of lower
status of the population (lstat) against the prediction.

library("ggplot2")
library("reshape2")
data = cbind(as.data.frame(pred), getTaskData(bh.task, subset =

test.inds))
g = ggplot(data, aes(x = lstat, y = response, ymin = response-se,

ymax = response+se, col = age))
g + geom_point() + geom_linerange(alpha=0.5)

129

http://www.rdocumentation.org/packages/ggplot2/

17 ADVANCED TUNING

●

● ●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●
● ●● ●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

● ●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●●
●

●

●●

●

●● ●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

10

20

30

40

50

0 10 20 30
lstat

re
sp

on
se

25

50

75

100
age

17 Advanced Tuning

17.1 Iterated F-Racing for mixed spaces and dependencies

The package supports a larger number of tuning algorithms, which can all be
looked up and selected via TuneControl. One of the cooler algorithms is iterated
F-racing from the irace package (technical description here). This not only
works for arbitrary parameter types (numeric, integer, discrete, logical), but
also for so-called dependent / hierarchical parameters:
ps = makeParamSet(

makeNumericParam("C", lower = -12, upper = 12, trafo = function(x)
2^x),

makeDiscreteParam("kernel", values = c("vanilladot", "polydot",
"rbfdot")),

130

http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/irace/
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf

17.2 Tuning across whole model spaces with ModelMultiplexer17 ADVANCED TUNING

makeNumericParam("sigma", lower = -12, upper = 12, trafo =
function(x) 2^x,

requires = quote(kernel == "rbfdot")),
makeIntegerParam("degree", lower = 2L, upper = 5L,

requires = quote(kernel == "polydot"))
)
ctrl = makeTuneControlIrace(maxExperiments = 200L)
rdesc = makeResampleDesc("Holdout")
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps,

control = ctrl, show.info = FALSE)
print(head(as.data.frame(res$opt.path)))
#> C kernel sigma degree mmce.test.mean dob eol
#> 1 8.838138 rbfdot 3.947862 NA 0.18 1 NA
#> 2 -5.598352 vanilladot NA NA 0.12 1 NA
#> 3 -7.488611 vanilladot NA NA 0.36 1 NA
#> 4 4.267949 polydot NA 3 0.08 1 NA
#> 5 -10.079158 polydot NA 5 0.06 1 NA
#> 6 -10.643475 vanilladot NA NA 0.36 1 NA
#> error.message exec.time
#> 1 <NA> 0.034
#> 2 <NA> 0.021
#> 3 <NA> 0.024
#> 4 <NA> 0.022
#> 5 <NA> 0.021
#> 6 <NA> 0.021

See how we made the kernel parameters like sigma and degree dependent on
the kernel selection parameters? This approach allows you to tune parameters
of multiple kernels at once, efficiently concentrating on the ones which work best
for your given data set.

17.2 Tuning across whole model spaces with ModelMulti-
plexer

We can now take the following example even one step further. If we use the
ModelMultiplexer we can tune over different model classes at once, just as we
did with the SVM kernels above.
base.learners = list(

makeLearner("classif.ksvm"),
makeLearner("classif.randomForest")

)
lrn = makeModelMultiplexer(base.learners)

Function makeModelMultiplexerParamSet offers a simple way to construct a
parameter set for tuning: The parameter names are prefixed automatically

131

http://www.rdocumentation.org/packages/mlr/functions/makeModelMultiplexer.html
http://www.rdocumentation.org/packages/mlr/functions/makeModelMultiplexerParamSet.html

17.2 Tuning across whole model spaces with ModelMultiplexer17 ADVANCED TUNING

and the requires element is set, too, to make all parameters subordinate to
selected.learner.

ps = makeModelMultiplexerParamSet(lrn,
makeNumericParam("sigma", lower = -12, upper = 12, trafo =

function(x) 2^x),
makeIntegerParam("ntree", lower = 1L, upper = 500L)

)
print(ps)
#> Type len Def
#> selected.learner discrete - -
#> classif.ksvm.sigma numeric - -
#> classif.randomForest.ntree integer - -
#> Constr Req

Tunable
#> selected.learner classif.ksvm,classif.randomForest -

TRUE
#> classif.ksvm.sigma -12 to 12 Y

TRUE
#> classif.randomForest.ntree 1 to 500 Y

TRUE
#> Trafo
#> selected.learner -
#> classif.ksvm.sigma Y
#> classif.randomForest.ntree -

rdesc = makeResampleDesc("CV", iters = 2L)
ctrl = makeTuneControlIrace(maxExperiments = 200L)
res = tuneParams(lrn, iris.task, rdesc, par.set = ps, control =

ctrl, show.info = FALSE)
print(head(as.data.frame(res$opt.path)))
#> selected.learner classif.ksvm.sigma

classif.randomForest.ntree
#> 1 classif.ksvm 8.511120

NA
#> 2 classif.ksvm 2.601238

NA
#> 3 classif.randomForest NA

435
#> 4 classif.randomForest NA

18
#> 5 classif.ksvm -1.884101

NA
#> 6 classif.ksvm 4.388728

NA
#> mmce.test.mean dob eol error.message exec.time

132

17.3 Multi-criteria evaluation and optimization 17 ADVANCED TUNING

#> 1 0.6466667 1 NA <NA> 0.036
#> 2 0.1400000 1 NA <NA> 0.036
#> 3 0.0400000 1 NA <NA> 0.055
#> 4 0.0400000 1 NA <NA> 0.030
#> 5 0.0400000 1 NA <NA> 0.036
#> 6 0.3333333 1 NA <NA> 0.036

17.3 Multi-criteria evaluation and optimization

During tuning you might want to optimize multiple, potentially conflicting, per-
formance measures simultaneously.

In the following example we aim to minimize both, the false positive and the
false negative rates (fpr and fnr). We again tune the hyperparameters of an
SVM (function ksvm) with a radial basis kernel and use the sonar classification
task for illustration. As search strategy we choose a random search.

For all available multi-criteria tuning algorithms see TuneMultiCritControl.

ps = makeParamSet(
makeNumericParam("C", lower = -12, upper = 12, trafo = function(x)

2^x),
makeNumericParam("sigma", lower = -12, upper = 12, trafo =

function(x) 2^x)
)
ctrl = makeTuneMultiCritControlRandom(maxit = 30L)
rdesc = makeResampleDesc("Holdout")
res = tuneParamsMultiCrit("classif.ksvm", task = sonar.task,

resampling = rdesc, par.set = ps,
measures = list(fpr, fnr), control = ctrl, show.info = FALSE)

res
#> Tune multicrit result:
#> Points on front: 3

head(as.data.frame(trafoOptPath(res$opt.path)))
#> C sigma fpr.test.mean fnr.test.mean dob eol
#> 1 6.731935e+01 1.324673e+03 1.0000000 0.0000000 1 NA
#> 2 4.719282e-02 7.660068e-04 1.0000000 0.0000000 2 NA
#> 3 7.004097e+00 1.211249e+01 1.0000000 0.0000000 3 NA
#> 4 1.207932e+00 6.096186e+00 1.0000000 0.0000000 4 NA
#> 5 5.203364e+00 2.781734e-03 0.1515152 0.1621622 5 NA
#> 6 5.638243e-04 7.956946e+02 1.0000000 0.0000000 6 NA
#> error.message exec.time
#> 1 <NA> 0.034
#> 2 <NA> 0.033
#> 3 <NA> 0.033

133

http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/mlr/functions/TuneMultiCritControl.html

18 FEATURE SELECTION

#> 4 <NA> 0.034
#> 5 <NA> 0.032
#> 6 <NA> 0.032

The results can be visualized with function plotTuneMultiCritResult. The plot
shows the false positive and false negative rates for all parameter settings eval-
uated during tuning. Points on the Pareto front are slightly increased.
plotTuneMultiCritResult(res)

●●●●

●

●

●

●●●●●●● ●●●●●●●●●

●

●●●●● ●

●

●

●0.00

0.05

0.10

0.15

0.25 0.50 0.75 1.00
fpr

fn
r

18 Feature Selection

Often, data sets include a large number of features. The technique of extracting
a subset of relevant features is called feature selection. Feature selection can
enhance the interpretability of the model, speed up the learning process and

134

http://www.rdocumentation.org/packages/mlr/functions/plotTuneMultiCritResult.html

18.1 Filter methods 18 FEATURE SELECTION

improve the learner performance. There exist different approaches to identify
the relevant features. mlr supports filter and wrapper methods.

18.1 Filter methods

Filter methods assign an importance value to each feature. Based on these
values the features can be ranked and a feature subset can be selected.

18.1.1 Calculating the feature importance

Different methods for calculating the feature importance are built into mlr’s
function generateFilterValuesData (getFilterValues has been deprecated in favor
of generateFilterValuesData.). Currently, classification, regression and survival
analysis tasks are supported. A table showing all available methods can be
found here.

Function generateFilterValuesData requires the Task and a character string
specifying the filter method.

fv = generateFilterValuesData(iris.task, method = "information.gain")
fv
#> FilterValues:
#> Task: iris-example
#> name type information.gain
#> 1 Sepal.Length numeric 0.4521286
#> 2 Sepal.Width numeric 0.2672750
#> 3 Petal.Length numeric 0.9402853
#> 4 Petal.Width numeric 0.9554360

fv is a FilterValues object and fv$data contains a data.frame that gives the
importance values for all features. Optionally, a vector of filter methods can be
passed.

fv2 = generateFilterValuesData(iris.task, method =
c("information.gain", "chi.squared"))

fv2$data
#> name type information.gain chi.squared
#> 1 Sepal.Length numeric 0.4521286 0.6288067
#> 2 Sepal.Width numeric 0.2672750 0.4922162
#> 3 Petal.Length numeric 0.9402853 0.9346311
#> 4 Petal.Width numeric 0.9554360 0.9432359

A bar plot of importance values for the individual features can be obtained using
function plotFilterValues.

plotFilterValues(fv2)

135

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/mlr/functions/getFilterValues.html
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/FilterValues.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/plotFilterValues.html

18.1 Filter methods 18 FEATURE SELECTION

information.gain chi.squared

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

Pet
al.

W
idt

h

Pet
al.

Le
ng

th

Sep
al.

Le
ng

th

Sep
al.

W
idt

h

Pet
al.

W
idt

h

Pet
al.

Le
ng

th

Sep
al.

Le
ng

th

Sep
al.

W
idt

h

iris−example (4 features)

By default plotFilterValues will create facetted subplots if multiple filter meth-
ods are passed as input to generateFilterValuesData.

There is also an experimental ggvis plotting function, plotFilterValuesGGVIS.
This takes the same arguments as plotFilterValues and produces a shiny appli-
cation that allows the interactive selection of the displayed filter method, the
number of features selected, and the sorting method (e.g., ascending or descend-
ing).

plotFilterValuesGGVIS(fv2)

According to the "information.gain" measure, Petal.Width and Petal.Length
contain the most information about the target variable Species.

136

http://www.rdocumentation.org/packages/mlr/functions/plotFilterValues.html
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/mlr/functions/plotFilterValuesGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/plotFilterValues.html
http://www.rdocumentation.org/packages/shiny/

18.1 Filter methods 18 FEATURE SELECTION

18.1.2 Selecting a feature subset

With mlr’s function filterFeatures you can create a new Task by leaving out
features of lower importance.

There are several ways to select a feature subset based on feature importance
values:

• Keep a certain absolute number (abs) of features with highest importance.
• Keep a certain percentage (perc) of features with highest importance.
• Keep all features whose importance exceeds a certain threshold value

(threshold).

Function filterFeatures supports these three methods as shown in the following
example. Moreover, you can either specify the method for calculating the feature
importance or you can use previously computed importance values via argument
fval.
Keep the 2 most important features
filtered.task = filterFeatures(iris.task, method =

"information.gain", abs = 2)

Keep the 25% most important features
filtered.task = filterFeatures(iris.task, fval = fv, perc = 0.25)

Keep all features with importance greater than 0.5
filtered.task = filterFeatures(iris.task, fval = fv, threshold = 0.5)
filtered.task
#> Supervised task: iris-example
#> Type: classif
#> Target: Species
#> Observations: 150
#> Features:
#> numerics factors ordered
#> 2 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 3
#> setosa versicolor virginica
#> 50 50 50
#> Positive class: NA

18.1.3 Fuse a learner with a filter method

Often feature selection based on a filter method is part of the data preprocessing
and in a subsequent step a learning method is applied to the filtered data. In

137

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/filterFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/filterFeatures.html

18.1 Filter methods 18 FEATURE SELECTION

a proper experimental setup you might want to automate the selection of the
features so that it can be part of the validation method of your choice. A
Learner can be fused with a filter method by function makeFilterWrapper. The
resulting Learner has the additional class attribute FilterWrapper.

In the following example we calculate the 10-fold cross-validated error rate
(mmce) of the k nearest neighbor classifier with preceding feature selection on
the iris data set. We use "information.gain" as importance measure and se-
lect the 2 features with highest importance. In each resampling iteration feature
selection is carried out on the corresponding training data set before fitting the
learner.

lrn = makeFilterWrapper(learner = "classif.fnn", fw.method =
"information.gain", fw.abs = 2)

rdesc = makeResampleDesc("CV", iters = 10)
r = resample(learner = lrn, task = iris.task, resampling = rdesc,

show.info = FALSE, models = TRUE)
r$aggr
#> mmce.test.mean
#> 0.04

You may want to know which features have been used. Luckily, we have called
resample with the argument models = TRUE, which means that r$models con-
tains a list of models fitted in the individual resampling iterations. In order
to access the selected feature subsets we can call getFilteredFeatures on each
model.

sfeats = sapply(r$models, getFilteredFeatures)
table(sfeats)
#> sfeats
#> Petal.Length Petal.Width
#> 10 10

The selection of features seems to be very stable. The features Sepal.Length
and Sepal.Width did not make it into a single fold.

18.1.4 Tuning the size of the feature subset

In the above examples the number/percentage of features to select or the thresh-
old value have been arbitrarily chosen. If filtering is a preprocessing step before
applying a learning method optimal values with regard to the learner perfor-
mance can be found by tuning.

In the following regression example we consider the BostonHousing data set.
We use a linear regression model and determine the optimal percentage value
for feature selection such that the 3-fold cross-validated mean squared error of
the learner is minimal. As search strategy for tuning a grid search is used.

138

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilterWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/FilterWrapper.html
http://www.rdocumentation.org/packages/FNN/functions/fnn.html
http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/getFilteredFeatures.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/stats/functions/lm.html
http://www.rdocumentation.org/packages/mlr/functions/mse.html

18.1 Filter methods 18 FEATURE SELECTION

lrn = makeFilterWrapper(learner = "regr.lm", fw.method =
"chi.squared")

ps = makeParamSet(makeDiscreteParam("fw.perc", values = seq(0.2,
0.5, 0.05)))

rdesc = makeResampleDesc("CV", iters = 3)
res = tuneParams(lrn, task = bh.task, resampling = rdesc, par.set =

ps,
control = makeTuneControlGrid())

#> [Tune] Started tuning learner regr.lm.filtered for parameter set:
#> Type len Def Constr Req

Tunable Trafo
#> fw.perc discrete - - 0.2,0.25,0.3,0.35,0.4,0.45,0.5 -

TRUE -
#> With control class: TuneControlGrid
#> Imputation value: Inf
#> [Tune-x] 1: fw.perc=0.2
#> [Tune-y] 1: mse.test.mean=40.6; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune-x] 2: fw.perc=0.25
#> [Tune-y] 2: mse.test.mean=40.6; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune-x] 3: fw.perc=0.3
#> [Tune-y] 3: mse.test.mean=37.1; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune-x] 4: fw.perc=0.35
#> [Tune-y] 4: mse.test.mean=35.8; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune-x] 5: fw.perc=0.4
#> [Tune-y] 5: mse.test.mean=35.8; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune-x] 6: fw.perc=0.45
#> [Tune-y] 6: mse.test.mean=27.4; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune-x] 7: fw.perc=0.5
#> [Tune-y] 7: mse.test.mean=27.4; time: 0.0 min; memory: 149Mb use,

676Mb max
#> [Tune] Result: fw.perc=0.5 : mse.test.mean=27.4
res
#> Tune result:
#> Op. pars: fw.perc=0.5
#> mse.test.mean=27.4

The performance of all percentage values visited during tuning is:

as.data.frame(res$opt.path)
#> fw.perc mse.test.mean dob eol error.message exec.time

139

18.1 Filter methods 18 FEATURE SELECTION

#> 1 0.2 40.59578 1 NA <NA> 0.158
#> 2 0.25 40.59578 2 NA <NA> 0.138
#> 3 0.3 37.05592 3 NA <NA> 0.134
#> 4 0.35 35.83712 4 NA <NA> 0.136
#> 5 0.4 35.83712 5 NA <NA> 0.132
#> 6 0.45 27.39955 6 NA <NA> 0.131
#> 7 0.5 27.39955 7 NA <NA> 0.131

The optimal percentage and the corresponding performance can be accessed as
follows:

res$x
#> $fw.perc
#> [1] 0.5
res$y
#> mse.test.mean
#> 27.39955

After tuning we can generate a new wrapped learner with the optimal percentage
value for further use.

lrn = makeFilterWrapper(learner = "regr.lm", fw.method =
"chi.squared", fw.perc = resxfw.perc)

mod = train(lrn, bh.task)
mod
#> Model for learner.id=regr.lm.filtered; learner.class=FilterWrapper
#> Trained on: task.id = BostonHousing-example; obs = 506; features

= 13
#> Hyperparameters: fw.method=chi.squared,fw.perc=0.5

getFilteredFeatures(mod)
#> [1] "crim" "zn" "rm" "dis" "rad" "lstat"

Here is another example using multi-criteria tuning. We consider linear dis-
criminant analysis with precedent feature selection based on the Chi-squared
statistic of independence ("chi.squared") on the Sonar data set and tune the
threshold value. During tuning both, the false positive and the false negative
rate (fpr and fnr), are minimized. As search strategy we choose a random search
(see makeTuneMultiCritControlRandom).

lrn = makeFilterWrapper(learner = "classif.lda", fw.method =
"chi.squared")

ps = makeParamSet(makeNumericParam("fw.threshold", lower = 0.1,
upper = 0.9))

rdesc = makeResampleDesc("CV", iters = 10)
res = tuneParamsMultiCrit(lrn, task = sonar.task, resampling =

rdesc, par.set = ps,

140

http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/mlbench/functions/sonar.html
http://www.rdocumentation.org/packages/mlr/functions/TuneMultiCritControl.html

18.1 Filter methods 18 FEATURE SELECTION

measures = list(fpr, fnr), control =
makeTuneMultiCritControlRandom(maxit = 50L),

show.info = FALSE)
res
#> Tune multicrit result:
#> Points on front: 13
head(as.data.frame(res$opt.path))
#> fw.threshold fpr.test.mean fnr.test.mean dob eol error.message

exec.time
#> 1 0.4892321 0.3092818 0.2639033 1 NA <NA>

1.249
#> 2 0.2481696 0.2045499 0.2319697 2 NA <NA>

1.262
#> 3 0.7691875 0.5128000 0.3459740 3 NA <NA>

1.174
#> 4 0.1470133 0.2045499 0.2319697 4 NA <NA>

1.260
#> 5 0.5958241 0.5028216 0.5239538 5 NA <NA>

1.190
#> 6 0.6892421 0.6323959 0.4480808 6 NA <NA>

1.188

The results can be visualized with function plotTuneMultiCritResult. The plot
shows the false positive and false negative rates for all parameter values visited
during tuning. The size of the points on the Pareto front is slightly increased.

plotTuneMultiCritResult(res)

141

http://www.rdocumentation.org/packages/mlr/functions/plotTuneMultiCritResult.html

18.2 Wrapper methods 18 FEATURE SELECTION

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

0.3

0.4

0.5

0.2 0.3 0.4 0.5 0.6
fpr

fn
r

18.2 Wrapper methods

Wrapper methods use the performance of a learning algorithm to assess the
usefulness of a feature set. In order to select a feature subset a learner is trained
repeatedly on different feature subsets and the subset which leads to the best
learner performance is chosen.

In order to use the wrapper approach we have to decide:

• How to assess the performance: This involves choosing a performance mea-
sure that serves as feature selection criterion and a resampling strategy.

• Which learning method to use.
• How to search the space of possible feature subsets.

The search strategy is defined by functions following the naming convention
makeFeatSelControl<search_strategy. The following search strategies are

142

18.2 Wrapper methods 18 FEATURE SELECTION

available:

• Exhaustive search (makeFeatSelControlExhaustive),
• Genetic algorithm (makeFeatSelControlGA),
• Random search (makeFeatSelControlRandom),
• Deterministic forward or backward search (makeFeatSelControlSequen-

tial).

18.2.1 Select a feature subset

Feature selection can be conducted with function selectFeatures.

In the following example we perform an exhaustive search on the Wisconsin
Prognostic Breast Cancer data set. As learning method we use the Cox propor-
tional hazards model. The performance is assessed by the holdout estimate of
the concordance index (cindex).

Specify the search strategy
ctrl = makeFeatSelControlRandom(maxit = 20L)
ctrl
#> FeatSel control: FeatSelControlRandom
#> Same resampling instance: TRUE
#> Imputation value: <worst>
#> Max. features: <not used>
#> Max. iterations: 20
#> Tune threshold: FALSE
#> Further arguments: prob=0.5

ctrl is a FeatSelControl object that contains information about the search
strategy and potential parameter values.

Resample description
rdesc = makeResampleDesc("Holdout")

Select features
sfeats = selectFeatures(learner = "surv.coxph", task = wpbc.task,

resampling = rdesc,
control = ctrl, show.info = FALSE)

sfeats
#> FeatSel result:
#> Features (17): mean_radius, mean_area, mean_smoothness,

mean_concavepoints, mean_symmetry, mean_fractaldim, SE_texture,
SE_perimeter, SE_smoothness, SE_compactness, SE_concavity,
SE_concavepoints, worst_area, worst_compactness,
worst_concavepoints, tsize, pnodes

#> cindex.test.mean=0.714

143

http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/selectFeatures.html
http://www.rdocumentation.org/packages/TH.data/functions/wpbc.html
http://www.rdocumentation.org/packages/TH.data/functions/wpbc.html
http://www.rdocumentation.org/packages/survival/functions/coxph.html
http://www.rdocumentation.org/packages/survival/functions/coxph.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html

18.2 Wrapper methods 18 FEATURE SELECTION

sfeatsis a FeatSelResult object. The selected features and the corresponding
performance can be accessed as follows:

sfeats$x
#> [1] "mean_radius" "mean_area" "mean_smoothness"
#> [4] "mean_concavepoints" "mean_symmetry" "mean_fractaldim"
#> [7] "SE_texture" "SE_perimeter" "SE_smoothness"
#> [10] "SE_compactness" "SE_concavity"

"SE_concavepoints"
#> [13] "worst_area" "worst_compactness"

"worst_concavepoints"
#> [16] "tsize" "pnodes"
sfeats$y
#> cindex.test.mean
#> 0.713799

In a second example we fit a simple linear regression model to the BostonHous-
ing data set and use a sequential search to find a feature set that minimizes the
mean squared error (mse). method = "sfs" indicates that we want to conduct
a sequential forward search where features are added to the model until the
performance cannot be improved anymore. See the documentation page make-
FeatSelControlSequential for other available sequential search methods. The
search is stopped if the improvement is smaller than alpha = 0.02.

Specify the search strategy
ctrl = makeFeatSelControlSequential(method = "sfs", alpha = 0.02)

Select features
rdesc = makeResampleDesc("CV", iters = 10)
sfeats = selectFeatures(learner = "regr.lm", task = bh.task,

resampling = rdesc, control = ctrl,
show.info = FALSE)

sfeats
#> FeatSel result:
#> Features (11): crim, zn, chas, nox, rm, dis, rad, tax, ptratio,

b, lstat
#> mse.test.mean=23.7

Further information about the sequential feature selection process can be ob-
tained by function analyzeFeatSelResult.

analyzeFeatSelResult(sfeats)
#> Features : 11
#> Performance : mse.test.mean=23.7
#> crim, zn, chas, nox, rm, dis, rad, tax, ptratio, b, lstat
#>
#> Path to optimum:

144

http://www.rdocumentation.org/packages/mlr/functions/selectFeatures.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/analyzeFeatSelResult.html

18.2 Wrapper methods 18 FEATURE SELECTION

#> - Features: 0 Init : Perf = 84.831
Diff: NA *

#> - Features: 1 Add : lstat Perf = 38.894
Diff: 45.936 *

#> - Features: 2 Add : rm Perf = 31.279
Diff: 7.6156 *

#> - Features: 3 Add : ptratio Perf = 28.108
Diff: 3.1703 *

#> - Features: 4 Add : dis Perf = 27.48
Diff: 0.62813 *

#> - Features: 5 Add : nox Perf = 26.079
Diff: 1.4008 *

#> - Features: 6 Add : b Perf = 25.563
Diff: 0.51594 *

#> - Features: 7 Add : chas Perf = 25.132
Diff: 0.43097 *

#> - Features: 8 Add : zn Perf = 24.792
Diff: 0.34018 *

#> - Features: 9 Add : rad Perf = 24.599
Diff: 0.19327 *

#> - Features: 10 Add : tax Perf = 24.082
Diff: 0.51706 *

#> - Features: 11 Add : crim Perf = 23.732
Diff: 0.35 *

#>
#> Stopped, because no improving feature was found.

18.2.2 Fuse a learner with feature selection

A Learner can be fused with a feature selection strategy (i.e., a search strategy, a
performance measure and a resampling strategy) by function makeFeatSelWrap-
per. During training features are selected according to the specified selection
scheme. Then, the learner is trained on the selected feature subset.

rdesc = makeResampleDesc("CV", iters = 3)
lrn = makeFeatSelWrapper("surv.coxph", resampling = rdesc,
control = makeFeatSelControlRandom(maxit = 10), show.info = FALSE)

mod = train(lrn, task = wpbc.task)
mod
#> Model for learner.id=surv.coxph.featsel;

learner.class=FeatSelWrapper
#> Trained on: task.id = wpbc-example; obs = 194; features = 32
#> Hyperparameters:

The result of the feature selection can be extracted by function getFeatSelResult.

145

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeFeatSelWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeFeatSelWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/getFeatSelResult.html

18.2 Wrapper methods 18 FEATURE SELECTION

sfeats = getFeatSelResult(mod)
sfeats
#> FeatSel result:
#> Features (19): mean_radius, mean_texture, mean_perimeter,

mean_area, mean_smoothness, mean_compactness,
mean_concavepoints, mean_fractaldim, SE_compactness,
SE_concavity, SE_concavepoints, SE_symmetry, worst_texture,
worst_perimeter, worst_area, worst_concavepoints,
worst_symmetry, tsize, pnodes

#> cindex.test.mean=0.631

The selected features are:

sfeats$x
#> [1] "mean_radius" "mean_texture" "mean_perimeter"
#> [4] "mean_area" "mean_smoothness"

"mean_compactness"
#> [7] "mean_concavepoints" "mean_fractaldim" "SE_compactness"
#> [10] "SE_concavity" "SE_concavepoints" "SE_symmetry"
#> [13] "worst_texture" "worst_perimeter" "worst_area"
#> [16] "worst_concavepoints" "worst_symmetry" "tsize"
#> [19] "pnodes"

The 5-fold cross-validated performance of the learner specified above can be
computed as follows:

out.rdesc = makeResampleDesc("CV", iters = 5)

r = resample(learner = lrn, task = wpbc.task, resampling =
out.rdesc, models = TRUE,

show.info = FALSE)
r$aggr
#> cindex.test.mean
#> 0.632357

The selected feature sets in the individual resampling iterations can be extracted
as follows:

lapply(r$models, getFeatSelResult)
#> [[1]]
#> FeatSel result:
#> Features (18): mean_texture, mean_area, mean_smoothness,

mean_compactness, mean_concavity, mean_symmetry, SE_radius,
SE_compactness, SE_concavity, SE_concavepoints, SE_fractaldim,
worst_radius, worst_smoothness, worst_compactness,
worst_concavity, worst_symmetry, tsize, pnodes

#> cindex.test.mean=0.66

146

19 NESTED RESAMPLING

#>
#> [[2]]
#> FeatSel result:
#> Features (12): mean_area, mean_compactness, mean_symmetry,

mean_fractaldim, SE_perimeter, SE_area, SE_concavity,
SE_symmetry, worst_texture, worst_smoothness, worst_fractaldim,
tsize

#> cindex.test.mean=0.652
#>
#> [[3]]
#> FeatSel result:
#> Features (14): mean_compactness, mean_symmetry, mean_fractaldim,

SE_radius, SE_perimeter, SE_smoothness, SE_concavity,
SE_concavepoints, SE_fractaldim, worst_concavity,
worst_concavepoints, worst_symmetry, worst_fractaldim, pnodes

#> cindex.test.mean=0.607
#>
#> [[4]]
#> FeatSel result:
#> Features (18): mean_radius, mean_texture, mean_perimeter,

mean_compactness, mean_concavity, SE_texture, SE_area,
SE_smoothness, SE_concavity, SE_symmetry, SE_fractaldim,
worst_radius, worst_compactness, worst_concavepoints,
worst_symmetry, worst_fractaldim, tsize, pnodes

#> cindex.test.mean=0.653
#>
#> [[5]]
#> FeatSel result:
#> Features (14): mean_radius, mean_texture, mean_compactness,

mean_concavepoints, mean_symmetry, SE_texture, SE_compactness,
SE_symmetry, SE_fractaldim, worst_radius, worst_smoothness,
worst_compactness, worst_concavity, pnodes

#> cindex.test.mean=0.626

19 Nested Resampling

In order to obtain honest performance estimates for a learner all parts of the
model building like preprocessing and model selection steps should be included
in the resampling, i.e., repeated for every pair of training/test data. For steps
that themselves require resampling like parameter tuning or feature selection
(via the wrapper approach) this results in two nested resampling loops.

147

19 NESTED RESAMPLING

The graphic above illustrates nested resampling for parameter tuning with 3-fold
cross-validation in the outer and 4-fold cross-validation in the inner loop.

In the outer resampling loop, we have three pairs of training/test sets. On each
of these outer training sets parameter tuning is done, thereby executing the
inner resampling loop. This way, we get one set of selected hyperparameters
for each outer training set. Then the learner is fitted on each outer training
set using the corresponding selected hyperparameters and its performance is
evaluated on the outer test sets.

In mlr, you can get nested resampling for free without programming any looping
by using the wrapper functionality. This works as follows:

1. Generate a wrapped Learner via function makeTuneWrapper or makeFeat-
SelWrapper. Specify the inner resampling strategy using their resampling
argument.

2. Call function resample (see also the section about resampling) and pass
the outer resampling strategy to its resampling argument.

You can freely combine different inner and outer resampling strategies.

The outer strategy can be a resample description (ResampleDesc) or a resample
instance (ResampleInstance). A common setup is prediction and performance
evaluation on a fixed outer test set. This can be achieved by using function
makeFixedHoldoutInstance to generate the outer ResampleInstance.

The inner resampling strategy should preferably be a ResampleDesc, as the

148

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeTuneWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeFeatSelWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeFeatSelWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeFixedHoldoutInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html

19.1 Tuning 19 NESTED RESAMPLING

sizes of the outer training sets might differ. Per default, the inner resample
description is instantiated once for every outer training set. This way during
tuning/feature selection all parameter or feature sets are compared on the same
inner training/test sets to reduce variance. You can also turn this off using the
same.resampling.instance argument of makeTuneControl* or makeFeatSel-
Control*.

Nested resampling is computationally expensive. For this reason in the exam-
ples shown below we use relatively small search spaces and a low number of
resampling iterations. In practice, you normally have to increase both. As this
is computationally intensive you might want to have a look at section paral-
lelization.

19.1 Tuning

As you might recall from the tutorial page about tuning, you need to define a
search space by function makeParamSet, a search strategy by makeTuneCon-
trol*, and a method to evaluate hyperparameter settings (i.e., the inner resam-
pling strategy and a performance measure).

Below is a classification example. We evaluate the performance of a support
vector machine (ksvm) with tuned cost parameter C and RBF kernel parame-
ter sigma. We use 3-fold cross-validation in the outer and subsampling with 2
iterations in the inner loop. For tuning a grid search is used to find the hyperpa-
rameters with lowest error rate (mmce is the default measure for classification).
The wrapped Learner is generated by calling makeTuneWrapper.

Note that in practice the parameter set should be larger. A common recommen-
dation is 2^(-12:12) for both C and sigma.

Tuning in inner resampling loop
ps = makeParamSet(

makeDiscreteParam("C", values = 2^(-2:2)),
makeDiscreteParam("sigma", values = 2^(-2:2))

)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Subsample", iters = 2)
lrn = makeTuneWrapper("classif.ksvm", resampling = inner, par.set =

ps, control = ctrl, show.info = FALSE)

Outer resampling loop
outer = makeResampleDesc("CV", iters = 3)
r = resample(lrn, iris.task, resampling = outer, extract =

getTuneResult, show.info = FALSE)

r
#> Resample Result

149

http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/makeParamSet.html
http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/mlr/functions/TuneControl.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeTuneWrapper.html

19.1 Tuning 19 NESTED RESAMPLING

#> Task: iris-example
#> Learner: classif.ksvm.tuned
#> Aggr perf: mmce.test.mean=0.0533
#> Runtime: 17.7674

You can obtain the error rates on the 3 outer test sets by:

r$measures.test
#> iter mmce
#> 1 1 0.02
#> 2 2 0.06
#> 3 3 0.08

19.1.1 Accessing the tuning result

We have kept the results of the tuning for further evaluations. For example
one might want to find out, if the best obtained configurations vary for the
different outer splits. As storing entire models may be expensive (but possible
by setting models = TRUE) we used the extract option of resample. Function
getTuneResult returns, among other things, the optimal hyperparameter values
and the optimization path for each iteration of the outer resampling loop. Note
that the performance values shown when printing r$extract are the aggregated
performances resulting from inner resampling on the outer training set for the
best hyperparameter configurations (not to be confused with r$measures.test
shown above).

r$extract
#> [[1]]
#> Tune result:
#> Op. pars: C=2; sigma=0.25
#> mmce.test.mean=0.0147
#>
#> [[2]]
#> Tune result:
#> Op. pars: C=4; sigma=0.25
#> mmce.test.mean= 0
#>
#> [[3]]
#> Tune result:
#> Op. pars: C=4; sigma=0.25
#> mmce.test.mean=0.0735

names(r$extract[[1]])
#> [1] "learner" "control" "x" "y" "threshold"

"opt.path"

150

http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/getTuneResult.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/OptPath.html

19.1 Tuning 19 NESTED RESAMPLING

We can compare the optimal parameter settings obtained in the 3 resampling
iterations. As you can see, the optimal configuration usually depends on the
data. You may be able to identify a range of parameter settings that achieve
good performance though, e.g., the values for C should be at least 1 and the
values for sigma should be between 0 and 1.

With function getNestedTuneResultsOptPathDf you can extract the optimiza-
tion paths for the 3 outer cross-validation iterations for further inspection and
analysis. These are stacked in one data.frame with column iter indicating the
resampling iteration.

opt.paths = getNestedTuneResultsOptPathDf(r)
head(opt.paths, 10)
#> C sigma mmce.test.mean dob eol error.message exec.time iter
#> 1 0.25 0.25 0.05882353 1 NA <NA> 0.036 1
#> 2 0.5 0.25 0.04411765 2 NA <NA> 0.035 1
#> 3 1 0.25 0.04411765 3 NA <NA> 0.036 1
#> 4 2 0.25 0.01470588 4 NA <NA> 0.035 1
#> 5 4 0.25 0.05882353 5 NA <NA> 0.035 1
#> 6 0.25 0.5 0.05882353 6 NA <NA> 0.035 1
#> 7 0.5 0.5 0.01470588 7 NA <NA> 0.034 1
#> 8 1 0.5 0.02941176 8 NA <NA> 0.035 1
#> 9 2 0.5 0.01470588 9 NA <NA> 0.037 1
#> 10 4 0.5 0.05882353 10 NA <NA> 0.036 1

Below we visualize the opt.paths for the 3 outer resampling iterations.

g = ggplot(opt.paths, aes(x = C, y = sigma, fill = mmce.test.mean))
g + geom_tile() + facet_wrap(~ iter)

1 2 3

0.25

0.5

1

2

4

0.25 0.5 1 2 4 0.25 0.5 1 2 4 0.25 0.5 1 2 4
C

si
gm

a

0.0

0.1

0.2

0.3

0.4

mmce.test.mean

Another useful function is getNestedTuneResultsX, which extracts the best
found hyperparameter settings for each outer resampling iteration.

151

http://www.rdocumentation.org/packages/mlr/functions/getNestedTuneResultsOptPathDf.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/getNestedTuneResultsX.html

19.2 Feature selection 19 NESTED RESAMPLING

getNestedTuneResultsX(r)
#> C sigma
#> 1 2 0.25
#> 2 4 0.25
#> 3 4 0.25

19.2 Feature selection

As you might recall from the section about feature selection, mlr supports the
filter and the wrapper approach.

19.2.1 Wrapper methods

Wrapper methods use the performance of a learning algorithm to assess the
usefulness of a feature set. In order to select a feature subset a learner is trained
repeatedly on different feature subsets and the subset which leads to the best
learner performance is chosen.

For feature selection in the inner resampling loop, you need to choose a search
strategy (function makeFeatSelControl*), a performance measure and the inner
resampling strategy. Then use function makeFeatSelWrapper to bind everything
together.

Below we use sequential forward selection with linear regression on the Boston-
Housing data set (bh.task).

Feature selection in inner resampling loop
inner = makeResampleDesc("CV", iters = 3)
lrn = makeFeatSelWrapper("regr.lm", resampling = inner,
control = makeFeatSelControlSequential(method = "sfs"), show.info

= FALSE)

Outer resampling loop
outer = makeResampleDesc("Subsample", iters = 2)
r = resample(learner = lrn, task = bh.task, resampling = outer,

extract = getFeatSelResult,
show.info = FALSE)

r
#> Resample Result
#> Task: BostonHousing-example
#> Learner: regr.lm.featsel
#> Aggr perf: mse.test.mean=31.7
#> Runtime: 40.1335

152

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/FeatSelControl.html
http://www.rdocumentation.org/packages/mlr/functions/makeFeatSelWrapper.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlbench/functions/BostonHousing.html
http://www.rdocumentation.org/packages/mlr/functions/bh.task.html

19.2 Feature selection 19 NESTED RESAMPLING

r$measures.test
#> iter mse
#> 1 1 35.08611
#> 2 2 28.31215

19.2.1.1 Accessing the selected features

The result of the feature selection can be extracted by function getFeatSelResult.
It is also possible to keep whole models by setting models = TRUE when calling
resample.

r$extract
#> [[1]]
#> FeatSel result:
#> Features (10): crim, zn, indus, nox, rm, dis, rad, tax, ptratio,

lstat
#> mse.test.mean=20.2
#>
#> [[2]]
#> FeatSel result:
#> Features (9): zn, nox, rm, dis, rad, tax, ptratio, b, lstat
#> mse.test.mean=22.6

Selected features in the first outer resampling iteration
r$extract[[1]]$x
#> [1] "crim" "zn" "indus" "nox" "rm" "dis"

"rad"
#> [8] "tax" "ptratio" "lstat"

Resampled performance of the selected feature subset on the first
inner training set

r$extract[[1]]$y
#> mse.test.mean
#> 20.15939

As for tuning, you can extract the optimization paths. The resulting data.frames
contain, among others, binary columns for all features, indicating if they were
included in the linear regression model, and the corresponding performances.

opt.paths = lapply(r$extract, function(x) as.data.frame(x$opt.path))
head(opt.paths[[1]])
#> crim zn indus chas nox rm age dis rad tax ptratio b lstat

mse.test.mean
#> 1 0 0 0 0 0 0 0 0 0 0 0 0 0

80.33019

153

http://www.rdocumentation.org/packages/mlr/functions/getFeatSelResult.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html

19.2 Feature selection 19 NESTED RESAMPLING

#> 2 1 0 0 0 0 0 0 0 0 0 0 0 0
65.95316

#> 3 0 1 0 0 0 0 0 0 0 0 0 0 0
69.15417

#> 4 0 0 1 0 0 0 0 0 0 0 0 0 0
55.75473

#> 5 0 0 0 1 0 0 0 0 0 0 0 0 0
80.48765

#> 6 0 0 0 0 1 0 0 0 0 0 0 0 0
63.06724

#> dob eol error.message exec.time
#> 1 1 2 <NA> 0.017
#> 2 2 2 <NA> 0.028
#> 3 2 2 <NA> 0.027
#> 4 2 2 <NA> 0.027
#> 5 2 2 <NA> 0.032
#> 6 2 2 <NA> 0.029

An easy-to-read version of the optimization path for sequential feature selection
can be obtained with function analyzeFeatSelResult.

analyzeFeatSelResult(r$extract[[1]])
#> Features : 10
#> Performance : mse.test.mean=20.2
#> crim, zn, indus, nox, rm, dis, rad, tax, ptratio, lstat
#>
#> Path to optimum:
#> - Features: 0 Init : Perf = 80.33

Diff: NA *
#> - Features: 1 Add : lstat Perf = 36.451

Diff: 43.879 *
#> - Features: 2 Add : rm Perf = 27.289

Diff: 9.1623 *
#> - Features: 3 Add : ptratio Perf = 24.004

Diff: 3.2849 *
#> - Features: 4 Add : nox Perf = 23.513

Diff: 0.49082 *
#> - Features: 5 Add : dis Perf = 21.49

Diff: 2.023 *
#> - Features: 6 Add : crim Perf = 21.12

Diff: 0.37008 *
#> - Features: 7 Add : indus Perf = 20.82

Diff: 0.29994 *
#> - Features: 8 Add : rad Perf = 20.609

Diff: 0.21054 *
#> - Features: 9 Add : tax Perf = 20.209

154

http://www.rdocumentation.org/packages/mlr/functions/analyzeFeatSelResult.html

19.2 Feature selection 19 NESTED RESAMPLING

Diff: 0.40059 *
#> - Features: 10 Add : zn Perf = 20.159

Diff: 0.049441 *
#>
#> Stopped, because no improving feature was found.

19.2.2 Filter methods with tuning

Filter methods assign an importance value to each feature. Based on these values
you can select a feature subset by either keeping all features with importance
higher than a certain threshold or by keeping a fixed number or percentage of
the highest ranking features. Often, neither the theshold nor the number or
percentage of features is known in advance and thus tuning is necessary.

In the example below the threshold value (fw.threshold) is tuned in the inner
resampling loop. For this purpose the base Learner "regr.lm" is wrapped two
times. First, makeFilterWrapper is used to fuse linear regression with a feature
filtering preprocessing step. Then a tuning step is added by makeTuneWrapper.

Tuning of the percentage of selected filters in the inner loop
lrn = makeFilterWrapper(learner = "regr.lm", fw.method =

"chi.squared")
ps = makeParamSet(makeDiscreteParam("fw.threshold", values = seq(0,

1, 0.2)))
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("CV", iters = 3)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control

= ctrl, show.info = FALSE)

Outer resampling loop
outer = makeResampleDesc("CV", iters = 3)
r = resample(learner = lrn, task = bh.task, resampling = outer,

models = TRUE, show.info = FALSE)
r
#> Resample Result
#> Task: BostonHousing-example
#> Learner: regr.lm.filtered.tuned
#> Aggr perf: mse.test.mean=25.4
#> Runtime: 6.22154

19.2.2.1 Accessing the selected features and optimal percentage

In the above example we kept the complete models.

Below are some examples that show how to extract information from the models.

155

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilterWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeTuneWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html

19.2 Feature selection 19 NESTED RESAMPLING

r$models
#> [[1]]
#> Model for learner.id=regr.lm.filtered.tuned;

learner.class=TuneWrapper
#> Trained on: task.id = BostonHousing-example; obs = 337; features

= 13
#> Hyperparameters: fw.method=chi.squared
#>
#> [[2]]
#> Model for learner.id=regr.lm.filtered.tuned;

learner.class=TuneWrapper
#> Trained on: task.id = BostonHousing-example; obs = 338; features

= 13
#> Hyperparameters: fw.method=chi.squared
#>
#> [[3]]
#> Model for learner.id=regr.lm.filtered.tuned;

learner.class=TuneWrapper
#> Trained on: task.id = BostonHousing-example; obs = 337; features

= 13
#> Hyperparameters: fw.method=chi.squared

The result of the feature selection can be extracted by function getFilteredFea-
tures. Almost always all 13 features are selected.

lapply(r$models, function(x)
getFilteredFeatures(x$learner.model$next.model))

#> [[1]]
#> [1] "crim" "zn" "indus" "chas" "nox" "rm"

"age"
#> [8] "dis" "rad" "tax" "ptratio" "b" "lstat"
#>
#> [[2]]
#> [1] "crim" "zn" "indus" "nox" "rm" "age"

"dis"
#> [8] "rad" "tax" "ptratio" "b" "lstat"
#>
#> [[3]]
#> [1] "crim" "zn" "indus" "chas" "nox" "rm"

"age"
#> [8] "dis" "rad" "tax" "ptratio" "b" "lstat"

Below the tune results and optimization paths are accessed.

res = lapply(r$models, getTuneResult)
res
#> [[1]]

156

http://www.rdocumentation.org/packages/mlr/functions/getFilteredFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/getFilteredFeatures.html
http://www.rdocumentation.org/packages/mlr/functions/TuneResult.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/OptPath.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

#> Tune result:
#> Op. pars: fw.threshold=0
#> mse.test.mean=24.9
#>
#> [[2]]
#> Tune result:
#> Op. pars: fw.threshold=0.4
#> mse.test.mean=27.2
#>
#> [[3]]
#> Tune result:
#> Op. pars: fw.threshold=0
#> mse.test.mean=19.7

opt.paths = lapply(res, function(x) as.data.frame(x$opt.path))
opt.paths[[1]]
#> fw.threshold mse.test.mean dob eol error.message exec.time
#> 1 0 24.89160 1 NA <NA> 0.147
#> 2 0.2 25.18817 2 NA <NA> 0.140
#> 3 0.4 25.18817 3 NA <NA> 0.143
#> 4 0.6 32.15930 4 NA <NA> 0.138
#> 5 0.8 90.89848 5 NA <NA> 0.131
#> 6 1 90.89848 6 NA <NA> 0.130

19.3 Benchmark experiments

In a benchmark experiment multiple learners are compared on one or several
tasks (see also the section about benchmarking). Nested resampling in bench-
mark experiments is achieved the same way as in resampling:

• First, use makeTuneWrapper or makeFeatSelWrapper to generate
wrapped Learners with the inner resampling strategies of your choice.

• Second, call benchmark and specify the outer resampling strategies for all
tasks.

The inner resampling strategies should be resample descriptions. You can use
different inner resampling strategies for different wrapped learners. For example
it might be practical to do fewer subsampling or bootstrap iterations for slower
learners.

If you have larger benchmark experiments you might want to have a look at the
section about parallelization.

As mentioned in the section about benchmark experiments you can also use
different resampling strategies for different learning tasks by passing a list of
resampling descriptions or instances to benchmark.

157

http://www.rdocumentation.org/packages/mlr/functions/makeTuneWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeFeatSelWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

We will see three examples to show different benchmark settings:

1. Two data sets + two classification algorithms + tuning
2. One data set + two regression algorithms + feature selection
3. One data set + two regression algorithms + feature filtering + tuning

19.3.1 Example 1: Two tasks, two learners, tuning

Below is a benchmark experiment with two data sets, iris and sonar, and two
Learners, ksvm and kknn, that are both tuned.

As inner resampling strategies we use holdout for ksvm and subsampling with 3
iterations for kknn. As outer resampling strategies we take holdout for the iris
and bootstrap with 2 iterations for the sonar data (sonar.task). We consider
the accuracy (acc), which is used as tuning criterion, and also calculate the
balanced error rate (ber).

List of learning tasks
tasks = list(iris.task, sonar.task)

Tune svm in the inner resampling loop
ps = makeParamSet(

makeDiscreteParam("C", 2^(-1:1)),
makeDiscreteParam("sigma", 2^(-1:1)))

ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
lrn1 = makeTuneWrapper("classif.ksvm", resampling = inner, par.set =

ps, control = ctrl,
show.info = FALSE)

Tune k-nearest neighbor in inner resampling loop
ps = makeParamSet(makeDiscreteParam("k", 3:5))
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Subsample", iters = 3)
lrn2 = makeTuneWrapper("classif.kknn", resampling = inner, par.set =

ps, control = ctrl,
show.info = FALSE)

Learners
lrns = list(lrn1, lrn2)

Outer resampling loop
outer = list(makeResampleDesc("Holdout"),

makeResampleDesc("Bootstrap", iters = 2))
res = benchmark(lrns, tasks, outer, measures = list(acc, ber),

show.info = FALSE)

158

http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://www.rdocumentation.org/packages/mlbench/functions/sonar.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/kknn/functions/kknn.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/kknn/functions/kknn.html
http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://www.rdocumentation.org/packages/mlbench/functions/sonar.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

res
#> task.id learner.id acc.test.mean ber.test.mean
#> 1 iris-example classif.ksvm.tuned 0.9400000 0.05882353
#> 2 iris-example classif.kknn.tuned 0.9200000 0.08683473
#> 3 Sonar-example classif.ksvm.tuned 0.5289307 0.50000000
#> 4 Sonar-example classif.kknn.tuned 0.8077080 0.19549714

The print method for the BenchmarkResult shows the aggregated performances
from the outer resampling loop.

As you might recall, mlr offers several accessor function to extract information
from the benchmark result. These are listed on the help page of BenchmarkRe-
sult and many examples are shown on the tutorial page about benchmark ex-
periments.

The performance values in individual outer resampling runs can be obtained
by getBMRPerformances. Note that, since we used different outer resampling
strategies for the two tasks, the number of rows per task differ.

getBMRPerformances(res, as.df = TRUE)
#> task.id learner.id iter acc ber
#> 1 iris-example classif.ksvm.tuned 1 0.9400000 0.05882353
#> 2 iris-example classif.kknn.tuned 1 0.9200000 0.08683473
#> 3 Sonar-example classif.ksvm.tuned 1 0.5373134 0.50000000
#> 4 Sonar-example classif.ksvm.tuned 2 0.5205479 0.50000000
#> 5 Sonar-example classif.kknn.tuned 1 0.8208955 0.18234767
#> 6 Sonar-example classif.kknn.tuned 2 0.7945205 0.20864662

The results from the parameter tuning can be obtained through function getBM-
RTuneResults.

getBMRTuneResults(res)
#> $`iris-example`
#> $`iris-example`$classif.ksvm.tuned
#> $`iris-example`$classif.ksvm.tuned[[1]]
#> Tune result:
#> Op. pars: C=0.5; sigma=0.5
#> mmce.test.mean=0.0588
#>
#>
#> $`iris-example`$classif.kknn.tuned
#> $`iris-example`$classif.kknn.tuned[[1]]
#> Tune result:
#> Op. pars: k=3
#> mmce.test.mean=0.049
#>
#>
#>

159

http://www.rdocumentation.org/packages/base/functions/print.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRTuneResults.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRTuneResults.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

#> $`Sonar-example`
#> $`Sonar-example`$classif.ksvm.tuned
#> $`Sonar-example`$classif.ksvm.tuned[[1]]
#> Tune result:
#> Op. pars: C=1; sigma=2
#> mmce.test.mean=0.343
#>
#> $`Sonar-example`$classif.ksvm.tuned[[2]]
#> Tune result:
#> Op. pars: C=2; sigma=0.5
#> mmce.test.mean= 0.2
#>
#>
#> $`Sonar-example`$classif.kknn.tuned
#> $`Sonar-example`$classif.kknn.tuned[[1]]
#> Tune result:
#> Op. pars: k=4
#> mmce.test.mean=0.11
#>
#> $`Sonar-example`$classif.kknn.tuned[[2]]
#> Tune result:
#> Op. pars: k=3
#> mmce.test.mean=0.0667

As for several other accessor functions a clearer representation as data.frame
can be achieved by setting as.df = TRUE.

getBMRTuneResults(res, as.df = TRUE)
#> task.id learner.id iter C sigma mmce.test.mean

k
#> 1 iris-example classif.ksvm.tuned 1 0.5 0.5 0.05882353

NA
#> 2 iris-example classif.kknn.tuned 1 NA NA 0.04901961

3
#> 3 Sonar-example classif.ksvm.tuned 1 1.0 2.0 0.34285714

NA
#> 4 Sonar-example classif.ksvm.tuned 2 2.0 0.5 0.20000000

NA
#> 5 Sonar-example classif.kknn.tuned 1 NA NA 0.10952381

4
#> 6 Sonar-example classif.kknn.tuned 2 NA NA 0.06666667

3

It is also possible to extract the tuning results for individual tasks and learners
and, as shown in earlier examples, inspect the optimization path.

tune.res = getBMRTuneResults(res, task.ids = "Sonar-example",

160

http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/OptPath.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

learner.ids = "classif.ksvm.tuned",
as.df = TRUE)

tune.res
#> task.id learner.id iter C sigma mmce.test.mean
#> 1 Sonar-example classif.ksvm.tuned 1 1 2.0 0.3428571
#> 2 Sonar-example classif.ksvm.tuned 2 2 0.5 0.2000000

getNestedTuneResultsOptPathDf(res$results[["Sonar-example"]][["classif.ksvm.tuned"]])

19.3.2 Example 2: One task, two learners, feature selection

Let’s see how we can do feature selection in a benchmark experiment:
Feature selection in inner resampling loop
ctrl = makeFeatSelControlSequential(method = "sfs")
inner = makeResampleDesc("Subsample", iters = 2)
lrn = makeFeatSelWrapper("regr.lm", resampling = inner, control =

ctrl, show.info = FALSE)

Learners
lrns = list(makeLearner("regr.rpart"), lrn)

Outer resampling loop
outer = makeResampleDesc("Subsample", iters = 2)
res = benchmark(tasks = bh.task, learners = lrns, resampling =

outer, show.info = FALSE)

res
#> task.id learner.id mse.test.mean
#> 1 BostonHousing-example regr.rpart 25.86232
#> 2 BostonHousing-example regr.lm.featsel 25.07465

The selected features can be extracted by function getBMRFeatSelResults.
getBMRFeatSelResults(res)
#> $`BostonHousing-example`
#> $`BostonHousing-example`$regr.rpart
#> NULL
#>
#> $`BostonHousing-example`$regr.lm.featsel
#> $`BostonHousing-example`$regr.lm.featsel[[1]]
#> FeatSel result:
#> Features (8): crim, zn, chas, nox, rm, dis, ptratio, lstat
#> mse.test.mean=26.7
#>
#> $`BostonHousing-example`$regr.lm.featsel[[2]]

161

http://www.rdocumentation.org/packages/mlr/functions/getBMRFeatSelResults.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

#> FeatSel result:
#> Features (10): crim, zn, nox, rm, dis, rad, tax, ptratio, b, lstat
#> mse.test.mean=24.3

You can access results for individual learners and tasks and inspect them further.

feats = getBMRFeatSelResults(res, learner.id = "regr.lm.featsel")
feats = feats$`BostonHousing-example`$`regr.lm.featsel`

Selected features in the first outer resampling iteration
feats[[1]]$x
#> [1] "crim" "zn" "chas" "nox" "rm" "dis"

"ptratio"
#> [8] "lstat"

Resampled performance of the selected feature subset on the first
inner training set

feats[[1]]$y
#> mse.test.mean
#> 26.72574

As for tuning, you can extract the optimization paths. The resulting data.frames
contain, among others, binary columns for all features, indicating if they were
included in the linear regression model, and the corresponding performances.
analyzeFeatSelResult gives a clearer overview.

opt.paths = lapply(feats, function(x) as.data.frame(x$opt.path))
head(opt.paths[[1]])
#> crim zn indus chas nox rm age dis rad tax ptratio b lstat

mse.test.mean
#> 1 0 0 0 0 0 0 0 0 0 0 0 0 0

90.16159
#> 2 1 0 0 0 0 0 0 0 0 0 0 0 0

82.85880
#> 3 0 1 0 0 0 0 0 0 0 0 0 0 0

79.55202
#> 4 0 0 1 0 0 0 0 0 0 0 0 0 0

70.02071
#> 5 0 0 0 1 0 0 0 0 0 0 0 0 0

86.93409
#> 6 0 0 0 0 1 0 0 0 0 0 0 0 0

76.32457
#> dob eol error.message exec.time
#> 1 1 2 <NA> 0.014
#> 2 2 2 <NA> 0.020
#> 3 2 2 <NA> 0.020
#> 4 2 2 <NA> 0.020

162

http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/analyzeFeatSelResult.html

19.3 Benchmark experiments 19 NESTED RESAMPLING

#> 5 2 2 <NA> 0.022
#> 6 2 2 <NA> 0.020

analyzeFeatSelResult(feats[[1]])
#> Features : 8
#> Performance : mse.test.mean=26.7
#> crim, zn, chas, nox, rm, dis, ptratio, lstat
#>
#> Path to optimum:
#> - Features: 0 Init : Perf = 90.162

Diff: NA *
#> - Features: 1 Add : lstat Perf = 42.646

Diff: 47.515 *
#> - Features: 2 Add : ptratio Perf = 34.52

Diff: 8.1263 *
#> - Features: 3 Add : rm Perf = 30.454

Diff: 4.066 *
#> - Features: 4 Add : dis Perf = 29.405

Diff: 1.0495 *
#> - Features: 5 Add : nox Perf = 28.059

Diff: 1.3454 *
#> - Features: 6 Add : chas Perf = 27.334

Diff: 0.72499 *
#> - Features: 7 Add : zn Perf = 26.901

Diff: 0.43296 *
#> - Features: 8 Add : crim Perf = 26.726

Diff: 0.17558 *
#>
#> Stopped, because no improving feature was found.

19.3.3 Example 3: One task, two learners, feature filtering with tun-
ing

Here is a minimal example for feature filtering with tuning of the feature subset
size.

Feature filtering with tuning in the inner resampling loop
lrn = makeFilterWrapper(learner = "regr.lm", fw.method =

"chi.squared")
ps = makeParamSet(makeDiscreteParam("fw.abs", values =

seq_len(getTaskNFeats(bh.task))))
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("CV", iter = 2)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control

= ctrl,

163

20 COST-SENSITIVE CLASSIFICATION

show.info = FALSE)

Learners
lrns = list(makeLearner("regr.rpart"), lrn)

Outer resampling loop
outer = makeResampleDesc("Subsample", iter = 3)
res = benchmark(tasks = bh.task, learners = lrns, resampling =

outer, show.info = FALSE)

res
#> task.id learner.id mse.test.mean
#> 1 BostonHousing-example regr.rpart 22.11687
#> 2 BostonHousing-example regr.lm.filtered.tuned 23.76666

Performances on individual outer test data sets
getBMRPerformances(res, as.df = TRUE)
#> task.id learner.id iter mse
#> 1 BostonHousing-example regr.rpart 1 23.55486
#> 2 BostonHousing-example regr.rpart 2 20.03453
#> 3 BostonHousing-example regr.rpart 3 22.76121
#> 4 BostonHousing-example regr.lm.filtered.tuned 1 27.51086
#> 5 BostonHousing-example regr.lm.filtered.tuned 2 24.87820
#> 6 BostonHousing-example regr.lm.filtered.tuned 3 18.91091

20 Cost-Sensitive Classification

In regular classification the aim is to minimize the misclassification rate and
thus all types of misclassification errors are deemed equally severe. A more
general setting is cost-sensitive classification where the costs caused by different
kinds of errors are not assumed to be equal and the objective is to minimize the
expected costs.

In case of class-dependent costs the costs depend on the true and predicted class
label. The costs c(k, l) for predicting class k if the true label is l are usually
organized into a K ×K cost matrix where K is the number of classes. Naturally,
it is assumed that the cost of predicting the correct class label y is minimal (that
is c(y, y) ≤ c(k, y) for all k = 1, . . . , K).

A further generalization of this scenario are example-dependent misclassifica-
tion costs where each example (x, y) is coupled with an individual cost vector
of length K. Its k-th component expresses the cost of assigning x to class k. A
real-world example is fraud detection where the costs do not only depend on the
true and predicted status fraud/non-fraud, but also on the amount of money
involved in each case. Naturally, the cost of predicting the true class label y

164

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

is assumed to be minimum. The true class labels are redundant information,
as they can be easily inferred from the cost vectors. Moreover, given the cost
vector, the expected costs do not depend on the true class label y. The classifi-
cation problem is therefore completely defined by the feature values x and the
corresponding cost vectors.

In the following we show ways to handle cost-sensitive classification problems
in mlr. Some of the functionality is currently experimental, and there may be
changes in the future.

20.1 Class-dependent misclassification costs

There are some classification methods that can accomodate misclassification
costs directly. One example is rpart.

Alternatively, we can use cost-insensitive methods and manipulate the predic-
tions or the training data in order to take misclassification costs into account.
mlr supports thresholding and rebalancing.

1. Thresholding: The thresholds used to turn posterior probabilities into
class labels are chosen such that the costs are minimized. This requires a
Learner that can predict posterior probabilities. During training the costs
are not taken into account.

2. Rebalancing: The idea is to change the proportion of the classes in the
training data set in order to account for costs during training, either by
weighting or by sampling. Rebalancing does not require that the Learner
can predict probabilities.

i. For weighting we need a Learner that supports class weights or ob-
servation weights.

ii. If the Learner cannot deal with weights the proportion of classes can
be changed by over- and undersampling.

We start with binary classification problems and afterwards deal with multi-class
problems.

20.1.1 Binary classification problems

The positive and negative classes are labeled 1 and −1, respectively, and we
consider the following cost matrix where the rows indicate true classes and the
columns predicted classes:

true/pred. +1 −1
+1 c(+1, +1) c(−1, +1)
−1 c(+1, −1) c(−1, −1)

165

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/rpart/functions/rpart.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

Often, the diagonal entries are zero or the cost matrix is rescaled to achieve
zeros in the diagonal (see for example O’Brien et al, 2008).

A well-known cost-sensitive classification problem is posed by the German Credit
data set (see also the UCI Machine Learning Repository). The corresponding
cost matrix (though Elkan (2001) argues that this matrix is economically un-
reasonable) is given as:

true/pred. Bad Good
Bad 0 5
Good 1 0

As in the table above, the rows indicate true and the columns predicted classes.

In case of class-dependent costs it is sufficient to generate an ordinary Classif-
Task. A CostSensTask is only needed if the costs are example-dependent. In
the R code below we create the ClassifTask, remove two constant features from
the data set and generate the cost matrix. Per default, Bad is the positive class.
data(GermanCredit, package = "caret")
credit.task = makeClassifTask(data = GermanCredit, target = "Class")
credit.task = removeConstantFeatures(credit.task)
#> Removing 2 columns: Purpose.Vacation,Personal.Female.Single

credit.task
#> Supervised task: GermanCredit
#> Type: classif
#> Target: Class
#> Observations: 1000
#> Features:
#> numerics factors ordered
#> 59 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 2
#> Bad Good
#> 300 700
#> Positive class: Bad

costs = matrix(c(0, 1, 5, 0), 2)
colnames(costs) = rownames(costs) = getTaskClassLevels(credit.task)
costs
#> Bad Good
#> Bad 0 5
#> Good 1 0

166

http://machinelearning.org/archive/icml2008/papers/150.pdf
http://www.rdocumentation.org/packages/caret/functions/GermanCredit.html
http://www.rdocumentation.org/packages/caret/functions/GermanCredit.html
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://www.cs.iastate.edu/~honavar/elkan.pdf
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

20.1.1.1 1. Thresholding

We start by fitting a logistic regression model to the German credit data set
and predict posterior probabilities.

Train and predict posterior probabilities
lrn = makeLearner("classif.multinom", predict.type = "prob", trace =

FALSE)
mod = train(lrn, credit.task)
pred = predict(mod, task = credit.task)
pred
#> Prediction: 1000 observations
#> predict.type: prob
#> threshold: Bad=0.50,Good=0.50
#> time: 0.01
#> id truth prob.Bad prob.Good response
#> 1 1 Good 0.03525092 0.9647491 Good
#> 2 2 Bad 0.63222363 0.3677764 Bad
#> 3 3 Good 0.02807414 0.9719259 Good
#> 4 4 Good 0.25182703 0.7481730 Good
#> 5 5 Bad 0.75193275 0.2480673 Bad
#> 6 6 Good 0.26230149 0.7376985 Good
#> ... (1000 rows, 5 cols)

The default thresholds for both classes are 0.5. But according to the cost matrix
we should predict class Good only if we are very sure that Good is indeed the
correct label. Therefore we should increase the threshold for class Good and
decrease the threshold for class Bad.

20.1.1.1.1 i. Theoretical thresholding

The theoretical threshold for the positive class can be calculated from the cost
matrix as

t∗ = c(+1, −1) − c(−1, −1)
c(+1, −1) − c(+1, +1) + c(−1, +1) − c(−1, −1)

.

For more details see Elkan (2001).

Below the theoretical threshold for the German credit example is calculated and
used to predict class labels. Since the diagonal of the cost matrix is zero the
formula given above simplifies accordingly.

Calculate the theoretical threshold for the positive class
th = costs[2,1]/(costs[2,1] + costs[1,2])
th
#> [1] 0.1666667

167

http://www.rdocumentation.org/packages/nnet/functions/multinom.html
http://www.rdocumentation.org/packages/caret/functions/GermanCredit.html
http://www.cs.iastate.edu/~honavar/elkan.pdf
http://www.rdocumentation.org/packages/caret/functions/GermanCredit.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

As you may recall you can change thresholds in mlr either before training by
using the predict.threshold option of makeLearner or after prediction by
calling setThreshold on the Prediction object.

As we already have a prediction we use the setThreshold function. It returns
an altered Prediction object with class predictions for the theoretical threshold.

Predict class labels according to the theoretical threshold
pred.th = setThreshold(pred, th)
pred.th
#> Prediction: 1000 observations
#> predict.type: prob
#> threshold: Bad=0.17,Good=0.83
#> time: 0.01
#> id truth prob.Bad prob.Good response
#> 1 1 Good 0.03525092 0.9647491 Good
#> 2 2 Bad 0.63222363 0.3677764 Bad
#> 3 3 Good 0.02807414 0.9719259 Good
#> 4 4 Good 0.25182703 0.7481730 Bad
#> 5 5 Bad 0.75193275 0.2480673 Bad
#> 6 6 Good 0.26230149 0.7376985 Bad
#> ... (1000 rows, 5 cols)

In order to calculate the average costs over the entire data set we first need
to create a new performance Measure. This can be done through function
makeCostMeasure. It is expected that the rows of the cost matrix indicate true
and the columns predicted class labels.

credit.costs = makeCostMeasure(id = "credit.costs", name = "Credit
costs", costs = costs,

best = 0, worst = 5)
credit.costs
#> Name: Credit costs
#> Performance measure: credit.costs
#> Properties:

classif,classif.multi,req.pred,req.truth,predtype.response,predtype.prob
#> Minimize: TRUE
#> Best: 0; Worst: 5
#> Aggregated by: test.mean
#> Note:

Then the average costs can be computed by function performance. Below we
compare the average costs and the error rate (mmce) of the learning algorithm
with both default thresholds 0.5 and theoretical thresholds.

Performance with default thresholds 0.5
performance(pred, measures = list(credit.costs, mmce))
#> credit.costs mmce

168

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/setThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/setThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/performance.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

#> 0.774 0.214

Performance with theoretical thresholds
performance(pred.th, measures = list(credit.costs, mmce))
#> credit.costs mmce
#> 0.478 0.346

These performance values may be overly optimistic as we used the same data set
for training and prediction, and resampling strategies should be preferred. In the
R code below we make use of the predict.threshold argument of makeLearner
to set the threshold before doing a 3-fold cross-validation on the credit.task.
Note that we create a ResampleInstance (rin) that is used throughout the next
several code chunks to get comparable performance values.

Cross-validated performance with theoretical thresholds
rin = makeResampleInstance("CV", iters = 3, task = credit.task)
lrn = makeLearner("classif.multinom", predict.type = "prob",

predict.threshold = th, trace = FALSE)
r = resample(lrn, credit.task, resampling = rin, measures =

list(credit.costs, mmce), show.info = FALSE)
r
#> Resample Result
#> Task: GermanCredit
#> Learner: classif.multinom
#> Aggr perf: credit.costs.test.mean=0.558,mmce.test.mean=0.362
#> Runtime: 0.164721

If we are also interested in the cross-validated performance for the default thresh-
old values we can call setThreshold on the resample prediction r$pred.

Cross-validated performance with default thresholds
performance(setThreshold(r$pred, 0.5), measures = list(credit.costs,

mmce))
#> credit.costs mmce
#> 0.8521695 0.2480205

Theoretical thresholding is only reliable if the predicted posterior probabilities
are correct. If there is bias the thresholds have to be shifted accordingly.

Useful in this regard is function plotThreshVsPerf that you can use to plot
the average costs as well as any other performance measure versus possible
threshold values for the positive class in [0, 1]. The underlying data is generated
by generateThreshVsPerfData.

The following plots show the cross-validated costs and error rate (mmce). The
theoretical threshold th calculated above is indicated by the vertical line. As
you can see from the left-hand plot the theoretical threshold seems a bit large.

169

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/credit.task.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/setThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/ResamplePrediction.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

d = generateThreshVsPerfData(r, measures = list(credit.costs, mmce))
plotThreshVsPerf(d, mark.th = th)

Credit costs Mean misclassification error

0.50

0.75

1.00

1.25

1.50

0.3

0.4

0.5

0.6

0.7

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
threshold

pe
rf

or
m

an
ce

20.1.1.1.2 ii. Empirical thresholding

The idea of empirical thresholding (see Sheng and Ling, 2006) is to select cost-
optimal threshold values for a given learning method based on the training
data. In contrast to theoretical thresholding it suffices if the estimated posterior
probabilities are order-correct.

In order to determine optimal threshold values you can use mlr’s function
tuneThreshold. As tuning the threshold on the complete training data set can
lead to overfitting, you should use resampling strategies. Below we perform 3-
fold cross-validation and use tuneThreshold to calculate threshold values with
lowest average costs over the 3 test data sets.

lrn = makeLearner("classif.multinom", predict.type = "prob", trace =
FALSE)

3-fold cross-validation
r = resample(lrn, credit.task, resampling = rin, measures =

list(credit.costs, mmce), show.info = FALSE)
r
#> Resample Result
#> Task: GermanCredit
#> Learner: classif.multinom
#> Aggr perf: credit.costs.test.mean=0.852,mmce.test.mean=0.248
#> Runtime: 0.175549

Tune the threshold based on the predicted probabilities on the 3
test data sets

170

http://sun0.cs.uca.edu/~ssheng/papers/AAAI06a.pdf
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/tuneThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/tuneThreshold.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

tune.res = tuneThreshold(pred = r$pred, measure = credit.costs)
tune.res
#> $th
#> [1] 0.1115426
#>
#> $perf
#> credit.costs
#> 0.507004

tuneThreshold returns the optimal threshold value for the positive class and the
corresponding performance. As expected the tuned threshold is smaller than
the theoretical threshold.

20.1.1.2 2. Rebalancing

In order to minimize the average costs, observations from the less costly class
should be given higher importance during training. This can be achieved by
weighting the classes, provided that the learner under consideration has a ‘class
weights’ or an ‘observation weights’ argument. To find out which learning meth-
ods support either type of weights have a look at the list of integrated learners
in the Appendix or use listLearners.

Learners that accept observation weights
listLearners("classif", properties = "weights")[c("class",

"package")]
#> class package
#> 1 classif.avNNet nnet
#> 2 classif.binomial stats
#> 3 classif.blackboost mboost,party
#> 4 classif.C50 C50
#> 5 classif.cforest party
#> 6 classif.ctree party
#> 7 classif.cvglmnet glmnet
#> 8 classif.extraTrees extraTrees
#> 9 classif.gbm gbm
#> 10 classif.glmboost mboost
#> 11 classif.glmnet glmnet
#> 12 classif.h2o.deeplearning h2o
#> 13 classif.h2o.glm h2o
#> 14 classif.logreg stats
#> 15 classif.multinom nnet
#> 16 classif.nnet nnet
#> 17 classif.plr stepPlr
#> 18 classif.probit stats
#> 19 classif.randomForestSRC randomForestSRC
#> 20 classif.randomForestSRCSyn randomForestSRC

171

http://www.rdocumentation.org/packages/mlr/functions/tuneThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/listLearners.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

#> 21 classif.rpart rpart
#> 22 classif.xgboost xgboost

Learners that can deal with class weights
listLearners("classif", properties = "class.weights")[c("class",

"package")]
#> class package
#> 1 classif.ksvm kernlab
#> 2 classif.LiblineaRL1L2SVC LiblineaR
#> 3 classif.LiblineaRL1LogReg LiblineaR
#> 4 classif.LiblineaRL2L1SVC LiblineaR
#> 5 classif.LiblineaRL2LogReg LiblineaR
#> 6 classif.LiblineaRL2SVC LiblineaR
#> 7 classif.LiblineaRMultiClassSVC LiblineaR
#> 8 classif.randomForest randomForest
#> 9 classif.svm e1071

Alternatively, over- and undersampling techniques can be used.

20.1.1.2.1 i. Weighting

Just as theoretical thresholds, theoretical weights can be calculated from the cost
matrix. If t indicates the target threshold and t0 the original threshold for
the positive class the proportion of observations in the positive class has to be
multiplied by

1 − t

t

t0

1 − t0
.

Alternatively, the proportion of observations in the negative class can be multi-
plied by the inverse. A proof is given by Elkan (2001).

In most cases, the original threshold is t0 = 0.5 and thus the second factor
vanishes. If additionally the target threshold t equals the theoretical threshold
t∗ the proportion of observations in the positive class has to be multiplied by

1 − t∗

t∗ = c(−1, +1) − c(+1, +1)
c(+1, −1) − c(−1, −1)

.

For the credit example the theoretical threshold corresponds to a weight of 5
for the positive class.
Weight for positive class corresponding to theoretical treshold
w = (1 - th)/th
w
#> [1] 5

A unified and convenient way to assign class weights to a Learner (and tune
them) is provided by function makeWeightedClassesWrapper. The class weights

172

http://www.cs.iastate.edu/~honavar/elkan.pdf
&caret:GermanCredit
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeWeightedClassesWrapper.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

are specified using argument wcw.weight. For learners that support observation
weights a suitable weight vector is then generated internally during training or
resampling. If the learner can deal with class weights, the weights are basically
passed on to the appropriate learner parameter. The advantage of using the
wrapper in this case is the unified way to specify the class weights.

Below is an example using learner "classif.multinom" (multinom from pack-
age nnet) which accepts observation weights. For binary classification problems
it is sufficient to specify the weight w for the positive class. The negative class
then automatically receives weight 1.

Weighted learner
lrn = makeLearner("classif.multinom", trace = FALSE)
lrn = makeWeightedClassesWrapper(lrn, wcw.weight = w)
lrn
#> Learner weightedclasses.classif.multinom from package nnet
#> Type: classif
#> Name: ; Short name:
#> Class: WeightedClassesWrapper
#> Properties: twoclass,multiclass,numerics,factors,prob
#> Predict-Type: response
#> Hyperparameters: trace=FALSE,wcw.weight=5

r = resample(lrn, credit.task, rin, measures = list(credit.costs,
mmce), show.info = FALSE)

r
#> Resample Result
#> Task: GermanCredit
#> Learner: weightedclasses.classif.multinom
#> Aggr perf: credit.costs.test.mean=0.526,mmce.test.mean=0.346
#> Runtime: 0.198366

For classification methods like "classif.ksvm" (the support vector machine
ksvm in package kernlab) that support class weights you can pass them directly.

lrn = makeLearner("classif.ksvm", class.weights = c(Bad = w, Good =
1))

Or, more conveniently, you can again use makeWeightedClassesWrapper.

lrn = makeWeightedClassesWrapper("classif.ksvm", wcw.weight = w)
r = resample(lrn, credit.task, rin, measures = list(credit.costs,

mmce), show.info = FALSE)
r
#> Resample Result
#> Task: GermanCredit
#> Learner: weightedclasses.classif.ksvm
#> Aggr perf: credit.costs.test.mean=0.575,mmce.test.mean=0.311

173

http://www.rdocumentation.org/packages/nnet/functions/multinom.html
http://www.rdocumentation.org/packages/nnet/
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/kernlab/
http://www.rdocumentation.org/packages/mlr/functions/makeWeightedClassesWrapper.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

#> Runtime: 0.256971

Just like the theoretical threshold, the theoretical weights may not always be
suitable, therefore you can tune the weight for the positive class as shown in
the following example. Calculating the theoretical weight beforehand may help
to narrow down the search interval.

lrn = makeLearner("classif.multinom", trace = FALSE)
lrn = makeWeightedClassesWrapper(lrn)
ps = makeParamSet(makeDiscreteParam("wcw.weight", seq(4, 12, 0.5)))
ctrl = makeTuneControlGrid()
tune.res = tuneParams(lrn, credit.task, resampling = rin, par.set =

ps,
measures = list(credit.costs, mmce), control = ctrl, show.info =

FALSE)
tune.res
#> Tune result:
#> Op. pars: wcw.weight=7.5
#> credit.costs.test.mean=0.501,mmce.test.mean=0.381

as.data.frame(tune.res$opt.path)[1:3]
#> wcw.weight credit.costs.test.mean mmce.test.mean
#> 1 4 0.5650291 0.3330127
#> 2 4.5 0.5550251 0.3430167
#> 3 5 0.5260320 0.3460197
#> 4 5.5 0.5130070 0.3530147
#> 5 6 0.5160100 0.3640137
#> 6 6.5 0.5160160 0.3720157
#> 7 7 0.5040250 0.3760167
#> 8 7.5 0.5010040 0.3810038
#> 9 8 0.5100130 0.3900128
#> 10 8.5 0.5100070 0.3940108
#> 11 9 0.5110080 0.4030078
#> 12 9.5 0.5160130 0.4080128
#> 13 10 0.5260140 0.4180138
#> 14 10.5 0.5240060 0.4200098
#> 15 11 0.5319991 0.4280029
#> 16 11.5 0.5289901 0.4330019
#> 17 12 0.5249801 0.4369999

20.1.1.2.2 ii. Over- and undersampling

If the Learner supports neither observation nor class weights the proportions of
the classes in the training data can be changed by over- or undersampling.

In the GermanCredit data set the positive class Bad should receive a theoretical

174

http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/caret/functions/GermanCredit.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

weight of w = (1 - th)/th = 5. This can be achieved by oversampling class
Bad with a rate of 5 or by undersampling class Good with a rate of 1/5 (using
functions oversample or undersample).

credit.task.over = oversample(credit.task, rate = w, cl = "Bad")
lrn = makeLearner("classif.multinom", trace = FALSE)
mod = train(lrn, credit.task.over)
pred = predict(mod, task = credit.task)
performance(pred, measures = list(credit.costs, mmce))
#> credit.costs mmce
#> 0.439 0.323

Note that in the above example the learner was trained on the oversampled task
credit.task.over. In order to get the training performance on the original
task predictions were calculated for credit.task.

We usually prefer resampled performance values, but simply calling resample
on the oversampled task does not work since predictions have to be based on
the original task. The solution is to create a wrapped Learner via function
makeOversampleWrapper. Internally, oversample is called before training, but
predictions are done on the original data.

lrn = makeLearner("classif.multinom", trace = FALSE)
lrn = makeOversampleWrapper(lrn, osw.rate = w, osw.cl = "Bad")
lrn
#> Learner classif.multinom.oversampled from package mlr,nnet
#> Type: classif
#> Name: ; Short name:
#> Class: OversampleWrapper
#> Properties: numerics,factors,weights,prob,twoclass,multiclass
#> Predict-Type: response
#> Hyperparameters: trace=FALSE,osw.rate=5,osw.cl=Bad

r = resample(lrn, credit.task, rin, measures = list(credit.costs,
mmce), show.info = FALSE)

r
#> Resample Result
#> Task: GermanCredit
#> Learner: classif.multinom.oversampled
#> Aggr perf: credit.costs.test.mean=0.535,mmce.test.mean=0.351
#> Runtime: 0.334281

Of course, we can also tune the oversampling rate. For this purpose we again
have to create an OversampleWrapper. Optimal values for parameter osw.rate
can be obtained using function tuneParams.

lrn = makeLearner("classif.multinom", trace = FALSE)
lrn = makeOversampleWrapper(lrn, osw.cl = "Bad")

175

http://www.rdocumentation.org/packages/mlr/functions/oversample.html
http://www.rdocumentation.org/packages/mlr/functions/oversample.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeUndersampleWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/oversample.html
http://www.rdocumentation.org/packages/mlr/functions/makeUndersampleWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/tuneParams.html

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

ps = makeParamSet(makeDiscreteParam("osw.rate", seq(3, 7, 0.25)))
ctrl = makeTuneControlGrid()
tune.res = tuneParams(lrn, credit.task, rin, par.set = ps, measures

= list(credit.costs, mmce),
control = ctrl, show.info = FALSE)

tune.res
#> Tune result:
#> Op. pars: osw.rate=6.25
#> credit.costs.test.mean=0.507,mmce.test.mean=0.355

20.1.2 Multi-class problems

We consider the waveform data set from package mlbench and add an artificial
cost matrix:

true/pred. 1 2 3
1 0 30 80
2 5 0 4
3 10 8 0

We start by creating the Task, the cost matrix and the corresponding perfor-
mance measure.

Task
df = mlbench::mlbench.waveform(500)
wf.task = makeClassifTask(id = "waveform", data = as.data.frame(df),

target = "classes")

Cost matrix
costs = matrix(c(0, 5, 10, 30, 0, 8, 80, 4, 0), 3)
colnames(costs) = rownames(costs) = getTaskClassLevels(wf.task)

Performance measure
wf.costs = makeCostMeasure(id = "wf.costs", name = "Waveform costs",

costs = costs,
best = 0, worst = 10)

In the multi-class case, both, thresholding and rebalancing correspond to cost
matrices of a certain structure where c(k, l) = c(l) for k, l = 1, . . . , K, k ̸= l.
This condition means that the cost of misclassifying an observation is indepen-
dent of the predicted class label (see Domingos, 1999). Given a cost matrix of
this type, theoretical thresholds and weights can be derived in a similar manner
as in the binary case. Obviously, the cost matrix given above does not have this
special structure.

176

http://www.rdocumentation.org/packages/mlbench/functions/mlbench.waveform.html
http://www.rdocumentation.org/packages/mlbench/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://homes.cs.washington.edu/~pedrod/papers/kdd99.pdf

20.1 Class-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

20.1.2.1 1. Thresholding

Given a vector of positive threshold values as long as the number of classes
K, the predicted probabilities for all classes are adjusted by dividing them by
the corresponding threshold value. Then the class with the highest adjusted
probability is predicted. This way, as in the binary case, classes with a low
threshold are preferred to classes with a larger threshold.

Again this can be done by function setThreshold as shown in the following
example (or alternatively by the predict.threshold option of makeLearner).
Note that the threshold vector needs to have names that correspond to the class
labels.

lrn = makeLearner("classif.rpart", predict.type = "prob")
rin = makeResampleInstance("CV", iters = 3, task = wf.task)
r = resample(lrn, wf.task, rin, measures = list(wf.costs, mmce),

show.info = FALSE)
r
#> Resample Result
#> Task: waveform
#> Learner: classif.rpart
#> Aggr perf: wf.costs.test.mean=7.02,mmce.test.mean=0.262
#> Runtime: 0.0395248

Calculate thresholds as 1/(average costs of true classes)
th = 2/rowSums(costs)
names(th) = getTaskClassLevels(wf.task)
th
#> 1 2 3
#> 0.01818182 0.22222222 0.11111111

pred.th = setThreshold(r$pred, threshold = th)
performance(pred.th, measures = list(wf.costs, mmce))
#> wf.costs mmce
#> 5.0372268 0.3502393

The threshold vector th in the above example is chosen according to the average
costs of the true classes 55, 4.5 and 9. More exactly, th corresponds to an
artificial cost matrix of the structure mentioned above with off-diagonal elements
c(2, 1) = c(3, 1) = 55, c(1, 2) = c(3, 2) = 4.5 and c(1, 3) = c(2, 3) = 9. This
threshold vector may be not optimal but leads to smaller total costs on the
data set than the default.

20.1.2.1.1 ii. Empirical thresholding

As in the binary case it is possible to tune the threshold vector using function
tuneThreshold. Since the scaling of the threshold vector does not change the

177

http://www.rdocumentation.org/packages/mlr/functions/setThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/tuneThreshold.html

20.2 Example-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

predicted class labels tuneThreshold returns threshold values that lie in [0,1]
and sum to unity.
tune.res = tuneThreshold(pred = r$pred, measure = wf.costs)
tune.res
#> $th
#> 1 2 3
#> 0.01447413 0.35804444 0.62748143
#>
#> $perf
#> [1] 4.544369

For comparison we show the standardized version of the theoretically motivated
threshold vector chosen above.
th/sum(th)
#> 1 2 3
#> 0.05172414 0.63218391 0.31609195

20.1.2.2 2. Rebalancing

20.1.2.2.1 i. Weighting

In the multi-class case you have to pass a vector of weights as long as the number
of classes K to function makeWeightedClassesWrapper. The weight vector can
be tuned using function tuneParams.
lrn = makeLearner("classif.multinom", trace = FALSE)
lrn = makeWeightedClassesWrapper(lrn)

ps = makeParamSet(makeNumericVectorParam("wcw.weight", len = 3,
lower = 0, upper = 1))

ctrl = makeTuneControlRandom()

tune.res = tuneParams(lrn, wf.task, resampling = rin, par.set = ps,
measures = list(wf.costs, mmce), control = ctrl, show.info = FALSE)

tune.res
#> Tune result:
#> Op. pars: wcw.weight=0.836,0.225,0.05
#> wf.costs.test.mean=3.18,mmce.test.mean=0.194

20.2 Example-dependent misclassification costs

In case of example-dependent costs we have to create a special Task via function
makeCostSensTask. For this purpose the feature values x and an n × K cost

178

http://www.rdocumentation.org/packages/mlr/functions/tuneThreshold.html
http://www.rdocumentation.org/packages/mlr/functions/makeWeightedClassesWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/tuneParams.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostSensTask.html

20.2 Example-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

matrix that contains the cost vectors for all n examples in the data set are
required.

We use the iris data and generate an artificial cost matrix (see Beygelzimer et
al., 2005).

df = iris
cost = matrix(runif(150 * 3, 0, 2000), 150) * (1 -

diag(3))[df$Species,] + runif(150, 0, 10)
colnames(cost) = levels(iris$Species)
rownames(cost) = rownames(iris)
df$Species = NULL

costsens.task = makeCostSensTask(id = "iris", data = df, cost = cost)
costsens.task
#> Supervised task: iris
#> Type: costsens
#> Observations: 150
#> Features:
#> numerics factors ordered
#> 4 0 0
#> Missings: FALSE
#> Has blocking: FALSE
#> Classes: 3
#> setosa, versicolor, virginica

mlr provides several wrappers to turn regular classification or regression meth-
ods into Learners that can deal with example-dependent costs.

• makeCostSensClassifWrapper (wraps a classification Learner): This is a
naive approach where the costs are coerced into class labels by choosing
the class label with minimum cost for each example. Then a regular
classification method is used.

• makeCostSensRegrWrapper (wraps a regression Learner): An individual
regression model is fitted for the costs of each class. In the prediction
step first the costs are predicted for all classes and then the class with the
lowest predicted costs is selected.

• makeCostSensWeightedPairsWrapper (wraps a classification Learner):
This is also known as cost-sensitive one-vs-one (CS-OVO) and the most
sophisticated of the currently supported methods. For each pair of
classes, a binary classifier is fitted. For each observation the class label is
defined as the element of the pair with minimal costs. During fitting, the
observations are weighted with the absolute difference in costs. Prediction
is performed by simple voting.

In the following example we use the third method. We create the wrapped
Learner and train it on the CostSensTask defined above.

179

http://www.rdocumentation.org/packages/datasets/functions/iris.html
http://dx.doi.org/10.1145/1102351.1102358
http://dx.doi.org/10.1145/1102351.1102358
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostSensClassifWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostSensRegrWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostSensWeightedPairsWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html

20.2 Example-dependent misclassification costs20 COST-SENSITIVE CLASSIFICATION

lrn = makeLearner("classif.multinom", trace = FALSE)
lrn = makeCostSensWeightedPairsWrapper(lrn)
lrn
#> Learner costsens.classif.multinom from package nnet
#> Type: costsens
#> Name: ; Short name:
#> Class: CostSensWeightedPairsWrapper
#> Properties: twoclass,multiclass,numerics,factors
#> Predict-Type: response
#> Hyperparameters: trace=FALSE

mod = train(lrn, costsens.task)
mod
#> Model for learner.id=costsens.classif.multinom;

learner.class=CostSensWeightedPairsWrapper
#> Trained on: task.id = iris; obs = 150; features = 4
#> Hyperparameters: trace=FALSE

The models corresponding to the individual pairs can be accessed by function
getLearnerModel.

getLearnerModel(mod)
#> [[1]]
#> Model for learner.id=classif.multinom;

learner.class=classif.multinom
#> Trained on: task.id = feats; obs = 150; features = 4
#> Hyperparameters: trace=FALSE
#>
#> [[2]]
#> Model for learner.id=classif.multinom;

learner.class=classif.multinom
#> Trained on: task.id = feats; obs = 150; features = 4
#> Hyperparameters: trace=FALSE
#>
#> [[3]]
#> Model for learner.id=classif.multinom;

learner.class=classif.multinom
#> Trained on: task.id = feats; obs = 150; features = 4
#> Hyperparameters: trace=FALSE

mlr provides some performance measures for example-specific cost-sensitive clas-
sification. In the following example we calculate the mean costs of the predicted
class labels (meancosts) and the misclassification penalty (mcp). The latter
measure is the average difference between the costs caused by the predicted
class labels, i.e., meancosts, and the costs resulting from choosing the class with
lowest cost for each observation. In order to compute these measures the costs

180

http://www.rdocumentation.org/packages/mlr/functions/getLearnerModel.html
http://www.rdocumentation.org/packages/mlr/

21 IMBALANCED CLASSIFICATION PROBLEMS

for the test observations are required and therefore the Task has to be passed
to performance.

pred = predict(mod, task = costsens.task)
pred
#> Prediction: 150 observations
#> predict.type: response
#> threshold:
#> time: 0.03
#> id response
#> 1 1 setosa
#> 2 2 setosa
#> 3 3 setosa
#> 4 4 setosa
#> 5 5 setosa
#> 6 6 setosa
#> ... (150 rows, 2 cols)

performance(pred, measures = list(meancosts, mcp), task =
costsens.task)

#> meancosts mcp
#> 129.9553 124.7782

21 Imbalanced Classification Problems

In case of binary classification strongly imbalanced classes often lead to unsat-
isfactory results regarding the prediction of new observations, especially for the
small class. In this context imbalanced classes simply means that the number
of observations of one class (usu. positive or majority class) by far exceeds the
number of observations of the other class (usu. negative or minority class). This
setting can be observed fairly often in practice and in various disciplines like
credit scoring, fraud detection, medical diagnostics or churn management.

Most classification methods work best when the number of observations per class
are roughly equal. The problem with imbalanced classes is that because of the
dominance of the majority class classifiers tend to ignore cases of the minority
class as noise and therefore predict the majority class far more often. In order to
lay more weight on the cases of the minority class, there are numerous correction
methods which tackle the imbalanced classification problem. These methods
can generally be divided into cost- and sampling-based approaches. Below all
methods supported by mlr are introduced.

181

http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/performance.html
http://www.rdocumentation.org/packages/mlr/

21.1 Sampling-based approaches21 IMBALANCED CLASSIFICATION PROBLEMS

21.1 Sampling-based approaches

The basic idea of sampling methods is to simply adjust the proportion of the
classes in order to increase the weight of the minority class observations within
the model.

The sampling-based approaches can be divided further into three different cate-
gories:

1. Undersampling methods: Elimination of randomly chosen cases of the
majority class to decrease their effect on the classifier. All cases of the
minority class are kept.

2. Oversampling methods: Generation of additional cases (copies, arti-
ficial observations) of the minority class to increase their effect on the
classifier. All cases of the majority class are kept.

3. Hybrid methods: Mixture of under- and oversampling strategies.

All these methods directly access the underlying data and “rearrange” it. In
this way the sampling is done as part of the preprocesssing and can therefore be
combined with every appropriate classifier.

mlr currently supports the first two approaches.

21.1.1 (Simple) over- and undersampling

As mentioned above undersampling always refers to the majority class, while
oversampling affects the minority class. By the use of undersampling, randomly
chosen observations of the majority class are eliminated. Through (simple)
oversampling all observations of the minority class are considered at least once
when fitting the model. In addition, exact copies of minority class cases are
created by random sampling with repetitions.

First, let’s take a look at the effect for a classification task. Based on a simulated
ClassifTask with imbalanced classes two new tasks (task.over, task.under)
are created via mlr functions oversample and undersample, respectively.

data.imbal.train = rbind(
data.frame(x = rnorm(100, mean = 1), class = "A"),
data.frame(x = rnorm(5000, mean = 2), class = "B")

)
task = makeClassifTask(data = data.imbal.train, target = "class")
task.over = oversample(task, rate = 8)
task.under = undersample(task, rate = 1/8)

table(getTaskTargets(task))
#>
#> A B

182

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/oversample.html
http://www.rdocumentation.org/packages/mlr/functions/oversample.html

21.1 Sampling-based approaches21 IMBALANCED CLASSIFICATION PROBLEMS

#> 100 5000

table(getTaskTargets(task.over))
#>
#> A B
#> 800 5000

table(getTaskTargets(task.under))
#>
#> A B
#> 100 625

Please note that the undersampling rate has to be between 0 and 1, where 1
means no undersampling and 0.5 implies a reduction of the majority class size
to 50 percent. Correspondingly, the oversampling rate must be greater or equal
to 1, where 1 means no oversampling and 2 would result in doubling the minority
class size.

As a result the performance should improve if the model is applied to new data.

lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, task)
mod.over = train(lrn, task.over)
mod.under = train(lrn, task.under)
data.imbal.test = rbind(
data.frame(x = rnorm(10, mean = 1), class = "A"),
data.frame(x = rnorm(500, mean = 2), class = "B")

)

performance(predict(mod, newdata = data.imbal.test), measures =
list(mmce, ber, auc))

#> mmce ber auc
#> 0.01960784 0.50000000 0.50000000

performance(predict(mod.over, newdata = data.imbal.test), measures =
list(mmce, ber, auc))

#> mmce ber auc
#> 0.04509804 0.41500000 0.58500000

performance(predict(mod.under, newdata = data.imbal.test), measures
= list(mmce, ber, auc))

#> mmce ber auc
#> 0.05098039 0.41800000 0.70550000

In this case the performance measure has to be considered very carefully. As the
misclassification rate (mmce) evaluates the overall accuracy of the predictions,
the balanced error rate (ber) and area under the ROC Curve (auc) might be

183

21.1 Sampling-based approaches21 IMBALANCED CLASSIFICATION PROBLEMS

more suitable here, as the misclassifications within each class are separately
taken into account.

21.1.2 Over- and undersampling wrappers

Alternatively, mlr also offers the integration of over- and undersampling via a
wrapper approach. This way over- and undersampling can be applied to already
existing learners to extend their functionality.

The example given above is repeated once again, but this time with extended
learners instead of modified tasks (see makeOversampleWrapper and makeUn-
dersampleWrapper). Just like before the undersampling rate has to be between
0 and 1, while the oversampling rate has a lower boundary of 1.
lrn.over = makeOversampleWrapper(lrn, osw.rate = 8)
lrn.under = makeUndersampleWrapper(lrn, usw.rate = 1/8)
mod = train(lrn, task)
mod.over = train(lrn.over, task)
mod.under = train(lrn.under, task)

performance(predict(mod, newdata = data.imbal.test), measures =
list(mmce, ber, auc))

#> mmce ber auc
#> 0.01960784 0.50000000 0.50000000

performance(predict(mod.over, newdata = data.imbal.test), measures =
list(mmce, ber, auc))

#> mmce ber auc
#> 0.03333333 0.40900000 0.72020000

performance(predict(mod.under, newdata = data.imbal.test), measures
= list(mmce, ber, auc))

#> mmce ber auc
#> 0.04509804 0.41500000 0.71660000

21.1.3 Extensions to oversampling

Two extensions to (simple) oversampling are available in mlr.

21.1.3.1 1. SMOTE (Synthetic Minority Oversampling Technique)

As the duplicating of the minority class observations can lead to overfitting,
within SMOTE the “new cases” are constructed in a different way. For each
new observation, one randomly chosen minority class observation as well as one

184

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeUndersampleWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeUndersampleWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeUndersampleWrapper.html
http://www.rdocumentation.org/packages/mlr/

21.1 Sampling-based approaches21 IMBALANCED CLASSIFICATION PROBLEMS

of its randomly chosen next neighbours are interpolated, so that finally a new
artificial observation of the minority class is created. The smote function in
mlr handles numeric as well as factor features, as the gower distance is used
for nearest neighbour calculation. The factor level of the new artificial case is
sampled from the given levels of the two input observations.

Analogous to oversampling, SMOTE preprocessing is possible via modification
of the task.

task.smote = smote(task, rate = 8, nn = 5)
table(getTaskTargets(task))
#>
#> A B
#> 100 5000

table(getTaskTargets(task.smote))
#>
#> A B
#> 800 5000

Alternatively, a new wrapped learner can be created via makeSMOTEWrapper.

lrn.smote = makeSMOTEWrapper(lrn, sw.rate = 8, sw.nn = 5)
mod.smote = train(lrn.smote, task)
performance(predict(mod.smote, newdata = data.imbal.test), measures

= list(mmce, ber, auc))
#> mmce ber auc
#> 0.04509804 0.41500000 0.71660000

By default the number of nearest neighbours considered within the algorithm is
set to 5.

21.1.3.2 2. Overbagging

Another extension of oversampling consists in the combination of sampling with
the bagging approach. For each iteration of the bagging process, minority class
observations are oversampled with a given rate in obw.rate. The majority class
cases can either all be taken into account for each iteration (obw.maxcl =
"all") or bootstrapped with replacement to increase variability between train-
ing data sets during iterations (obw.maxcl = "boot").

The construction of the Overbagging Wrapper works similar to makeBagging-
Wrapper. First an existing mlr learner has to be passed to makeOverBagging-
Wrapper. The number of iterations or fitted models can be set via obw.iters.

lrn = makeLearner("classif.rpart", predict.type = "response")
obw.lrn = makeOverBaggingWrapper(lrn, obw.rate = 8, obw.iters = 3)

185

http://www.rdocumentation.org/packages/mlr/functions/smote.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeSMOTEWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeOverBaggingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeOverBaggingWrapper.html

21.1 Sampling-based approaches21 IMBALANCED CLASSIFICATION PROBLEMS

For binary classification the prediction is based on majority voting to create
a discrete label. Corresponding probabilities are predicted by considering the
proportions of all the predicted labels. Please note that the benefit of the
sampling process is highly dependent on the specific learner as shown in the
following example.

First, let’s take a look at the tree learner with and without overbagging:
lrn = setPredictType(lrn, "prob")
rdesc = makeResampleDesc("CV", iters = 5)
r1 = resample(learner = lrn, task = task, resampling = rdesc,

show.info = FALSE,
measures = list(mmce, ber, auc))

r1$aggr
#> mmce.test.mean ber.test.mean auc.test.mean
#> 0.01960784 0.50000000 0.50000000

obw.lrn = setPredictType(obw.lrn, "prob")
r2 = resample(learner = obw.lrn, task = task, resampling = rdesc,

show.info = FALSE,
measures = list(mmce, ber, auc))

r2$aggr
#> mmce.test.mean ber.test.mean auc.test.mean
#> 0.04470588 0.43611719 0.58535862

Now let’s consider a random forest as initial learner:
lrn = makeLearner("classif.randomForest")
obw.lrn = makeOverBaggingWrapper(lrn, obw.rate = 8, obw.iters = 3)

lrn = setPredictType(lrn, "prob")
r1 = resample(learner = lrn, task = task, resampling = rdesc,

show.info = FALSE,
measures = list(mmce, ber, auc))

r1$aggr
#> mmce.test.mean ber.test.mean auc.test.mean
#> 0.03509804 0.46089748 0.58514212

obw.lrn = setPredictType(obw.lrn, "prob")
r2 = resample(learner = obw.lrn, task = task, resampling = rdesc,

show.info = FALSE,
measures = list(mmce, ber, auc))

r2$aggr
#> mmce.test.mean ber.test.mean auc.test.mean
#> 0.04098039 0.45961754 0.54926842

While overbagging slighty improves the performance of the decision tree, the
auc decreases in the second example when additional overbagging is applied.

186

21.2 Cost-based approaches22 ROC ANALYSIS AND PERFORMANCE CURVES

As the random forest itself is already a strong learner (and a bagged one as
well), a further bagging step isn’t very helpful here and usually won’t improve
the model.

21.2 Cost-based approaches

In contrast to sampling, cost-based approaches usually require particular learn-
ers, which can deal with different class-dependent costs (Cost-Sensitive Classifi-
cation).

21.2.1 Weighted classes wrapper

Another approach independent of the underlying classifier is to assign the costs
as class weights, so that each observation receives a weight, depending on the
class it belongs to. Similar to the sampling-based approaches, the effect of the
minority class observations is thereby increased simply by a higher weight of
these instances and vice versa for majority class observations.

In this way every learner which supports weights can be extended through the
wrapper approach. If the learner does not have a direct parameter for class
weights, but supports observation weights, the weights depending on the class
are internally set in the wrapper.

lrn = makeLearner("classif.logreg")
wcw.lrn = makeWeightedClassesWrapper(lrn, wcw.weight = 0.01)

For binary classification, the single number passed to the classifier corresponds
to the weight of the positive / majority class, while the negative / minority class
receives a weight of 1. So actually, no real costs are used within this approach,
but the cost ratio is taken into account.

If the underlying learner already has a parameter for class weighting (e.g.,
class.weights in "classif.ksvm"), the wcw.weight is basically passed to the
specific class weighting parameter.

lrn = makeLearner("classif.ksvm")
wcw.lrn = makeWeightedClassesWrapper(lrn, wcw.weight = 0.01)

22 ROC Analysis and Performance Curves

For binary scoring classifiers a threshold (or cutoff) value controls how predicted
posterior probabilities are converted into class labels. ROC curves and other
performance plots serve to visualize and analyse the relationship between one
or two performance measures and the threshold.

187

22 ROC ANALYSIS AND PERFORMANCE CURVES

This page is mainly devoted to receiver operating characteristic (ROC) curves
that plot the true positive rate (sensitivity) on the vertical axis against the false
positive rate (1 - specificity, fall-out) on the horizontal axis for all possible thresh-
old values. Creating other performance plots like lift charts or precision/recall
graphs works analogously and is shown briefly.

In addition to performance visualization ROC curves are helpful in

• determining an optimal decision threshold for given class prior probabili-
ties and misclassification costs (for alternatives see also the pages about
cost-sensitive classification and imbalanced classification problems in this
tutorial),

• identifying regions where one classifier outperforms another and building
suitable multi-classifier systems,

• obtaining calibrated estimates of the posterior probabilities.

For more information see the tutorials and introductory papers by Fawcett
(2004), Fawcett (2006) as well as Flach (ICML 2004).

In many applications as, e.g., diagnostic tests or spam detection, there is uncer-
tainty about the class priors or the misclassification costs at the time of predic-
tion, for example because it’s hard to quantify the costs or because costs and
class priors vary over time. Under these circumstances the classifier is expected
to work well for a whole range of decision thresholds and the area under the
ROC curve (AUC) provides a scalar performance measure for comparing and se-
lecting classifiers. mlr provides the AUC for binary classification (auc based on
package ROCR) and also several generalizations of the AUC to the multi-class
case (e.g., multiclass.au1p, multiclass.au1u based on Ferri et al. (2009)).

mlr offers three ways to plot ROC and other performance curves.

1. Function plotROCCurves can, based on the output of generateThreshVsPerf-
Data, plot performance curves for any pair of performance measures
available in mlr.

2. mlr offers an interface to package ROCR through function asROCRPre-
diction.

3. mlr’s function plotViperCharts provides an interface to ViperCharts.

With mlr version 2.8 functions generateROCRCurvesData, plotROCRCurves,
and plotROCRCurvesGGVIS were deprecated.

Below are some examples that demonstrate the three possible ways. Note that
you can only use learners that are capable of predicting probabilities. Have a
look at the learner table in the Appendix or run listLearners("classif",
properties = c("twoclass", "prob")) to get a list of all learners that sup-
port this.

188

http://binf.gmu.edu/mmasso/ROC101.pdf
http://binf.gmu.edu/mmasso/ROC101.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
http://www.cs.bris.ac.uk/~flach/ICML04tutorial/index.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/ROCR/functions/performance.html
https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/ROCR/
http://www.rdocumentation.org/packages/mlr/functions/asROCRPrediction.html
http://www.rdocumentation.org/packages/mlr/functions/asROCRPrediction.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/plotViperCharts.html
http://viper.ijs.si
http://www.rdocumentation.org/packages/mlr/

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

22.1 Performance plots with plotROCCurves

As you might recall generateThreshVsPerfData calculates one or several perfor-
mance measures for a sequence of decision thresholds from 0 to 1. It provides
S3 methods for objects of class Prediction, ResampleResult and BenchmarkRe-
sult (resulting from predict, resample or benchmark). plotROCCurves plots the
result of generateThreshVsPerfData using ggplot2.

22.1.1 Example 1: Single predictions

We consider the Sonar data set from package mlbench, which poses a binary
classification problem (sonar.task) and apply linear discriminant analysis.

n = getTaskSize(sonar.task)
train.set = sample(n, size = round(2/3 * n))
test.set = setdiff(seq_len(n), train.set)

lrn1 = makeLearner("classif.lda", predict.type = "prob")
mod1 = train(lrn1, sonar.task, subset = train.set)
pred1 = predict(mod1, task = sonar.task, subset = test.set)

Since we want to plot ROC curves we calculate the false and true positive rates
(fpr and tpr). Additionally, we also compute error rates (mmce).

df = generateThreshVsPerfData(pred1, measures = list(fpr, tpr, mmce))

generateThreshVsPerfData returns an object of class ThreshVsPerfData which
contains the performance values in the $data element.

Per default, plotROCCurves plots the performance values of the first two mea-
sures passed to generateThreshVsPerfData. The first is shown on the x-axis,
the second on the y-axis. Moreover, a diagonal line that represents the perfor-
mance of a random classifier is added. You can remove the diagonal by setting
diagonal = FALSE.

plotROCCurves(df)

189

http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/ResampleResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/ggplot2/
http://www.rdocumentation.org/packages/mlbench/functions/Sonar.html
http://www.rdocumentation.org/packages/mlbench/
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

The corresponding area under curve (auc) can be calculated as usual by calling
performance.

performance(pred1, auc)
#> auc
#> 0.847973

plotROCCurves always requires a pair of performance measures that are plotted
against each other. If you want to plot individual measures versus the decision
threshold you can use function plotThreshVsPerf.

plotThreshVsPerf(df)

190

http://www.rdocumentation.org/packages/mlr/functions/performance.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

False positive rate True positive rate Mean misclassification error

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
threshold

pe
rf

or
m

an
ce

Additional to linear discriminant analysis we try a support vector machine with
RBF kernel (ksvm).

lrn2 = makeLearner("classif.ksvm", predict.type = "prob")
mod2 = train(lrn2, sonar.task, subset = train.set)
pred2 = predict(mod2, task = sonar.task, subset = test.set)

In order to compare the performance of the two learners you might want to
display the two corresponding ROC curves in one plot. For this purpose just
pass a named list of Predictions to generateThreshVsPerfData.

df = generateThreshVsPerfData(list(lda = pred1, ksvm = pred2),
measures = list(fpr, tpr))

plotROCCurves(df)

191

http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/base/functions/list.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

ksvm lda

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

It’s clear from the plot above that ksvm has a slightly higher AUC than lda.

performance(pred2, auc)
#> auc
#> 0.9214527

Based on the $data member of df you can easily generate custom plots. Below
the curves for the two learners are superposed.

qplot(x = fpr, y = tpr, color = learner, data = df$data, geom =
"path")

192

http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

learner

ksvm

lda

It is easily possible to generate other performance plots by passing the appropri-
ate performance measures to generateThreshVsPerfData and plotROCCurves.
Below, we generate a precision/recall graph (precision = positive predictive
value = ppv, recall = tpr) and a sensitivity/specificity plot (sensitivity = tpr,
specificity = tnr).

df = generateThreshVsPerfData(list(lda = pred1, ksvm = pred2),
measures = list(ppv, tpr, tnr))

precision/recall graph
plotROCCurves(df, measures = list(tpr, ppv), diagonal = FALSE)
#> Warning: Removed 1 rows containing missing values (geom_path).

sensitivity/specificity plot
plotROCCurves(df, measures = list(tnr, tpr), diagonal = FALSE)

193

http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

22.1.2 Example 2: Benchmark experiment

The analysis in the example above can be improved a little. Instead of writing in-
dividual code for training/prediction of each learner, which can become tedious
very quickly, we can use function benchmark (see also Benchmark Experiments)
and, ideally, the support vector machine should have been tuned.

We again consider the Sonar data set and apply lda as well as ksvm. We first
generate a tuning wrapper for ksvm. The cost parameter is tuned on a (for
demonstration purposes small) parameter grid. We assume that we are inter-
ested in a good performance over the complete threshold range and therefore
tune with regard to the auc. The error rate (mmce) for a threshold value of 0.5
is reported as well.

Tune wrapper for ksvm
rdesc.inner = makeResampleDesc("Holdout")
ms = list(auc, mmce)
ps = makeParamSet(

makeDiscreteParam("C", 2^(-1:1))
)
ctrl = makeTuneControlGrid()
lrn2 = makeTuneWrapper(lrn2, rdesc.inner, ms, ps, ctrl, show.info =

FALSE)

Below the actual benchmark experiment is conducted. As resampling strategy
we use 5-fold cross-validation and again calculate the auc as well as the error
rate (for a threshold/cutoff value of 0.5).

Benchmark experiment
lrns = list(lrn1, lrn2)
rdesc.outer = makeResampleDesc("CV", iters = 5)

bmr = benchmark(lrns, tasks = sonar.task, resampling = rdesc.outer,
measures = ms, show.info = FALSE)

bmr
#> task.id learner.id auc.test.mean mmce.test.mean
#> 1 Sonar-example classif.lda 0.7835442 0.2592334
#> 2 Sonar-example classif.ksvm.tuned 0.9454418 0.1390244

Calling generateThreshVsPerfData and plotROCCurves on the benchmark re-
sult produces a plot with ROC curves for all learners in the experiment.

df = generateThreshVsPerfData(bmr, measures = list(fpr, tpr, mmce))
plotROCCurves(df)

194

http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlbench/functions/Sonar.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/mlr/functions/makeTuneWrapper.html
http://www.rdocumentation.org/packages/kernlab/functions/ksvm.html
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

classif.ksvm.tuned classif.lda

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Per default, generateThreshVsPerfData calculates aggregated performances ac-
cording to the chosen resampling strategy (5-fold cross-validation) and aggrega-
tion scheme (test.mean) for each threshold in the sequence. This way we get
threshold-averaged ROC curves.

If you want to plot the individual ROC curves for each resample iteration set
aggregate = FALSE.

df = generateThreshVsPerfData(bmr, measures = list(fpr, tpr, mmce),
aggregate = FALSE)

plotROCCurves(df)

195

http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

classif.ksvm.tuned classif.lda

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

The same applies for plotThreshVsPerf.
plotThreshVsPerf(df)

False positive rate True positive rate Mean misclassification error

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
threshold

pe
rf

or
m

an
ce learner

classif.ksvm.tuned

classif.lda

An alternative to averaging is to just merge the 5 test folds and draw a single

196

http://www.rdocumentation.org/packages/mlr/functions/plotThreshVsPerf.html

22.1 Performance plots with plotROCCurves22 ROC ANALYSIS AND PERFORMANCE CURVES

ROC curve. Merging can be achieved by manually changing the class attribute
of the prediction objects from ResamplePrediction to Prediction.

Below, the predictions are extracted from the BenchmarkResult via function
getBMRPredictions, the class is changed and the ROC curves are created.

Averaging methods are normally preferred (cp. Fawcett, 2006), as they permit
to assess the variability, which is needed to properly compare classifier perfor-
mance.

Extract predictions
preds = getBMRPredictions(bmr)[[1]]

Change the class attribute
preds2 = lapply(preds, function(x) {class(x) = "Prediction";

return(x)})

Draw ROC curves
df = generateThreshVsPerfData(preds2, measures = list(fpr, tpr,

mmce))
plotROCCurves(df)

classif.ksvm.tuned classif.lda

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Again, you can easily create other standard evaluation plots by passing the
appropriate performance measures to generateThreshVsPerfData and plotROC-
Curves.

197

http://www.rdocumentation.org/packages/base/functions/class.html
http://www.rdocumentation.org/packages/mlr/functions/ResamplePrediction.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/getBMRPredictions.html
http://www.rdocumentation.org/packages/base/functions/class.html
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html

22.2 Performance plots with asROCRPrediction22 ROC ANALYSIS AND PERFORMANCE CURVES

22.2 Performance plots with asROCRPrediction

Drawing performance plots with package ROCR works through three basic com-
mands:

1. ROCR::prediction: Create a ROCR prediction object.
2. ROCR::performance: Calculate one or more performance measures for the

given prediction object.
3. ROCR::plot: Generate the performance plot.

mlr’s function asROCRPrediction converts an mlr Prediction object to a ROCR
prediction object, so you can easily generate performance plots by doing steps
2. and 3. yourself. ROCR’s plot method has some nice features which are not
(yet) available in plotROCCurves, for example plotting the convex hull of the
ROC curves. Some examples are shown below.

22.2.1 Example 1: Single predictions (continued)

We go back to out first example where we trained and predicted lda on the sonar
classification task.

n = getTaskSize(sonar.task)
train.set = sample(n, size = round(2/3 * n))
test.set = setdiff(seq_len(n), train.set)

Train and predict linear discriminant analysis
lrn1 = makeLearner("classif.lda", predict.type = "prob")
mod1 = train(lrn1, sonar.task, subset = train.set)
pred1 = predict(mod1, task = sonar.task, subset = test.set)

Below we use asROCRPrediction to convert the lda prediction, let ROCR cal-
culate the true and false positive rate and plot the ROC curve.

Convert prediction
ROCRpred1 = asROCRPrediction(pred1)

Calculate true and false positive rate
ROCRperf1 = ROCR::performance(ROCRpred1, "tpr", "fpr")

Draw ROC curve
ROCR::plot(ROCRperf1)

198

http://www.rdocumentation.org/packages/ROCR/
http://www.rdocumentation.org/packages/ROCR/functions/prediction.html
http://www.rdocumentation.org/packages/ROCR/
&ROCR::prediction-class
http://www.rdocumentation.org/packages/ROCR/functions/performance.html
&ROCR::plot-methods
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/asROCRPrediction.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/ROCR/
&ROCR::prediction-class
http://www.rdocumentation.org/packages/ROCR/
&ROCR::plot-methods
http://www.rdocumentation.org/packages/mlr/functions/plotROCCurves.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/mlr/functions/sonar.task.html
http://www.rdocumentation.org/packages/mlr/functions/asROCRPrediction.html
http://www.rdocumentation.org/packages/ROCR/

22.2 Performance plots with asROCRPrediction22 ROC ANALYSIS AND PERFORMANCE CURVES

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Below is the same ROC curve, but we make use of some more graphical param-
eters: The ROC curve is color-coded by the threshold and selected threshold
values are printed on the curve. Additionally, the convex hull (black broken
line) of the ROC curve is drawn.

Draw ROC curve
ROCR::plot(ROCRperf1, colorize = TRUE, print.cutoffs.at = seq(0.1,

0.9, 0.1), lwd = 2)

Draw convex hull of ROC curve
ch = ROCR::performance(ROCRpred1, "rch")
ROCR::plot(ch, add = TRUE, lty = 2)

199

22.2 Performance plots with asROCRPrediction22 ROC ANALYSIS AND PERFORMANCE CURVES

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

2
0.

41
0.

61
0.

81
1.

01

●

●●●●●
●●

●

0.1
0.20.30.40.50.6

0.70.8
0.9

22.2.2 Example 2: Benchmark experiments (continued)

We again consider the benchmark experiment conducted earlier. We first extract
the predictions by getBMRPredictions and then convert them via function as-
ROCRPrediction.

Extract predictions
preds = getBMRPredictions(bmr)[[1]]

Convert predictions
ROCRpreds = lapply(preds, asROCRPrediction)

Calculate true and false positive rate
ROCRperfs = lapply(ROCRpreds, function(x) ROCR::performance(x,

"tpr", "fpr"))

200

http://www.rdocumentation.org/packages/mlr/functions/getBMRPredictions.html
http://www.rdocumentation.org/packages/mlr/functions/asROCRPrediction.html
http://www.rdocumentation.org/packages/mlr/functions/asROCRPrediction.html

22.2 Performance plots with asROCRPrediction22 ROC ANALYSIS AND PERFORMANCE CURVES

We draw the vertically averaged ROC curves (solid lines) as well as the ROC
curves for the individual resampling iterations (broken lines). Moreover, stan-
dard error bars are plotted for selected true positive rates (0.1, 0.2, …, 0.9). See
ROCR’s plot function for details.

lda average ROC curve
plot(ROCRperfs[[1]], col = "blue", avg = "vertical", spread.estimate

= "stderror",
show.spread.at = seq(0.1, 0.8, 0.1), plotCI.col = "blue",

plotCI.lwd = 2, lwd = 2)
lda individual ROC curves
plot(ROCRperfs[[1]], col = "blue", lty = 2, lwd = 0.25, add = TRUE)

ksvm average ROC curve
plot(ROCRperfs[[2]], col = "red", avg = "vertical", spread.estimate

= "stderror",
show.spread.at = seq(0.1, 0.6, 0.1), plotCI.col = "red",

plotCI.lwd = 2, lwd = 2, add = TRUE)
ksvm individual ROC curves
plot(ROCRperfs[[2]], col = "red", lty = 2, lwd = 0.25, add = TRUE)

legend("bottomright", legend = getBMRLearnerIds(bmr), lty = 1, lwd =
2, col = c("blue", "red"))

201

http://www.rdocumentation.org/packages/ROCR/
&ROCR::plot-methods

22.2 Performance plots with asROCRPrediction22 ROC ANALYSIS AND PERFORMANCE CURVES

False positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

classif.lda
classif.ksvm.tuned

In order to create other evaluation plots like precision/recall graphs you just have
to change the performance measures when calling ROCR::performance. (Note
that you have to use the measures provided by ROCR listed here and not mlr’s
performance measures.)

Extract and convert predictions
preds = getBMRPredictions(bmr)[[1]]
ROCRpreds = lapply(preds, asROCRPrediction)

Calculate precision and recall
ROCRperfs = lapply(ROCRpreds, function(x) ROCR::performance(x,

"prec", "rec"))

Draw performance plot
plot(ROCRperfs[[1]], col = "blue", avg = "threshold")
plot(ROCRperfs[[2]], col = "red", avg = "threshold", add = TRUE)
legend("bottomleft", legend = getBMRLearnerIds(bmr), lty = 1, col =

202

http://www.rdocumentation.org/packages/ROCR/functions/performance.html
http://www.rdocumentation.org/packages/ROCR/
http://www.rdocumentation.org/packages/ROCR/functions/performance.html
http://www.rdocumentation.org/packages/mlr/

22.2 Performance plots with asROCRPrediction22 ROC ANALYSIS AND PERFORMANCE CURVES

c("blue", "red"))

Average recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

classif.lda
classif.ksvm.tuned

If you want to plot a performance measure versus the threshold, specify only
one measure when calling ROCR::performance. Below the average accuracy
over the 5 cross-validation iterations is plotted against the threshold. Moreover,
boxplots for certain threshold values (0.1, 0.2, …, 0.9) are drawn.

Extract and convert predictions
preds = getBMRPredictions(bmr)[[1]]
ROCRpreds = lapply(preds, asROCRPrediction)

Calculate accuracy
ROCRperfs = lapply(ROCRpreds, function(x) ROCR::performance(x,

"acc"))

Plot accuracy versus threshold

203

http://www.rdocumentation.org/packages/ROCR/functions/performance.html

22.3 Viper charts 22 ROC ANALYSIS AND PERFORMANCE CURVES

plot(ROCRperfs[[1]], avg = "vertical", spread.estimate = "boxplot",
lwd = 2, col = "blue",

show.spread.at = seq(0.1, 0.9, 0.1), ylim = c(0,1), xlab =
"Threshold")

Threshold

A
ve

ra
ge

 a
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

● ●
● ● ● ● ●

● ●

22.3 Viper charts

mlr also supports ViperCharts for plotting ROC and other performance curves.
Like generateThreshVsPerfData it has S3 methods for objects of class Predic-
tion, ResampleResult and BenchmarkResult. Below plots for the benchmark
experiment (Example 2) are generated.

z = plotViperCharts(bmr, chart = "rocc", browse = FALSE)

You can see the plot created this way here. Note that besides ROC curves you

204

http://www.rdocumentation.org/packages/mlr/
http://viper.ijs.si/
http://www.rdocumentation.org/packages/mlr/functions/generateThreshVsPerfData.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/ResampleResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://viper.ijs.si/chart/roc/9bba9685-f3f0-4d2f-8a24-38785453243b/

23 MULTILABEL CLASSIFICATION

get several other plots like lift charts or cost curves. For details, see plotViper-
Charts.

23 Multilabel Classification

Multilabel classification is a classification problem where multiple target labels
can be assigned to each observation instead of only one like in multiclass classi-
fication.

Two different approaches exist for multilabel classification. Problem transfor-
mation methods try to transform the multilabel classification into binary or mul-
ticlass classification problems. Algorithm adaptation methods adapt multiclass
algorithms so they can be applied directly to the problem.

23.1 Creating a task

The first thing you have to do for multilabel classification in mlr is to get your
data in the right format. You need a data.frame which consists of the features
and a logical vector for each label which indicates if the label is present in the
observation or not. After that you can create a MultilabelTask like a normal
ClassifTask. Instead of one target name you have to specify a vector of targets
which correspond to the names of logical variables in the data.frame. In the fol-
lowing example we get the yeast data frame from the already existing yeast.task,
extract the 14 label names and create the task again.

yeast = getTaskData(yeast.task)
labels = colnames(yeast)[1:14]
yeast.task = makeMultilabelTask(id = "multi", data = yeast, target =

labels)
yeast.task
#> Supervised task: multi
#> Type: multilabel
#> Target:

label1,label2,label3,label4,label5,label6,label7,label8,label9,label10,label11,label12,label13,label14
#> Observations: 2417
#> Features:
#> numerics factors ordered
#> 103 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 14
#> label1 label2 label3 label4 label5 label6 label7 label8

label9

205

http://www.rdocumentation.org/packages/mlr/functions/plotViperCharts.html
http://www.rdocumentation.org/packages/mlr/functions/plotViperCharts.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/yeast.task.html

23.2 Constructing a learner 23 MULTILABEL CLASSIFICATION

#> 762 1038 983 862 722 597 428 480
178

#> label10 label11 label12 label13 label14
#> 253 289 1816 1799 34

23.2 Constructing a learner

Multilabel classification in mlr can currently be done in two ways:

• Algorithm adaptation methods: Treat the whole problem with a specific
algorithm.

• Problem transformation methods: Transform the problem, so that simple
binary classification algorithms can be applied.

23.2.1 Algorithm adaptation methods

Currently the available algorithm adaptation methods in R are the multivariate
random forest in the randomForestSRC package and the random ferns multilabel
algorithm in the rFerns package. You can create the learner for these algorithms
like in multiclass classification problems.

lrn.rfsrc = makeLearner("multilabel.randomForestSRC")
lrn.rFerns = makeLearner("multilabel.rFerns")
lrn.rFerns
#> Learner multilabel.rFerns from package rFerns
#> Type: multilabel
#> Name: Random ferns; Short name: rFerns
#> Class: multilabel.rFerns
#> Properties: numerics,factors,ordered
#> Predict-Type: response
#> Hyperparameters:

23.2.2 Problem transformation methods

For generating a wrapped multilabel learner first create a binary (or multiclass)
classification learner with makeLearner. Afterwards apply a function like make-
MultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper,
makeMultilabelNestedStackingWrapper, makeMultilabelDBRWrapper or
makeMultilabelStackingWrapper on the learner to convert it to a learner that
uses the respective problem transformation method.

You can also generate a binary relevance learner directly, as you can see in the
example.

206

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/randomForestSRC/
http://www.rdocumentation.org/packages/rFerns/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelBinaryRelevanceWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelBinaryRelevanceWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelClassifierChainsWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelNestedStackingWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelDBRWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelStackingWrapper.html

23.2 Constructing a learner 23 MULTILABEL CLASSIFICATION

lrn.br = makeLearner("classif.rpart", predict.type = "prob")
lrn.br = makeMultilabelBinaryRelevanceWrapper(lrn.br)
lrn.br
#> Learner multilabel.classif.rpart from package rpart
#> Type: multilabel
#> Name: ; Short name:
#> Class: MultilabelBinaryRelevanceWrapper
#> Properties:

numerics,factors,ordered,missings,weights,prob,twoclass,multiclass
#> Predict-Type: prob
#> Hyperparameters: xval=0

lrn.br2 = makeMultilabelBinaryRelevanceWrapper("classif.rpart")
lrn.br2
#> Learner multilabel.classif.rpart from package rpart
#> Type: multilabel
#> Name: ; Short name:
#> Class: MultilabelBinaryRelevanceWrapper
#> Properties:

numerics,factors,ordered,missings,weights,prob,twoclass,multiclass
#> Predict-Type: response
#> Hyperparameters: xval=0

The different methods are shortly described in the following.

23.2.2.1 Binary relevance

This problem transformation method converts the multilabel problem to binary
classification problems for each label and applies a simple binary classificator on
these. In mlr this can be done by converting your binary learner to a wrapped
binary relevance multilabel learner.

23.2.2.2 Classifier chains

Trains consecutively the labels with the input data. The input data in each
step is augmented by the already trained labels (with the real observed values).
Therefore an order of the labels has to be specified. At prediction time the
labels are predicted in the same order as while training. The required labels in
the input data are given by the previous done prediction of the respective label.

23.2.2.3 Nested stacking

Same as classifier chains, but the labels in the input data are not the real ones,
but estimations of the labels obtained by the already trained learners.

207

http://www.rdocumentation.org/packages/mlr/

23.3 Train 23 MULTILABEL CLASSIFICATION

23.2.2.4 Dependent binary relevance

Each label is trained with the real observed values of all other labels. In predic-
tion phase for a label the other necessary labels are obtained in a previous step
by a base learner like the binary relevance method.

23.2.2.5 Stacking

Same as the dependent binary relevance method, but in the training phase the
labels used as input for each label are obtained by the binary relevance method.

23.3 Train

You can train a model as usual with a multilabel learner and a multilabel task as
input. You can also pass subset and weights arguments if the learner supports
this.

mod = train(lrn.br, yeast.task)
mod = train(lrn.br, yeast.task, subset = 1:1500, weights =

rep(1/1500, 1500))
mod
#> Model for learner.id=multilabel.classif.rpart;

learner.class=MultilabelBinaryRelevanceWrapper
#> Trained on: task.id = multi; obs = 1500; features = 103
#> Hyperparameters: xval=0

mod2 = train(lrn.rfsrc, yeast.task, subset = 1:100)
mod2
#> Model for learner.id=multilabel.randomForestSRC;

learner.class=multilabel.randomForestSRC
#> Trained on: task.id = multi; obs = 100; features = 103
#> Hyperparameters: na.action=na.impute

23.4 Predict

Prediction can be done as usual in mlr with predict and by passing a trained
model and either the task to the task argument or some new data to the newdata
argument. As always you can specify a subset of the data which should be
predicted.

pred = predict(mod, task = yeast.task, subset = 1:10)
pred = predict(mod, newdata = yeast[1501:1600,])
names(as.data.frame(pred))
#> [1] "truth.label1" "truth.label2" "truth.label3"
#> [4] "truth.label4" "truth.label5" "truth.label6"

208

http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html

23.5 Performance 23 MULTILABEL CLASSIFICATION

#> [7] "truth.label7" "truth.label8" "truth.label9"
#> [10] "truth.label10" "truth.label11" "truth.label12"
#> [13] "truth.label13" "truth.label14" "prob.label1"
#> [16] "prob.label2" "prob.label3" "prob.label4"
#> [19] "prob.label5" "prob.label6" "prob.label7"
#> [22] "prob.label8" "prob.label9" "prob.label10"
#> [25] "prob.label11" "prob.label12" "prob.label13"
#> [28] "prob.label14" "response.label1" "response.label2"
#> [31] "response.label3" "response.label4" "response.label5"
#> [34] "response.label6" "response.label7" "response.label8"
#> [37] "response.label9" "response.label10" "response.label11"
#> [40] "response.label12" "response.label13" "response.label14"

pred2 = predict(mod2, task = yeast.task)
names(as.data.frame(pred2))
#> [1] "id" "truth.label1" "truth.label2"
#> [4] "truth.label3" "truth.label4" "truth.label5"
#> [7] "truth.label6" "truth.label7" "truth.label8"
#> [10] "truth.label9" "truth.label10" "truth.label11"
#> [13] "truth.label12" "truth.label13" "truth.label14"
#> [16] "response.label1" "response.label2" "response.label3"
#> [19] "response.label4" "response.label5" "response.label6"
#> [22] "response.label7" "response.label8" "response.label9"
#> [25] "response.label10" "response.label11" "response.label12"
#> [28] "response.label13" "response.label14"

Depending on the chosen predict.type of the learner you get true and predicted
values and possibly probabilities for each class label. These can be extracted
by the usual accessor functions getPredictionTruth, getPredictionResponse and
getPredictionProbabilities.

23.5 Performance

The performance of your prediction can be assessed via function performance.
You can specify via the measures argument which measure(s) to calculate.
The default measure for multilabel classification is the Hamming loss (multi-
label.hamloss). All available measures for multilabel classification can be shown
by listMeasures and found in the table of performance measures and the mea-
sures documentation page.
performance(pred)
#> multilabel.hamloss
#> 0.2257143

performance(pred2, measures = list(multilabel.subset01,
multilabel.hamloss, multilabel.acc,

209

http://www.rdocumentation.org/packages/mlr/functions/getPredictionTruth.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionResponse.html
http://www.rdocumentation.org/packages/mlr/functions/getPredictionProbabilities.html
http://www.rdocumentation.org/packages/mlr/functions/performance.html
http://www.rdocumentation.org/packages/mlr/functions/listMeasures.html
http://www.rdocumentation.org/packages/mlr/functions/measures.html
http://www.rdocumentation.org/packages/mlr/functions/measures.html

23.6 Resampling 23 MULTILABEL CLASSIFICATION

multilabel.f1, timepredict))
#> multilabel.subset01 multilabel.hamloss multilabel.acc
#> 0.8663633 0.2049471 0.4637509
#> multilabel.f1 timepredict
#> 0.5729926 1.0660000

listMeasures("multilabel")
#> [1] "multilabel.f1" "multilabel.subset01" "multilabel.tpr"
#> [4] "multilabel.ppv" "multilabel.acc" "timeboth"
#> [7] "timepredict" "multilabel.hamloss" "featperc"
#> [10] "timetrain"

23.6 Resampling

For evaluating the overall performance of the learning algorithm you can do
some resampling. As usual you have to define a resampling strategy, either
via makeResampleDesc or makeResampleInstance. After that you can run the
resample function. Below the default measure Hamming loss is calculated.

rdesc = makeResampleDesc(method = "CV", stratify = FALSE, iters = 3)
r = resample(learner = lrn.br, task = yeast.task, resampling =

rdesc, show.info = FALSE)
r
#> Resample Result
#> Task: multi
#> Learner: multilabel.classif.rpart
#> Aggr perf: multilabel.hamloss.test.mean=0.225
#> Runtime: 4.06453

r = resample(learner = lrn.rFerns, task = yeast.task, resampling =
rdesc, show.info = FALSE)

r
#> Resample Result
#> Task: multi
#> Learner: multilabel.rFerns
#> Aggr perf: multilabel.hamloss.test.mean=0.473
#> Runtime: 0.392102

23.7 Binary performance

If you want to calculate a binary performance measure like, e.g., the accuracy,
the mmce or the auc for each label, you can use function getMultilabelBina-
ryPerformances. You can apply this function to any multilabel prediction, e.g.,

210

http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/resample.html
http://www.rdocumentation.org/packages/mlr/functions/getMultilabelBinaryPerformances.html
http://www.rdocumentation.org/packages/mlr/functions/getMultilabelBinaryPerformances.html

24 LEARNING CURVE ANALYSIS

also on the resample multilabel prediction. For calculating the auc you need
predicted probabilities.

getMultilabelBinaryPerformances(pred, measures = list(acc, mmce,
auc))

#> acc.test.mean mmce.test.mean auc.test.mean
#> label1 0.75 0.25 0.6321925
#> label2 0.64 0.36 0.6547917
#> label3 0.68 0.32 0.7118227
#> label4 0.69 0.31 0.6764835
#> label5 0.73 0.27 0.6676923
#> label6 0.70 0.30 0.6417739
#> label7 0.81 0.19 0.5968750
#> label8 0.73 0.27 0.5164474
#> label9 0.89 0.11 0.4688458
#> label10 0.86 0.14 0.3996463
#> label11 0.85 0.15 0.5000000
#> label12 0.76 0.24 0.5330667
#> label13 0.75 0.25 0.5938610
#> label14 1.00 0.00 NA

getMultilabelBinaryPerformances(r$pred, measures = list(acc, mmce))
#> acc.test.mean mmce.test.mean
#> label1 0.69383533 0.3061647
#> label2 0.58254034 0.4174597
#> label3 0.70211005 0.2978899
#> label4 0.71369466 0.2863053
#> label5 0.70831609 0.2916839
#> label6 0.60488209 0.3951179
#> label7 0.54447662 0.4555234
#> label8 0.53289201 0.4671080
#> label9 0.30906082 0.6909392
#> label10 0.44683492 0.5531651
#> label11 0.45676458 0.5432354
#> label12 0.52916839 0.4708316
#> label13 0.53702938 0.4629706
#> label14 0.01406703 0.9859330

24 Learning Curve Analysis

To analyse how the increase of observations in the training set improves the
performance of a learner the learning curve is an appropriate visual tool. The
experiment is conducted with an increasing subsample size and the performance
is measured. In the plot the x-axis represents the relative subsample size whereas

211

24.1 Plotting the learning curve 24 LEARNING CURVE ANALYSIS

the y-axis represents the performance.

Note that this function internally uses benchmark in combination with make-
DownsampleWrapper, so for every run new observations are drawn. Thus the
results are noisy. To reduce noise increase the number of resampling iterations.
You can define the resampling method in the resampling argument of generate-
LearningCurveData. It is also possible to pass a ResampleInstance (which is a
result of makeResampleInstance) to make resampling consistent for all passed
learners and each step of increasing the number of observations.

24.1 Plotting the learning curve

The mlr function generateLearningCurveData can generate the data for learning
curves for multiple learners and multiple performance measures at once. With
plotLearningCurve the result of generateLearningCurveData can be plotted us-
ing ggplot2. plotLearningCurve has an argument facet which can be either
“measure” or “learner”. By default facet = "measure" and facetted subplots
are created for each measure input to generateLearningCurveData. If facet
= "measure" learners are mapped to color, and vice versa.

r = generateLearningCurveData(
learners = list("classif.rpart", "classif.knn"),
task = sonar.task,
percs = seq(0.1, 1, by = 0.2),
measures = list(tp, fp, tn, fn),
resampling = makeResampleDesc(method = "CV", iters = 5),
show.info = FALSE)

plotLearningCurve(r)

212

http://www.rdocumentation.org/packages/mlr/functions/benchmark.html
http://www.rdocumentation.org/packages/mlr/functions/makeDownsampleWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/makeDownsampleWrapper.html
http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html
http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleInstance.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurve.html
http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html
http://www.rdocumentation.org/packages/ggplot2/
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurve.html
http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html

24.1 Plotting the learning curve 24 LEARNING CURVE ANALYSIS

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

True positives False positives

True negatives False negatives

14

15

16

17

18

19

4

8

12

16

6

9

12

15

4

5

6

7

8

0.25 0.50 0.75 0.25 0.50 0.75
percentage

pe
rf

or
m

an
ce learner

●

●

classif.knn

classif.rpart

What happens in generateLearningCurveData is the following: Each learner will
be internally wrapped in a DownsampleWrapper. To measure the performance
at the first step of percs, say 0.1, first the data will be split into a training and
a test set according to the given resampling strategy. Then a random sample
containing 10% of the observations of the training set will be drawn and used
to train the learner. The performance will be measured on the complete test set.
These steps will be repeated as defined by the given resampling method and for
each value of percs.

In the first example a simplified usage of the learners argument was used, so
that it’s sufficient to give the name. It is also possible to create a learner the
usual way and even to mix it. Make sure to give different ids in this case.

lrns = list(
makeLearner(cl = "classif.ksvm", id = "ksvm1" , sigma = 0.2, C =

2),
makeLearner(cl = "classif.ksvm", id = "ksvm2" , sigma = 0.1, C =

213

http://www.rdocumentation.org/packages/mlr/functions/generateLearningCurveData.html
http://www.rdocumentation.org/packages/mlr/functions/makeDownsampleWrapper.html

24.1 Plotting the learning curve 24 LEARNING CURVE ANALYSIS

1),
"classif.randomForest"

)
rin = makeResampleDesc(method = "CV", iters = 5)
lc = generateLearningCurveData(learners = lrns, task = sonar.task,

percs = seq(0.1, 1, by = 0.1), measures = acc,
resampling = rin, show.info = FALSE)

plotLearningCurve(lc)

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.25 0.50 0.75 1.00
percentage

pe
rf

or
m

an
ce learner

●

●

●

classif.randomForest

ksvm1

ksvm2

We can display performance on the train set as well as the test set:

rin2 = makeResampleDesc(method = "CV", iters = 5, predict = "both")
lc2 = generateLearningCurveData(learners = lrns, task = sonar.task,

percs = seq(0.1, 1, by = 0.1),
measures = list(acc,setAggregation(acc, train.mean)), resampling =

rin2,
show.info = FALSE)

plotLearningCurve(lc2, facet = "learner")

214

25 EXPLORING LEARNER PREDICTIONS

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

classif.randomForest ksvm1 ksvm2

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.6

0.8

1.0

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
percentage

pe
rf

or
m

an
ce measure

●

●

Accuracy: Test mean

Accuracy: Training mean

There is also an experimental ggvis plotting function, plotLearningCurveGGVIS.
Instead of the facet argument to plotLearningCurve there is an argument
interactive which plays a similar role. As subplots are not available in ggvis,
measures or learners are mapped to an interactive sidebar which allows selection
of the displayed measures or learners. The other feature is mapped to color.

plotLearningCurveGGVIS(r, interactive = "measure")

25 Exploring Learner Predictions

Learners use features to make predictions but how those features are used is
often not apparent. mlr can estimate the dependence of a learned function on
a subset of the feature space using generatePartialDependenceData.

Partial dependence plots reduce the potentially high dimensional function esti-

215

http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurveGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/plotLearningCurve.html
http://www.rdocumentation.org/packages/ggvis/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html

25 EXPLORING LEARNER PREDICTIONS

mated by the learner, and display a marginalized version of this function in a
lower dimensional space. For example suppose Y = f(X) + ϵ, where E[ϵ|X] = 0.
With (X, Y) pairs drawn independently from this statistical model, a learner
may estimate f̂ , which, if X is high dimensional can be uninterpretable. Sup-
pose we want to approximate the relationship between some subset of X. We
partition X into two sets, Xs and Xc such that X = Xs ∪ Xc, where Xs is a
subset of X of interest.

The partial dependence of f on Xc is

fXs = EXcf(Xs, Xc).

Xc is integrated out. We use the following estimator:

f̂Xs = 1
N

N∑
i=1

f̂(Xs, xic).

The individual conditional expectation of an observation can also be estimated
using the above algorithm absent the averaging, giving f̂

(i)
Xs

. This allows the
discovery of features of f̂ that may be obscured by an aggregated summary of
f̂ .

The partial derivative of the partial dependence function, ∂f̂Xs

∂Xs
, and the in-

dividual conditional expectation function, ∂f̂
(i)
Xs

∂Xs
, can also be computed. For

regression and survival tasks the partial derivative of a single feature Xs is the
gradient of the partial dependence function, and for classification tasks where
the learner can output class probabilities the Jacobian. Note that if the learner
produces discontinuous partial dependence (e.g., piecewise constant functions
such as decision trees, ensembles of decision trees, etc.) the derivative will be
0 (where the function is not changing) or trending towards positive or negative
infinity (at the discontinuities where the derivative is undefined). Plotting the
partial dependence function of such learners may give the impression that the
function is not discontinuous because the prediction grid is not composed of all
discontinuous points in the predictor space. This results in a line interpolat-
ing that makes the function appear to be piecewise linear (where the derivative
would be defined except at the boundaries of each piece).

The partial derivative can be informative regarding the additivity of the learned
function in certain features. If f̂

(i)
Xs

is an additive function in a feature Xs, then
its partial derivative will not depend on any other features (Xc) that may have
been used by the learner. Variation in the estimated partial derivative indicates
that there is a region of interaction between Xs and Xc in f̂ . Similarly, instead
of using the mean to estimate the expected value of the function at different
values of Xs, instead computing the variance can highlight regions of interaction
between Xs and Xc.

216

25.1 Generating partial dependences25 EXPLORING LEARNER PREDICTIONS

See Goldstein, Kapelner, Bleich, and Pitkin (2014) for more details and their
package ICEbox for the original implementation. The algorithm works for any
supervised learner with classification, regression, and survival tasks.

25.1 Generating partial dependences

Our implementation, following mlr’s visualization pattern, consists of the above
mentioned function generatePartialDependenceData, as well as two visualiza-
tion functions, plotPartialDependence and plotPartialDependenceGGVIS. The
former generates input (objects of class PartialDependenceData) for the latter.

The first step executed by generatePartialDependenceData is to generate a fea-
ture grid for every element of the character vector features passed. The data
are given by the input argument, which can be a Task or a data.frame. The
feature grid can be generated in several ways. A uniformly spaced grid of length
gridsize (default 10) from the empirical minimum to the empirical maximum
is created by default, but arguments fmin and fmax may be used to override
the empirical default (the lengths of fmin and fmax must match the length of
features). Alternatively the feature data can be resampled, either by using a
bootstrap or by subsampling.

lrn.classif = makeLearner("classif.ksvm", predict.type = "prob")
fit.classif = train(lrn.classif, iris.task)
pd = generatePartialDependenceData(fit.classif, iris.task,

"Petal.Width")
pd
#> PartialDependenceData
#> Task: iris-example
#> Features: Petal.Width
#> Target: setosa, versicolor, virginica
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: FALSE
#> Class Probability Petal.Width
#> 1 setosa 0.003322617 0.1000000
#> 2 setosa 0.002960777 0.3666667
#> 3 setosa 0.002538716 0.6333333
#> 4 setosa 0.002166829 0.9000000
#> 5 setosa 0.001726009 1.1666667
#> 6 setosa 0.001247128 1.4333333
#> ... (30 rows, 3 cols)

As noted above, Xs does not have to be unidimensional. If it is not, the
interaction flag must be set to TRUE. Then the individual feature grids are
combined using the Cartesian product, and the estimator above is applied, pro-
ducing the partial dependence for every combination of unique feature values.

217

http://arxiv.org/abs/1309.6392
http://www.rdocumentation.org/packages/ICEbox/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependenceGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/PartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html

25.1 Generating partial dependences25 EXPLORING LEARNER PREDICTIONS

If the interaction flag is FALSE (the default) then by default Xs is assumed
unidimensional, and partial dependencies are generated for each feature sepa-
rately. The resulting output when interaction = FALSE has a column for each
feature, and NA where the feature was not used.

pd.lst = generatePartialDependenceData(fit.classif, iris.task,
c("Petal.Width", "Petal.Length"), FALSE)

head(pd.lst$data)
#> Class Probability Petal.Width Petal.Length
#> 1 setosa 0.003322617 0.1000000 NA
#> 2 setosa 0.002960777 0.3666667 NA
#> 3 setosa 0.002538716 0.6333333 NA
#> 4 setosa 0.002166829 0.9000000 NA
#> 5 setosa 0.001726009 1.1666667 NA
#> 6 setosa 0.001247128 1.4333333 NA

tail(pd.lst$data)
#> Class Probability Petal.Width Petal.Length
#> 55 virginica 0.001337557 NA 3.622222
#> 56 virginica 0.002076363 NA 4.277778
#> 57 virginica 0.002936409 NA 4.933333
#> 58 virginica 0.004003572 NA 5.588889
#> 59 virginica 0.004733228 NA 6.244444
#> 60 virginica 0.004828389 NA 6.900000

pd.int = generatePartialDependenceData(fit.classif, iris.task,
c("Petal.Width", "Petal.Length"), TRUE)

pd.int
#> PartialDependenceData
#> Task: iris-example
#> Features: Petal.Width, Petal.Length
#> Target: setosa, versicolor, virginica
#> Derivative: FALSE
#> Interaction: TRUE
#> Individual: FALSE
#> Class Probability Petal.Width Petal.Length
#> 1 setosa 0.004590017 0.1000000 1
#> 2 setosa 0.004549707 0.3666667 1
#> 3 setosa 0.004306317 0.6333333 1
#> 4 setosa 0.003833908 0.9000000 1
#> 5 setosa 0.003163950 1.1666667 1
#> 6 setosa 0.002499523 1.4333333 1
#> ... (300 rows, 4 cols)

At each step in the estimation of f̂Xs a set of predictions of length N is generated.
By default the mean prediction is used. For classification where predict.type

218

25.1 Generating partial dependences25 EXPLORING LEARNER PREDICTIONS

= "prob" this entails the mean class probabilities. However, other summaries of
the predictions may be used. For regression and survival tasks the function used
here must either return one number or three, and, if the latter, the numbers
must be sorted lowest to highest. For classification tasks the function must
return a number for each level of the target feature.

As noted, the fun argument can be a function which returns three numbers
(sorted low to high) for a regression task. This allows further exploration of
relative feature importance. If a feature is relatively important, the bounds
are necessarily tighter because the feature accounts for more of the variance
of the predictions, i.e., it is “used” more by the learner. More directly setting
fun = var identifies regions of interaction between Xs and Xc.

lrn.regr = makeLearner("regr.ksvm")
fit.regr = train(lrn.regr, bh.task)
pd.regr = generatePartialDependenceData(fit.regr, bh.task, "lstat",

fun = median)
pd.regr
#> PartialDependenceData
#> Task: BostonHousing-example
#> Features: lstat
#> Target: medv
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: FALSE
#> medv lstat
#> 1 0.04891264 1.730000
#> 2 0.04694158 5.756667
#> 3 0.04416042 9.783333
#> 4 0.04088848 13.810000
#> 5 0.03874735 17.836667
#> 6 0.03795795 21.863333
#> ... (10 rows, 2 cols)

pd.ci = generatePartialDependenceData(fit.regr, bh.task, "lstat",
fun = function(x) quantile(x, c(.25, .5, .75)))

pd.ci
#> PartialDependenceData
#> Task: BostonHousing-example
#> Features: lstat
#> Target: medv
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: FALSE
#> medv lstat lower upper
#> 1 0.04891264 1.730000 0.04224388 0.05857108
#> 2 0.04694158 5.756667 0.04103013 0.05467290

219

25.1 Generating partial dependences25 EXPLORING LEARNER PREDICTIONS

#> 3 0.04416042 9.783333 0.03954525 0.04970344
#> 4 0.04088848 13.810000 0.03686733 0.04663583
#> 5 0.03874735 17.836667 0.03263138 0.04537266
#> 6 0.03795795 21.863333 0.02961091 0.04380820
#> ... (10 rows, 4 cols)

pd.classif = generatePartialDependenceData(fit.classif, iris.task,
"Petal.Length", fun = median)

pd.classif
#> PartialDependenceData
#> Task: iris-example
#> Features: Petal.Length
#> Target: setosa, versicolor, virginica
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: FALSE
#> Class Probability Petal.Length
#> 1 setosa 0.0020672526 1.000000
#> 2 setosa 0.0016180969 1.655556
#> 3 setosa 0.0011417357 2.311111
#> 4 setosa 0.0006253858 2.966667
#> 5 setosa 0.0003053274 3.622222
#> 6 setosa 0.0001636896 4.277778
#> ... (30 rows, 3 cols)

In addition to bounds based on a summary of the distribution of the conditional
expectation of each observation, learners which can estimate the variance of
their predictions can also be used. The argument bounds is a numeric vector of
length two which is added (so the first number should be negative) to the point
prediction to produce a confidence interval for the partial dependence. The
default is the .025 and .975 quantiles of the Gaussian distribution.

fit.se = train(makeLearner("regr.randomForest", predict.type =
"se"), bh.task)

pd.se = generatePartialDependenceData(fit.se, bh.task, c("lstat",
"crim"))

head(pd.se$data)
#> medv lstat crim lower upper
#> 1 0.06181972 1.730000 NA 0.05403563 0.06960382
#> 2 0.05108872 5.756667 NA 0.04579346 0.05638399
#> 3 0.04611423 9.783333 NA 0.04166783 0.05056063
#> 4 0.04340489 13.810000 NA 0.03982038 0.04698941
#> 5 0.04032231 17.836667 NA 0.03688461 0.04376001
#> 6 0.03907523 21.863333 NA 0.03543719 0.04271327

tail(pd.se$data)

220

25.1 Generating partial dependences25 EXPLORING LEARNER PREDICTIONS

#> medv lstat crim lower upper
#> 15 0.04274914 NA 39.54849 0.03831376 0.04718452
#> 16 0.04271330 NA 49.43403 0.03827798 0.04714863
#> 17 0.04267735 NA 59.31957 0.03824485 0.04710986
#> 18 0.04266763 NA 69.20512 0.03822330 0.04711196
#> 19 0.04266790 NA 79.09066 0.03822217 0.04711363
#> 20 0.04266808 NA 88.97620 0.03822240 0.04711377

As previously mentioned if the aggregation function is not used, i.e., it is the
identity, then the conditional expectation of f̂

(i)
Xs

is estimated. If individual
= TRUE then generatePartialDependenceData returns n partial dependence esti-
mates made at each point in the prediction grid constructed from the features.

pd.ind.regr = generatePartialDependenceData(fit.regr, bh.task,
"lstat", individual = TRUE)

pd.ind.regr
#> PartialDependenceData
#> Task: BostonHousing-example
#> Features: lstat
#> Target: medv
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: TRUE
#> Predictions centered: FALSE
#> medv lstat idx
#> 1 0.05170865 1.730000 1
#> 2 0.04986517 5.756667 1
#> 3 0.04773732 9.783333 1
#> 4 0.04571831 13.810000 1
#> 5 0.04399625 17.836667 1
#> 6 0.04258522 21.863333 1
#> ... (5060 rows, 3 cols)

The resulting output, particularly the element data in the returned object, has
an additional column idx which gives the index of the observation to which the
row pertains.

For classification tasks this index references both the class and the observation
index.

pd.ind.classif = generatePartialDependenceData(fit.classif,
iris.task, "Petal.Length", individual = TRUE)

pd.ind.classif
#> PartialDependenceData
#> Task: iris-example
#> Features: Petal.Length
#> Target: setosa, versicolor, virginica

221

http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html

25.1 Generating partial dependences25 EXPLORING LEARNER PREDICTIONS

#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: TRUE
#> Predictions centered: FALSE
#> Class Probability Petal.Length idx
#> 1 setosa 0.006542702 1 1.setosa
#> 2 setosa 0.006498236 1 2.setosa
#> 3 setosa 0.006543677 1 3.setosa
#> 4 setosa 0.006530507 1 4.setosa
#> 5 setosa 0.006537663 1 5.setosa
#> 6 setosa 0.006505842 1 6.setosa
#> ... (4500 rows, 4 cols)

Individual estimates of partial dependence can also be centered by predictions
made at all n observations for a particular point in the prediction grid created
by the features. This is controlled by the argument center which is a list of the
same length as the length of the features argument and contains the values of
the features desired.

iris = getTaskData(iris.task)
pd.ind.classif = generatePartialDependenceData(fit.classif,

iris.task, "Petal.Length", individual = TRUE,
center = list("Petal.Length" = min(iris$Petal.Length)))

Partial derivatives can also be computed for individual partial dependence esti-
mates and aggregate partial dependence. This is restricted to a single feature at
a time. The derivatives of individual partial dependence estimates can be useful
in finding regions of interaction between the feature for which the derivative is
estimated and the features excluded.

pd.regr.der = generatePartialDependenceData(fit.regr, bh.task,
"lstat", derivative = TRUE)

head(pd.regr.der$data)
#> medv lstat
#> 1 -0.0004201359 1.730000
#> 2 -0.0007018065 5.756667
#> 3 -0.0008593447 9.783333
#> 4 -0.0008690991 13.810000
#> 5 -0.0007506974 17.836667
#> 6 -0.0005460985 21.863333

pd.regr.der.ind = generatePartialDependenceData(fit.regr, bh.task,
"lstat", derivative = TRUE,

individual = TRUE)
head(pd.regr.der.ind$data)
#> medv lstat idx
#> 1 -0.1937511 1.730000 1

222

25.2 Functional ANOVA 25 EXPLORING LEARNER PREDICTIONS

#> 2 -0.2593687 5.756667 1
#> 3 -0.2668634 9.783333 1
#> 4 -0.2367123 13.810000 1
#> 5 -0.1961139 17.836667 1
#> 6 -0.1593204 21.863333 1

pd.classif.der = generatePartialDependenceData(fit.classif,
iris.task, "Petal.Width", derivative = TRUE)

head(pd.classif.der$data)
#> Class Probability Petal.Width
#> 1 setosa -0.0009862568 0.1000000
#> 2 setosa -0.0016151523 0.3666667
#> 3 setosa -0.0014599287 0.6333333
#> 4 setosa -0.0014418684 0.9000000
#> 5 setosa -0.0018453612 1.1666667
#> 6 setosa -0.0015961176 1.4333333

pd.classif.der.ind = generatePartialDependenceData(fit.classif,
iris.task, "Petal.Width", derivative = TRUE,

individual = TRUE)
head(pd.classif.der.ind$data)
#> Class Probability Petal.Width idx
#> 1 setosa 0.02479474 0.1 1.setosa
#> 2 setosa 0.01710561 0.1 2.setosa
#> 3 setosa 0.01646252 0.1 3.setosa
#> 4 setosa 0.01530718 0.1 4.setosa
#> 5 setosa 0.02608577 0.1 5.setosa
#> 6 setosa 0.03925531 0.1 6.setosa

25.2 Functional ANOVA

Hooker (2004) proposed the decomposition of a learned function f̂ as a sum of
lower dimensional functions

f(x) = g0 +
p∑

i=1
gi(Xi) +

∑
i ̸=j

gij(xij) + . . .

where p is the number of features. generateFunctionalANOVAData estimates
the individual g functions using partial dependence. When functions depend
only on one feature, they are equivalent to partial dependence, but a g function
which depends on more than one feature is the “effect” of only those features:
lower dimensional “effects” are removed.

ĝu(X) = 1
N

N∑
i=1

(
f̂(X) −

∑
v⊂u

gv(X)

)

223

http://dl.acm.org/citation.cfm?id=1014122
http://www.rdocumentation.org/packages/mlr/functions/generateFunctionalANOVAData.html

25.2 Functional ANOVA 25 EXPLORING LEARNER PREDICTIONS

Here u is a subset of 1, . . . , p. When |v| = 1 gv can be directly computed by
computing the bivariate partial dependence of f̂ on Xu and then subtracting
off the univariate partial dependences of the features contained in v.

Although this decomposition is generalizable to classification it is currently only
available for regression tasks.

lrn.regr = makeLearner("regr.ksvm")
fit.regr = train(lrn.regr, bh.task)

fa = generateFunctionalANOVAData(fit.regr, bh.task, "lstat", depth =
1, fun = median)

fa
#> FunctionalANOVAData
#> Task: BostonHousing-example
#> Features: lstat
#> Target: medv
#>
#>
#> effect medv lstat
#> 1 lstat 0.04920425 1.730000
#> 2 lstat 0.04693565 5.756667
#> 3 lstat 0.04417877 9.783333
#> 4 lstat 0.04089023 13.810000
#> 5 lstat 0.03874968 17.836667
#> 6 lstat 0.03756709 21.863333
#> ... (10 rows, 3 cols)

pd.regr = generatePartialDependenceData(fit.regr, bh.task, "lstat",
fun = median)

pd.regr
#> PartialDependenceData
#> Task: BostonHousing-example
#> Features: lstat
#> Target: medv
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: FALSE
#> medv lstat
#> 1 0.04920425 1.730000
#> 2 0.04693565 5.756667
#> 3 0.04417877 9.783333
#> 4 0.04089023 13.810000
#> 5 0.03874968 17.836667
#> 6 0.03756709 21.863333
#> ... (10 rows, 2 cols)

224

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

The depth argument is similar to the interaction argument in generatePar-
tialDependenceData but instead of specifying whether all of joint “effect” of
all the features is computed, it determines whether “effects” of all subsets of
the features given the specified depth are computed. So, for example, with p
features and depth 1, the univariate partial dependence is returned. If, instead,
depth = 2, then all possible bivariate functional ANOVA effects are returned.
This is done by computing the univariate partial dependence for each feature
and subtracting it from the bivariate partial dependence for each possible pair.

fa.bv = generateFunctionalANOVAData(fit.regr, bh.task, c("crim",
"lstat", "age"),

depth = 2)
fa.bv
#> FunctionalANOVAData
#> Task: BostonHousing-example
#> Features: crim, lstat, age
#> Target: medv
#>
#>
#> effect medv crim lstat age
#> 1 crim:lstat -0.04484254 0.006320 1.73 NA
#> 2 crim:lstat -0.04588887 9.891862 1.73 NA
#> 3 crim:lstat -0.04901577 19.777404 1.73 NA
#> 4 crim:lstat -0.05228793 29.662947 1.73 NA
#> 5 crim:lstat -0.05452354 39.548489 1.73 NA
#> 6 crim:lstat -0.05585069 49.434031 1.73 NA
#> ... (300 rows, 5 cols)

names(table(fa.bv$data$effect)) ## interaction effects estimated
#> [1] "crim:age" "crim:lstat" "lstat:age"

25.3 Plotting partial dependences

Results from generatePartialDependenceData and generateFunctionalANOVA-
Data can be visualized with plotPartialDependence and plotPartialDepen-
denceGGVIS.

With one feature and a regression task the output is a line plot, with a point
for each point in the corresponding feature’s grid.

plotPartialDependence(pd.regr)

225

http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html
http://www.rdocumentation.org/packages/mlr/functions/generateFunctionalANOVAData.html
http://www.rdocumentation.org/packages/mlr/functions/generateFunctionalANOVAData.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependenceGGVIS.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependenceGGVIS.html

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

●

●

●

●

●

●

●

●
●

●

0.040

0.045

0 10 20 30
lstat

m
ed

v

With a classification task, a line is drawn for each class, which gives the es-
timated partial probability of that class for a particular point in the feature
grid.

plotPartialDependence(pd.classif)

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

0.000

0.002

0.004

2 4 6
Petal.Length

P
ro

ba
bi

lit
y Class

●

●

●

setosa

versicolor

virginica

For regression tasks, when the fun argument of generatePartialDependenceData
is used, the bounds will automatically be displayed using a gray ribbon.

plotPartialDependence(pd.ci)

226

http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

●

●

●

●

●
●

● ● ●
●

0.03

0.04

0.05

0.06

0 10 20 30
lstat

m
ed

v

The same goes for plots of partial dependences where the learner has
predict.type = "se".

plotPartialDependence(pd.se)

●

●

●

●

●

● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

lstat crim

0.04

0.05

0.06

0.07

0 10 20 30 0 25 50 75
Value

m
ed

v

When multiple features are passed to generatePartialDependenceData but
interaction = FALSE, facetting is used to display each estimated bivariate
relationship.

plotPartialDependence(pd.lst)

227

http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

Petal.Width Petal.Length

0.001

0.002

0.003

0.004

0.005

0.0 0.5 1.0 1.5 2.0 2.5 2 4 6
Value

P
ro

ba
bi

lit
y Class

●

●

●

setosa

versicolor

virginica

When interaction = TRUE in the call to generatePartialDependenceData, one
variable must be chosen to be used for facetting, and a subplot for each value
in the chosen feature’s grid is created, wherein the other feature’s partial depen-
dences within the facetting feature’s value are shown. Note that this type of
plot is limited to two features.

plotPartialDependence(pd.int, facet = "Petal.Length")

228

http://www.rdocumentation.org/packages/mlr/functions/generatePartialDependenceData.html

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

● ●

●

●

●

●

●
● ● ●

●
●

●

●

●

● ●
●

●
●

● ● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ● ●

●
●

●

●

●

● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●

● ●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
● ●

●
●

●

●
●

● ● ● ● ●

●

●

● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

● ● ●

●
●

●

●
●

●
● ● ●

●

●
● ●

●

●

●

●
● ● ●

● ●
●

●

●

●

●
● ●

●

Petal.Length = 1 Petal.Length = 1.66 Petal.Length = 2.31 Petal.Length = 2.97

Petal.Length = 3.62 Petal.Length = 4.28 Petal.Length = 4.93 Petal.Length = 5.59

Petal.Length = 6.24 Petal.Length = 6.9

0.001

0.002

0.003

0.004

0.005

0.001

0.002

0.003

0.004

0.005

0.001

0.002

0.003

0.004

0.005

0.0 0.5 1.0 1.5 2.0 2.50.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

P
ro

ba
bi

lit
y Class

●

●

●

setosa

versicolor

virginica

plotPartialDependenceGGVIS can be used similarly, however, since ggvis cur-
rently lacks subplotting/facetting capabilities, the argument interact maps
one feature to an interactive sidebar where the user can select a value of one
feature.

plotPartialDependenceGGVIS(pd.int, interact = "Petal.Length")

When individual = TRUE each individual conditional expectation curve is plot-
ted.

plotPartialDependence(pd.ind.regr)

229

http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependenceGGVIS.html
http://www.rdocumentation.org/packages/ggvis/

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

●
●

●
●

●
●

● ● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●
● ● ●

●
●

●

●

●
●

● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ● ● ●

● ● ● ● ●
●

● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
●

● ● ●
●

●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ● ●
●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ● ●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ● ●
●

●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●
● ● ●

●
●

●
●

●

●

●
●

● ●
●

●

● ● ● ● ● ●
●

● ● ●

● ● ● ● ● ●
●

● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●
●

●
● ● ●

●
●

● ● ● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

● ●
●

● ● ●
●

●
●

●
● ●

●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

● ● ● ● ● ●

●
●

●
●

●
● ● ● ●

●

●

●

●

●

●
● ● ● ● ●

●
●

●
● ● ● ● ● ● ●●

●
● ● ● ● ●

● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ●

●
●

●
●

● ● ● ● ● ●

●
●

●
●

● ● ● ● ● ●

●
●

●
●

●
● ● ● ●

●

●
●

●

●
●

● ● ●
●

●

●
●

●

●

●
●

● ● ●
●

●
●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ● ● ● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ● ● ●●

●
● ● ● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

●
●

● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
● ●

● ● ● ● ●
●

●
●

● ●

● ● ● ● ●
●

●
●

● ●

●
●

●
●

●
●

● ● ● ●

● ● ● ● ● ● ● ● ● ●●
●

● ● ● ● ● ● ● ●

● ●
●

●
●

●
●

●
● ●

● ● ● ● ●
●

●
●

● ●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

● ●
●

●
●

●
●

● ● ●

● ●
●

●
●

●
●

● ● ●

●
●

●
●

● ● ● ● ●
●

● ● ●
●

●
●

● ● ● ●

● ● ●
●

●
●

● ● ● ●

●
● ● ●

●
●

● ● ●
●

● ● ● ● ●
●

● ● ● ●

● ● ● ●
●

●
● ● ● ●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

● ● ● ● ● ●
●

● ● ●

●
●

●
●

●
●

●
● ● ●●

●
● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ● ●
●

● ● ● ● ● ●

● ● ●
●

●
●

●
● ● ●

● ●
●

●
●

●
●

● ● ●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

● ●
●

●
●

●
● ● ● ●

●
●

●
●

●
●

● ● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

● ● ●
●

●

●
●

●

●

●
●

● ● ●
●

●
●

●
●

●
●

● ●
●

●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●
● ● ●

●

●

●
●

●
●

●
●

● ●
●

●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●

●
● ● ●

●

●
●

●

●

●

●
● ● ●

●

●
●

●

●

●

●
● ●

●
●

●
●

●
●

●
● ● ●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●
● ● ●

●
●

●
●

●
●

● ● ●
●

●
●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

● ●
●

● ● ●
●

●
● ●

● ● ● ● ●
●

●
●

● ●

● ●
●

● ● ●
●

●
●

●

● ● ●
●

●
●

●
●

●
●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ●
●

●
●

● ●

● ●
●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ● ● ● ●
●

●

●
●

●

● ●
●

●

●

●

●

●
● ●

● ● ●
●

●

●

●

●
● ●

● ●
● ● ●

●
●

●
● ●

● ● ● ●
●

●
●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●● ● ● ● ● ● ●

●
● ●

● ● ● ● ●
●

●
●

● ●
● ● ● ● ● ●

●
● ● ●

● ● ● ● ● ●
●

●
● ●

● ● ● ● ● ●
●

● ● ●

● ● ● ● ● ●
●

● ● ●
● ● ● ● ● ●

●
● ● ●

● ● ●
● ● ● ●

●
● ●

● ● ● ● ●
●

●
●

●
●● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●
●

●
● ●

● ● ● ● ● ●
●

●
● ●

●
●

●

●

●

●

●
●

● ●

●
●

● ● ● ●
● ● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●

●

●

●
●

●
● ●

● ● ● ● ● ●
●

●
● ●

●
●

●
●

●

●
●

●
● ●

● ●
●

●
●

●
●

●
● ●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

● ● ●
●

●
●

●

●
●

●
● ● ● ● ● ●

●
●

● ●

●
●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●
● ●

● ● ● ● ● ●
●

●
● ●

● ●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●
● ● ● ●

●
●

●
●

● ● ● ● ●
●

●

●

●

●
●

● ● ● ●
●

●

●

●

●
● ● ● ● ● ●●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
● ● ● ●

●

●
●

●
●

● ● ● ● ● ●

●
●

●

●
●

● ● ● ●
●

●
●

●

●

●
● ● ● ● ●

●
●

●

●

●
●

● ● ● ●

●
●

●

●
●

● ● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

●

●
● ●●

●
●

● ● ● ●
● ● ●●

●
● ● ● ● ●

● ● ●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

● ● ●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●
●

●

●
●

●
●

● ● ● ● ● ●

●

●

●

●
● ● ● ●

●
●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●
●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ●
●

● ●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

● ● ●

●
●

●
●

●
●

●
● ● ●

● ● ● ● ● ●
●

● ● ●● ● ●
●

●
● ● ● ● ●

● ● ● ● ● ●
●

●
●

●
● ● ● ● ● ●

● ● ● ●

● ● ● ● ●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

●
●

● ●

● ● ● ● ● ●
●

●
● ●

● ● ●
●

●
●

●
● ● ●

● ● ● ●
●

●
●

● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
●

● ● ● ●
●

●
●

● ● ●

● ● ●
●

●
●

●
● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ●●

●
● ● ● ● ● ● ● ●●

●
●

● ● ●
●

●
●

●

●

●

●
● ● ● ●

●
●

●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ●●

●
●

● ● ● ● ●
●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●
● ● ● ●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

● ● ● ●
●

●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
●

● ● ● ●
●

●
●

●
●

● ● ● ● ● ●
●

●
● ● ● ●

●
● ● ●

●
●

●

●

●
●

●
● ● ●

●
● ● ● ● ●

●
● ● ●

●
● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
● ● ● ● ● ● ●

●
●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
● ● ● ●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

●
●

● ● ● ● ● ● ● ●

●
●

●
●

● ● ● ● ● ●

●
●

●
●

●
● ● ● ● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

● ● ●
● ● ● ● ●

● ●

● ● ●
● ● ● ●

●
●

●● ●
●

●
● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ● ● ●
●

●
●

● ● ●
● ● ● ● ● ●

● ● ● ●

● ●
●

●
●

●
●

● ● ●

● ●
●

●
●

●
● ● ● ●

● ● ● ● ● ● ● ● ●
●

0.025

0.050

0.075

0.100

0 10 20 30
lstat

m
ed

v

When the individual curves are centered by subtracting the individual condi-
tional expectations estimated at a particular value of Xs this results in a fixed
intercept which aids in visualizing variation in predictions made by f̂

(i)
Xs

.

plotPartialDependence(pd.ind.classif)

●● ●●●
●●●●●●●
●
●●

●

●

●

●

●

●

●

●

●●●●

●
●
●

●

●

●
●●●
●●
●●
●

●
●●

●
●●
●●
●
●
●●

●
●

●

●
●●
●

●

●

●
●
●
●
●
●

●

●●
●
●●●●
●●●

●●

●

●
●

●

●
●●
●●
●●
●●
●
●●

●
●
●●
●●●
●
●●●
●●
●
●

●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●●

●

●●●●
●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●
●●
●●

●

●●
●

●

●

●

●
●●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●
●
●●
●

●●

●

●

●

●

●
●●

●●

●●
●
●

●

●●

●

●

●●

●●●

●

●●●
●●
●

●

●

●
●●
●●
●
●

●
●
●●
●
●

●●●●●●
●●
●●
●

●

●●●●●●
●
●

●●
●●

●

●●

●

●●
●

●

●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●●●●

●

●●

●

●

●

●

●
●●
●
●

●●

●

●

●

●●

●

●

●●

●●
●

●

●●●
●●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●●

●●●
●●●

●
●

●

●

●

●

●
●●
●
●●

●
●

●
●
●●

●

●●

●

●●

●

●

●

●

●
●
●
●
●●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●●
●
●

●

●
●●

●

●●
●●●●
●

●●

●●●

●

●●●●
●
●●

●

●

●
●●

●

●

●●
●●●●●
●●●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●●●
●
●●

●
●
●

●

●

●

●
●●
●
●●

●
●

●
●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●
●●
●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●
●
●●●
●

●●●
●
●●●

●
●

●
●●
●

●●●●●●●
●
●

●●
●

●

●
●●●●
●●●●●
●
●●●

●

●
●●
●●
●●

●
●

●
●
●
●

●●
●
●
●●
●
●●

●

●

●
●
●●●●●

●●

●●
●
●

●
●●

●

●
●

●

●

●

●
●
●

●
●
●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●●●●●●
●●●●●
●
●●●
●
●●

●
●●●
●●
●●●●●
●●●
●●
●●●●●●
●
●●●
●
●●●

●
●
●●
●●●●
●●
●●
●
●
●●
●
●
●●
●●
●

●

●
●●
●●●●●

●●

●●
●●●●●

●

●
●
●

●

●
●
●
●

●
●
●
●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●
●
●●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●●●●
●
●
●
●●
●
●

●
●
●●●●

●

●
●
●
●
●●
●●●●●●●●
●
●●●●●●●
●
●●●
●
●●●

●●●●
●●●●●●●●●
●●
●
●●
●●●●
●

●
●●●●●●●●

●●
●●
●●●●●
●
●
●
●
●
●
●●●

●
●
●

●
●

●●

●

●
●
●
●

●

●

●

●
●
●

●

●●●
●

●●●
●●●

●
●
●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●
●●●

●

●
●
●●
●
●

●
●
●●●●

●

●

●

●
●
●●
●●●●●●
●●
●

●●●●●●●

●

●●●
●
●●●

●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●

●
●●

●

●
●●

●

●●
●●

●

●

●

●
●●

●

●
●●
●

●●●●●●
●
●
●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●●
●

●

●
●
●●
●
●

●
●

●●
●●

●

●

●

●

●
●●
●●●
●●●
●●
●

●
●●●●●●

●

●●●

●
●●●

●● ●●●
●●●●●●●●●

●
●●

●

●
●

●

●

●
●●
●●●●
●●
●
●

●

●

●●●●●●●
●
●
●●
●
●
●
●
●●●

●●

●
●
●
●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●●

●

●●

●

●
●
●

●●

●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●
●
●●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●
●
●●●
●●

●
●●
●
●

●
●

●
●●
●●
●
●●

●

●●
●
●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●
●●
●
●
●●
●●
●●●●●●
●●●
●
●

●
●●●●
●●

●●
●●●●
●
●●

●

●●
●

●

●
●
●●

●
●
●

●

●
●●

●

●●
●●

●
●

●
●
●●

●

●●●●
●●●●●●
●

●
●●

●

●●●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●
●●

●
●

●●

●
●

●●●
●●●

●
●●

●

●

●

●
●●
●
●
●

●●

●
●●
●

●
●●

●

●

●

●

●

●

●
●
●

●●●

●

●●
●

●

●
●
●●

●
●

●
●●●

●
●●●
●

●●●●●●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●
●●

●●

●
●

●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●
●●
●

●

●●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●●

●

●

●

●

●●

●●
●
●●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●
●

●

●●

●●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●
●
●

●●

●●

●

●

●●
●●
●
●●
●
●●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●
●
●
●

●

●●

●●●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●
●●

●

●
●
●

●●

●

●

●
●
●●●●●
●
●
●
●●
●
●●
●
●
●
●
●

●
●
●

●

●

●●
●●●●

●

●●

●●●

●●
●●●
●

●

●

●

●
●●
●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●●

●●

●
●
●

●

●

●●

●
●

●●

●
●●

●

●
●
●

●
●

●

●

●●●●●●●
●
●●●●●●●●
●
●
●●
●
●
●

●

●●
●
●●●●
●

●●

●●●
●●
●●
●●

●
●
●
●●●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●●

●●

●●
●

●

●

●●

●●

●●

●
●●

●

●
●
●

●●

●

●

●● ●●

●●●
●
●
●●

●

●

●
●

●●●
●
●
●●●●●
●●●●●●●●
●●●
●●
●●
●●
●
●●●●

●

●
●
●
●

●

●

●

●
●

●

●●●
●●

●

●●
●●

●
●

●

●●

●

●
●
●

●

●
●
●●

●

●

●

●●

●●

●●

●●

●

●●

●

●
●●

●●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●●●

●

●

●
●
●
●
●
●●
●●●●●
●

●●
●

●
●
●●

●●

●
●●

●●

●

●
●
●
●

●

●

●

●
●

●

●
●
●

●●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●●●●●●
●●
●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●
●●
●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●●
●
●
●●●●
●

●●
●

●
●
●
●
●●

●●●

●
●

●

●
●
●
●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●●
●●●
●
●
●
●●●
●
●

●●●●●●●●
●

●
●●●●●
●●
●
●
●●●●
●
●

●●●
●

●●●●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●●
●
●
●
●●●
●

●
●●

●●●
●
●●

●●●

●
●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●●●●
●
●
●
●●●●

●
●●●
●●
●

●
●

●

●

●

●●
●●
●●

●

●●
●●●

●●

●●
●

●

●

●

●

●●●
●

●
●
●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●
●

●

●
●
●
●
●●

●●
●
●●

●

●

●

●
●
●

●

●●

●
●

●

●●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●
●

●

●

●
●

●●●●
●
●
●
●●
●●

●●●●
●●
●

●

●

●

●

●

●●
●
●
●
●

●

●●

●●●

●●

●●●

●

●

●

●

●
●●
●

●

●●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●
●
●
●●

●●

●
●
●●●●●●
●
●●
●●
●●●●
●●
●

●

●
●

●

●

●●
●●
●●

●

●●

●●●

●●
●●
●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●●●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●
●

●
●●

●

●
●
●

●●

●

●

●●
●●●●●●
●
●●●●
●●●●
●●
●

●
●
●

●

●
●●
●●
●●

●

●●

●●●

●●
●●
●●

●

●
●
●●●
●

●

●●●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●●

●

●●
●●

●

●

●

●●
●
●
●

●

●

●●

●●

●●●

●

●

●
●

●●

●●

●
●●

●

●
●
●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●
●●
●

●●●●●
●●●●
●●
●
●●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●●

●
●●●
●●

●
●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●●

●

●

●

●

●●●
●●●

●

●●

●●

●
●
●

●

●

●
●

●●

●●
●

●●
●
●
●
●
●
●

●

●

−0.0050

−0.0025

0.0000

0.0025

2 4 6
Petal.Length

S
pe

ci
es

 (
ce

nt
er

ed
)

Class
●

●

●

setosa

versicolor

virginica

Plotting partial derivative functions works the same as partial dependence. Be-
low are estimates of the derivative of the mean aggregated partial dependence
function, and the individual partial dependence functions for a regression and
a classification task respectively.

plotPartialDependence(pd.regr.der)

230

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

●

●

● ●

●

●

●

●

●

●

−5e−04

0e+00

0 10 20 30
lstat

m
ed

v
(d

er
iv

at
iv

e)

This suggests that f̂ is not additive in lstat except in the neighborhood of 25.

plotPartialDependence(pd.regr.der.ind)

●

● ●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

● ● ●
● ●

●

●

●

● ● ● ● ● ●
●

●

●

●

●
● ● ●

●
● ●

●

●

●

● ● ● ● ● ●
●

●

●

●

●
● ● ●

●
●

●

●

●

●

● ●
● ● ● ● ●

●

●

●

●
●

●
● ●

●
● ● ●

●

●
●

● ● ● ● ●

●

●

●

● ● ● ● ●
●

●

●

●

●

●
●

● ● ●
● ●

●

●

●

●
●

● ●
●

●
● ●

●
●

● ● ● ● ● ●

●

●

●

●

●
●

●
● ● ● ● ●

●
●

●

●
● ●

●
● ●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

● ●
●

●

●
●

●

●●
●

● ●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
● ●

●
● ● ● ● ● ●

●
● ●

●
●

● ● ● ● ●

● ● ● ● ● ● ●
●

●

●

●

●

●
● ●

●
● ● ●

●

●
●

●
● ●

●
● ● ●

●

● ● ●
●

● ●

●

●

●

●

● ● ●
●

● ●
●

●

●

●

●
●

● ● ● ● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●
● ● ● ●

● ●
●

●

●

●
● ● ● ●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
● ● ●

●

●

● ●

●

●

●

●
● ●

●

● ●
●

●

●

●
●

● ●

●
● ●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
● ● ●

● ●

●

●

●

●
● ● ●

●

● ●
●

●

●
●

● ● ● ●

●
●

●

●

●
● ● ● ● ●

● ●
●

●

●
●

●
● ● ●

●
●

● ● ● ● ● ● ●
●

● ●
●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ● ●

●●
●

● ●
●

●
● ●

●

●

●
●

● ● ●
● ●

●

●

●

●
●

● ●
●

●
● ●

●

●

●
●

● ● ●
● ● ●

●

●

●

●

●
● ●

●

●
● ●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●

●

●
● ● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

● ●
● ●

●
●

● ●
●

●

● ● ●
●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●● ● ●
●

●

●
●

●

●

●

●
● ● ● ● ● ●

●
●

●

● ● ● ● ● ● ● ● ●
●

● ●
●

● ● ● ●
●

●

●

●

●

●
●

● ●
●

●

●

●
●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ● ●

●
●

●

●

●
●

● ● ● ●
● ●

●

●

●

●

● ● ● ●
● ●

●

●

●

●

● ● ● ● ● ●
●

●

●

●

● ● ● ●
● ●

●

●

●

●

● ● ● ●
● ●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ● ● ● ● ●
●

●

●

●

● ● ●
●

●

●
●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●
● ● ● ●

●

●

●

●
●

●
●

● ● ●
●

●

●

● ●
●

● ● ● ●
●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
● ●

●

●

●
●

●

●

● ● ●
●

●

●
● ●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●
● ●

●

● ● ●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
● ●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●
● ●

●

●
●

● ●

●
● ●

●

●

●

● ●
●

●
●

●
● ●

●

●

● ●
●

●
●

●

●

● ●
●

●

●

●

●

● ●
● ● ● ● ●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●
● ●

●

●
● ●

●

●
●

●

●
● ● ●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●
●

●
●

●

●

●

● ●

●

●
●

●
● ● ● ● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
● ● ●

●
● ● ●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
● ● ●

●

● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ● ●
●

●
● ● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

● ●
●

●
● ●

●

●

●
●

●
● ● ● ● ●

●
●

●

●
● ●

●
● ● ●

●
●

●

●
● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

●
● ● ●

●

●
●

●

●

●

●
● ● ●

●

● ●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ●
● ● ●

●
●

●

●

● ● ●
●

●

●

●
●

●

●

● ● ●
●

●

●

●

●

● ● ● ●
●

● ●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ● ●
●

●
●

●

●

●

● ●
●

●
●

●
● ●

●

● ●
●

●

●

●
●

● ●
●

● ●
●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

● ●

●

●

● ●

●

●

● ● ●
●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●

●
● ●

●
●

● ●
●

●

●

● ● ●
●

●
● ●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●
● ●

●
● ●

●

●

●

●
●

●
●

●
● ●

●

●

●
●

●
● ● ● ● ● ●

●
●

●
● ● ● ● ● ●

●
●

●

●
●

● ● ●
● ●

●

●

●

●

●

●

●
● ●

●
● ● ●

● ●
●

●

●
● ● ● ● ●

●
●

●

●

●
● ● ● ● ●

●
●

●

●

●

●
● ● ● ●

● ●

●

●

●

●

● ● ● ●

●
● ● ●

●
●

●

●

●
●

●
● ● ●

●
●

●

●

●
●

● ●
●

● ● ● ●
●

●
●

●
●

●
● ● ● ●

●

●

●

●
●

● ● ● ●
●

●

●

●

● ● ● ● ●
● ● ●

●

●

●
●

● ● ●
● ●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
● ● ● ●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
● ● ●

●
●

●

●

●
● ● ●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
● ● ●

●
●

●
●

●

●

●
● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●
●

●
●

● ● ● ●
●

●
● ●

●
●

●
●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●
●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

● ● ●
● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
● ● ●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ● ●

● ● ●

●

●

●

−1.0

−0.5

0.0

0.5

0 10 20 30
lstat

m
ed

v
(d

er
iv

at
iv

e)

This suggests that Petal.Width interacts with some other feature in the neigh-
borhood of (1.5, 2) for classes “virginica” and “versicolor”.

plotPartialDependence(pd.classif.der.ind)

231

25.3 Plotting partial dependences25 EXPLORING LEARNER PREDICTIONS

●●

●●●

●

●●
●

●

●

●●

●●●●
●●
●
●

●

●
●●●●●
●●●
●●●
●
●●
●
●●●

●●
●
●

●

●
●●●

●

●

●
●
●●●
●

●

●●●●●●
●●
●●
●●

●
●
●

●
●
●●
●●●
●●
●
●●●
●●●●●●●●
●●●●●
●
●

●●
●●

●
●
●●●
●●

●

●

●
●●

●
●

●

●
●●
●
●●●
●●●●
●●
●
●
●●●
●
●
●●
●

●
●●●●

●

●●●
●

●

●

●
●
●●●
●

●

●●
●

●●●●●●●

●●
●●
●

●

●
●●
●●
●●
●
●

●●●
●
●●
●
●●●●
●●●●●●●

●
●
●●
●●●●
●●
●●
●●
●●●●●●●●●●●
●
●●●●●●
●●
●●●●●
●●

●
●●●●
●●●●
●●●
●
●●
●
●

●
●
●
●

●
●

●

●
●
●●●

●
●●●●●●●●●
●●
●●

●●

●●

●

●●
●
●
●
●

●
●
●

●

●●
●●●●●●●●●●●●
●
●●●
●●●
●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●● ●

●
●
●

●●
●●

●
●

●●

●●

●●●●●●
●
●
●●●

●

●●●
●●
●
●●

●
●●
●

●
●●

●

●
●●

●

●
●
●
●

●●●
●●●●●●●
●
●
●●
●
●●
●●●
●●
●●●●●●●●
●●●●
●
●
●●
●
●●●●●●●●●●
●
●
●●●●●
●
●●●
●●●●●●●
●●
●●●●
●●●
●●●●●●
●●●●●●
●●●●●●●●●●●
●

●

●
●●
●●●●
●●

●●
●
●
●●●
●●●
●
●●
●●
●
●●●●●
●
●●

●
●●
●
●●
●
●
●●●

●

●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●
●●●
●●●●●●●

●●

●●●
●
●●●
●●●●●
●

●●●
●
●●●●●●●●●●●●●●

●
●
●●●●●●
●
●●●
●●●●●●●●●●
●
●●
●
●●●●
●●●●●●●●
●
●●

●

●
●●
●
●●●●

●●
●
●●●
●●●●●●●
●●
●●●
●
●●●
●●●●●●
●●●
●
●●●●●●●●●●●●●●

●
●
●●
●●
●●
●●
●●
●●
●●●●●●
●
●
●●●
●

●●●
●●●
●●

●●●●
●
●●

●
●
●●
●
●
●
●●

●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●
●●●●●●
●●
●●
●●
●●●●●●
●
●●
●●
●
●●●●
●●
●●
●●●●
●●●

●
●●●
●
●●●●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●● ●

●●●●●●●
●●●●
●●●●●●●●
●●●●●
●
●●●●●●●●
●●●●●●●
●
●●●
●
●●●●
●●●
●●●●
●
●●
●
●
●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●
●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●
●
●●●
●
●●
●
●
●
●●●●●
●●
●●●●●●●●●
●●●●●●●●
●
●●●●●
●
●●●●
●
●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●
●●
●
●●●●●
●●

●

●
●
●
●

●

●
●●●●●●●●
●
●●
●
●
●
●

●●
●

●●
●
●●●
●●
●
●
●

●

●

●

●●

●

●

●

●

●

●●●
●●●●

●●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●
●
●●●
●

●●

●●●

●

●

●●

●●●
●●
●●

●

●

●

●
●
●●
●
●
●●●●
●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●

●
●●●●

●

●

●
●

●
●●

●

●

●

●

●

●●●●●●●

●●

●●
●

●

●●

●

●●●
●

●

●

●●●

●

●
●●●●●●
●●
●●●●●

●
●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●

●
●●●●●●●●

●●●

●
●●
●●
●
●

●

●

●●

●

●
●

●●
●

●
●●●●●●●●●
●●
●●

●
●

●●

●

●●
●
●
●●

●
●
●

●

●●●●●●

●

●

●

●

●

●●●
●
●
●●

●●

●
●●

●

●
●

●
●●●●

●

●

●●●

●

●
●●●●●●●
●
●●●

●
●

●

●
●●●●●●
●●
●●
●
●
●●●●
●●
●
●●
●●

●

●●●
●●●
●●

●
●●●
●
●●

●

●●●

●

●
●
●●●●●
●
●●
●
●●●●
●
●●

●
●●●●●
●
●●●●●●●●●●●●●

●
●

●●
●

●●
●●●●
●●●
●
●●●
●
●●

●

●

●

●
●

●
●●
●
●
●●

●●

●●●

●

●●

●

●●
●●

●●

●
●

●●

●
●●●●●●●
●●●●
●
●

●

●
●●
●●●
●●
●

●●
●

●
●●●
●●●

●

●●

●
●

●

●●●●
●
●

●●

●
●●
●
●●●

●
●●●

●

●
●●
●

●●●
●
●●●●
●●
●
●
●●
●●●●
●●
●●

●
●●●●●●●●●●

●

●●●●
●
●●
●●●●
●●●●●

●
●

●●●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●
●
●
●●●●
●●●●
●●●
●
●
●

●
●●●●●●●
●
●●
●●●●●
●●

●

●
●●●●●●
●

●

●

●●●
●

●

●

●●
●

●

●

●

●●
●
●

●

●
●
●

●

●

●●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●●
●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●
●●●●
●●
●●
●●
●●●●●●●●●●●

●

●●●●●
●●●
●●
●●
●
●●

●

●
●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●●
●●●●●●
●●
●
●
●●●●●●
●
●●
●●

●

●●●●●●
●●

●
●●
●
●●
●

●

●●●
●

●
●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●●●
●●●

●

●●●

●

●●●●
●

●●●

●

●
●

●
●●
●
●
●

●●●●●●●●

●

●

●

●
●

●

●●
●●●●

●

●
●
●
●●
●●●●●
●
●●
●
●●
●●●●●

●
●●

●●●
●●●●●●
●●

●●
●●●●●●
●●●
●
●●●●
●●
●

●

●●

●
●

●

●●

●

●

●

●

●
●
●
●●
●●
●●
●●
●●●

●
●●

●

●

●

●

●
●

●

●
●●
●

●

●

●
●
●

●

●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
● ●●●●

●●●●●●●●●
●●●●●●●
●
●●
●●●●
●●●●●
●●
●●●
●●●●●●●●●
●●●●
●●●●●●●●
●●
●
●●
●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●

●

●

●●
●●●

●

●
●●●●●●●●●●●●●
●●●●●
●●
●●
●●●●●

●

●●●●

●

●
●
●

●
●●

●

●

●
●

●

●●●●●●●

●●

●●
●

●

●
●
●

●●
●
●
●
●

●
●
●

●

●
●●●●●●
●●
●●●
●
●

●●

●
●●
●●●●

●

●●
●
●●●
●
●●●●
●●●●●
●●●●●
●●●●●●●●●
●●●●●
●
●●●●

●

●●●
●
●●

●

●

●

●

●

●●●●●●●

●●

●●●

●

●●

●

●●●
●

●

●

●●●

●

●●●●●●●
●●●●●●●

●●

●
●●
●●●●
●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●

●
●

●●●

●

●
●

●
●●●●

●

●

●●●

●

●
●●●●●●●●●●
●
●
●

●●●●●●●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●

●
●●

●

●

●

●
●

●●●
●●●●

●●

●●●

●

●●

●

●●
●●

●
●

●
●

●
●

●●●●
●●
●
●
●●●●●●

●●●●●●
●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●

●●●
●●●●
●
●●
●
●●●●●●●
●●●●

●

●●●●●●●●●●

●

●●●
●
●●
●
●●
●●●●●●●

●

●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●
●●●
●●●●●
●●●●
●●●●●●
●
●●
●●●
●●●●●●
●●
●●●
●●●●●●●●●
●●●●●

●

●●●
●

●

●
●●●

●

●

●

●●
●
●

●

●
●
●

●

●

●●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●●
●●

●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●●●●●●
●●●●●●●●●●●
●
●●
●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●●●●●

●

●●●

●

●●
●●
●

●●●

●

●
●

●●
●
●
●
●

●●●●●●●●

●

●

●

●
●

●

●●
●●●●

●

● ●●●●●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●
●

●●

●●

●

●
●●
●

●

●

●
●
●●
●●●
●●
●●●●●

●
●●
●

●

●

●

●●

●

●
●●
●
●

●

●
●
●

●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●
●●●●
●●●●
●●
●●●●●●●
●●●●●●
●●
●
●
●
●
●●
●
●●●
●●●●●●●●●●●
●
●●●
●●●●●
●●
●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●

−3

−2

−1

0

1

2

3

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

S
pe

ci
es

 (
de

riv
at

iv
e)

Class
●

●

●

setosa

versicolor

virginica

Output from generateFunctionalANOVAData can also be plotted using plotPar-
tialDependence.

fa = generateFunctionalANOVAData(fit.regr, bh.task, c("crim",
"lstat"), depth = 1)

plotPartialDependence(fa)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

crim lstat

0.035

0.040

0.045

0.050

0 25 50 75 0 10 20 30
Value

m
ed

v

Interactions can often be more easily visualized by using functional ANOVA.

fa.bv = generateFunctionalANOVAData(fit.regr, bh.task, c("crim",
"lstat"), depth = 2)

plotPartialDependence(fa.bv, "tile")

232

http://www.rdocumentation.org/packages/mlr/functions/generateFunctionalANOVAData.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html
http://www.rdocumentation.org/packages/mlr/functions/plotPartialDependence.html

26 CLASSIFIER CALIBRATION

0

10

20

30

40

0 25 50 75
crim

ls
ta

t

−0.05

−0.04

medv

26 Classifier Calibration

A classifier is “calibrated” when the predicted probability of a class matches the
expected frequency of that class. mlr can visualize this by plotting estimated
class probabilities (which are discretized) against the observed frequency of said
class in the data using generateCalibrationData and plotCalibration.

generateCalibrationData takes as input Prediction, ResampleResult, Bench-
markResult, or a named list of Prediction or ResampleResult objects on a
classification (multiclass or binary) task with learner(s) that are capable of
outputting probabiliites (i.e., learners must be constructed with predict.type
= TRUE). The result is an object of class CalibrationData which has elements
proportion, data, and task. proportion gives the proportion of observations
labelled with a given class for each predicted probability bin (e.g., for observa-
tions which are predicted to have class “A” with probability (0, 0.1], what is
the proportion of said observations which have class “A”?).

lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, task = sonar.task)
pred = predict(mod, task = sonar.task)
cal = generateCalibrationData(pred)
cal$proportion

233

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generateCalibrationData.html
http://www.rdocumentation.org/packages/mlr/functions/plotCalibration.html
http://www.rdocumentation.org/packages/mlr/functions/generateCalibrationData.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/ResampleResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/BenchmarkResult.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/ResampleResult.html
http://www.rdocumentation.org/packages/mlr/functions/generateCalibrationData.html

26 CLASSIFIER CALIBRATION

#> Learner bin Class Proportion
#> 1 prediction (0.1,0.2] M 0.1060606
#> 2 prediction (0.7,0.8] M 0.7333333
#> 3 prediction [0,0.1] M 0.0000000
#> 4 prediction (0.9,1] M 0.9333333
#> 5 prediction (0.2,0.3] M 0.2727273
#> 6 prediction (0.4,0.5] M 0.4615385
#> 7 prediction (0.8,0.9] M 0.0000000
#> 8 prediction (0.5,0.6] M 0.0000000

The manner in which the predicted probabilities are discretized is controlled by
two arguments: breaks and groups. By default breaks = "Sturges" which
uses the Sturges algorithm in hist. This argument can specify other algorithms
available in hist, it can be a numeric vector specifying breakpoints for cut, or a
single integer specifying the number of bins to create (which are evenly spaced).
Alternatively, groups can be set to a positive integer value (by default groups
= NULL) in which case cut2 is used to create bins with an approximately equal
number of observations in each bin.

cal = generateCalibrationData(pred, groups = 3)
cal$proportion
#> Learner bin Class Proportion
#> 1 prediction [0.000,0.267) M 0.08860759
#> 2 prediction [0.267,0.925) M 0.51282051
#> 3 prediction [0.925,1.000] M 0.93333333

CalibrationData objects can be plotted using plotCalibration. plotCalibration
by default plots a reference line which shows perfect calibration and a “rag” plot,
which is a rug plot on the top and bottom of the graph, where the top pertains
to “positive” cases, where the predicted class matches the observed class, and
the bottom pertains to “negative” cases, where the predicted class does not
match the observed class. Perfect classifier performance would result in all the
positive cases clustering in the top right (i.e., the correct classes are predicted
with high probability) and the negative cases clustering in the bottom left.

plotCalibration(cal)

234

http://www.rdocumentation.org/packages/graphics/functions/hist.html
http://www.rdocumentation.org/packages/graphics/functions/hist.html
http://www.rdocumentation.org/packages/base/functions/cut.html
http://www.rdocumentation.org/packages/Hmisc/functions/cut2.html
http://www.rdocumentation.org/packages/mlr/functions/generateCalibrationData.html
http://www.rdocumentation.org/packages/mlr/functions/plotCalibration.html
http://www.rdocumentation.org/packages/mlr/functions/plotCalibration.html

26 CLASSIFIER CALIBRATION

●

●

●

0.00

0.25

0.50

0.75

1.00

[0
.0

00
,0

.2
67

)

[0
.2

67
,0

.9
25

)

[0
.9

25
,1

.0
00

]

Probability Bin

C
la

ss
 P

ro
po

rt
io

n

Class
● M

Because of the discretization of the probabilities, sometimes it is advantageous
to smooth the calibration plot. Though smooth = FALSE by default, setting
this option to TRUE replaces the estimated proportions with a loess smoother.

cal = generateCalibrationData(pred)
plotCalibration(cal, smooth = TRUE)

235

26 CLASSIFIER CALIBRATION

0.00

0.25

0.50

0.75

1.00

[0
,0

.1
]

(0
.1

,0
.2

]

(0
.2

,0
.3

]

(0
.3

,0
.4

]

(0
.4

,0
.5

]

(0
.5

,0
.6

]

(0
.6

,0
.7

]

(0
.7

,0
.8

]

(0
.8

,0
.9

]

(0
.9

,1
]

Probability Bin

C
la

ss
 P

ro
po

rt
io

n

Class

M

All of the above functionality works with multi-class classification as well.

lrns = list(
makeLearner("classif.randomForest", predict.type = "prob"),
makeLearner("classif.nnet", predict.type = "prob", trace = FALSE)

)
mod = lapply(lrns, train, task = iris.task)
pred = lapply(mod, predict, task = iris.task)
names(pred) = c("randomForest", "nnet")
cal = generateCalibrationData(pred, breaks = c(0, .3, .6, 1))
plotCalibration(cal)

236

27 EVALUATING HYPERPARAMETER TUNING

●

● ● ●●

●

●●

●

●

● ●

●

●

●

●

● ●

nnet randomForest

0.00

0.25

0.50

0.75

1.00

[0
,0

.3
]

(0
.3

,0
.6

]

(0
.6

,1
]

[0
,0

.3
]

(0
.3

,0
.6

]

(0
.6

,1
]

Probability Bin

C
la

ss
 P

ro
po

rt
io

n

Class
●

●

●

setosa

versicolor

virginica

27 Evaluating Hyperparameter Tuning

As mentioned on the Tuning tutorial page, tuning a machine learning algorithm
typically involves:

• the hyperparameter search space:
ex: create a search space for the C hyperparameter from 0.01 to

0.1
ps = makeParamSet(

makeNumericParam("C", lower = 0.01, upper = 0.1)
)

• the optimization algorithm (aka tuning method):
ex: random search with 100 iterations
ctrl = makeTuneControlRandom(maxit = 100L)

• an evaluation method, i.e., a resampling strategy and a performance mea-
sure:

ex: 2-fold CV
rdesc = makeResampleDesc("CV", iters = 2L)

After tuning, you may want to evaluate the tuning process in order to answer
questions such as:

• How does varying the value of a hyperparameter change the performance
of the machine learning algorithm?

237

27.1 Generating hyperparameter tuning data27 EVALUATING HYPERPARAMETER TUNING

• What’s the relative importance of each hyperparameter?
• How did the optimization algorithm (prematurely) converge?

mlr provides methods to generate and plot the data in order to evaluate the
effect of hyperparameter tuning.

27.1 Generating hyperparameter tuning data

mlr separates the generation of the data from the plotting of the data in case
the user wishes to use the data in a custom way downstream.

The generateHyperParsEffectData method takes the tuning result along with 2
additional arguments: trafo and include.diagnostics. The trafo argument
will convert the hyperparameter data to be on the transformed scale in case a
transformation was used when creating the parameter (as in the case below).
The include.diagnostics argument will tell mlr whether to include the eol
and any error messages from the learner.

Below we perform random search on the C parameter for SVM on the famous
Pima Indians dataset. We generate the hyperparameter effect data so that the
C parameter is on the transformed scale and we do not include diagnostic data:

ps = makeParamSet(
makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)

2^x)
)
ctrl = makeTuneControlRandom(maxit = 100L)
rdesc = makeResampleDesc("CV", iters = 2L)
res = tuneParams("classif.ksvm", task = pid.task, control = ctrl,
measures = list(acc, mmce), resampling = rdesc, par.set = ps,

show.info = FALSE)
generateHyperParsEffectData(res, trafo = T, include.diagnostics =

FALSE)
#> HyperParsEffectData:
#> Hyperparameters: C
#> Measures: acc.test.mean,mmce.test.mean
#> Optimizer: TuneControlRandom
#> Nested CV Used: FALSE
#> Snapshot of $data:
#> C acc.test.mean mmce.test.mean iteration exec.time
#> 1 0.3770897 0.7695312 0.2304688 1 0.055
#> 2 3.4829323 0.7526042 0.2473958 2 0.056
#> 3 2.2050176 0.7630208 0.2369792 3 0.056
#> 4 24.9285221 0.7070312 0.2929688 4 0.059
#> 5 0.2092395 0.7539062 0.2460938 5 0.056
#> 6 0.1495099 0.7395833 0.2604167 6 0.055

238

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generateHyperParsEffectData.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlbench/functions/PimaIndiansDiabetes.html

27.1 Generating hyperparameter tuning data27 EVALUATING HYPERPARAMETER TUNING

As a reminder from the resampling tutorial, if we wanted to generate data on
the training set as well as the validation set, we only need to make a few minor
changes:

ps = makeParamSet(
makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)

2^x)
)
ctrl = makeTuneControlRandom(maxit = 100L)
rdesc = makeResampleDesc("CV", iters = 2L, predict = "both")
res = tuneParams("classif.ksvm", task = pid.task, control = ctrl,
measures = list(acc, setAggregation(acc, train.mean), mmce,

setAggregation(mmce,
train.mean)), resampling = rdesc, par.set = ps, show.info =

FALSE)
generateHyperParsEffectData(res, trafo = T, include.diagnostics =

FALSE)
#> HyperParsEffectData:
#> Hyperparameters: C
#> Measures:

acc.test.mean,acc.train.mean,mmce.test.mean,mmce.train.mean
#> Optimizer: TuneControlRandom
#> Nested CV Used: FALSE
#> Snapshot of $data:
#> C acc.test.mean acc.train.mean mmce.test.mean

mmce.train.mean
#> 1 0.03518875 0.6510417 0.6510417 0.3489583

0.3489583
#> 2 0.17104229 0.7356771 0.7721354 0.2643229

0.2278646
#> 3 4.35326556 0.7304688 0.8828125 0.2695312

0.1171875
#> 4 0.33644238 0.7486979 0.8138021 0.2513021

0.1861979
#> 5 1.28168692 0.7500000 0.8476562 0.2500000

0.1523438
#> 6 7.36607693 0.7239583 0.8932292 0.2760417

0.1067708
#> iteration exec.time
#> 1 1 0.074
#> 2 2 0.073
#> 3 3 0.071
#> 4 4 0.074
#> 5 5 0.071
#> 6 6 0.072

239

27.1 Generating hyperparameter tuning data27 EVALUATING HYPERPARAMETER TUNING

In the example below, we perform grid search on the C parameter for SVM
on the Pima Indians dataset using nested cross validation. We generate the
hyperparameter effect data so that the C parameter is on the untransformed
scale and we do not include diagnostic data. As you can see below, nested cross
validation is supported without any extra work by the user, allowing the user
to obtain an unbiased estimator for the performance.

ps = makeParamSet(
makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)

2^x)
)
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 2L)
lrn = makeTuneWrapper("classif.ksvm", control = ctrl,
measures = list(acc, mmce), resampling = rdesc, par.set = ps,

show.info = FALSE)
res = resample(lrn, task = pid.task, resampling = cv2, extract =

getTuneResult, show.info = FALSE)
generateHyperParsEffectData(res)
#> HyperParsEffectData:
#> Hyperparameters: C
#> Measures: acc.test.mean,mmce.test.mean
#> Optimizer: TuneControlGrid
#> Nested CV Used: TRUE
#> Snapshot of $data:
#> C acc.test.mean mmce.test.mean iteration exec.time
#> 1 -5.0000000 0.6640625 0.3359375 1 0.040
#> 2 -3.8888889 0.6640625 0.3359375 2 0.040
#> 3 -2.7777778 0.6822917 0.3177083 3 0.040
#> 4 -1.6666667 0.7473958 0.2526042 4 0.040
#> 5 -0.5555556 0.7708333 0.2291667 5 0.039
#> 6 0.5555556 0.7682292 0.2317708 6 0.040
#> nested_cv_run
#> 1 1
#> 2 1
#> 3 1
#> 4 1
#> 5 1
#> 6 1

After generating the hyperparameter effect data, the next step is to visualize
it. mlr has several methods built-in to visualize the data, meant to support the
needs of the researcher and the engineer in industry. The next few sections will
walk through the visualization support for several use-cases.

240

http://www.rdocumentation.org/packages/mlr/

27.2 Visualizing the effect of a single hyperparameter27 EVALUATING HYPERPARAMETER TUNING

27.2 Visualizing the effect of a single hyperparameter

In a situation when the user is tuning a single hyperparameter for a learner, the
user may wish to plot the performance of the learner against the values of the
hyperparameter.

In the example below, we tune the number of clusters against the silhouette
score on the Pima dataset. We specify the x-axis with the x argument and the
y-axis with the y argument. If the plot.type argument is not specified, mlr
will attempt to plot a scatterplot by default. Since plotHyperParsEffect returns
a ggplot object, we can easily customize it to our liking!

ps = makeParamSet(
makeDiscreteParam("centers", values = 3:10)

)
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("Holdout")
res = tuneParams("cluster.kmeans", task = mtcars.task, control =

ctrl,
measures = silhouette, resampling = rdesc, par.set = ps, show.info

= FALSE)
#>
#> This is package 'modeest' written by P. PONCET.
#> For a complete list of functions, use 'library(help = "modeest")'

or 'help.start()'.
data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "centers", y =

"silhouette.test.mean")
add our own touches to the plot
plt + geom_point(colour = "red") +

ggtitle("Evaluating Number of Cluster Centers on mtcars") +
scale_x_continuous(breaks = 3:10) +
theme_bw()

241

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/plotHyperParsEffect.html
http://www.rdocumentation.org/packages/ggplot2/functions/ggplot.html

27.2 Visualizing the effect of a single hyperparameter27 EVALUATING HYPERPARAMETER TUNING

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0.2

0.4

0.6

3 4 5 6 7 8 9 10
centers

R
ou

ss
ee

uw
's

 s
ilh

ou
et

te
 in

te
rn

al
 c

lu
st

er
 q

ua
lit

y
in

de
x

Evaluating Number of Cluster Centers on mtcars

In the example below, we tune SVM with the C hyperparameter on the Pima
dataset. We will use simulated annealing optimizer, so we are interested in seeing
if the optimization algorithm actually improves with iterations. By default, mlr
only plots improvements to the global optimum.

ps = makeParamSet(
makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)

2^x)
)
ctrl = makeTuneControlGenSA(budget = 100L)
rdesc = makeResampleDesc("Holdout")
res = tuneParams("classif.ksvm", task = pid.task, control = ctrl,

resampling = rdesc, par.set = ps, show.info = FALSE)
data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "iteration", y =

"mmce.test.mean",
plot.type = "line")

242

http://www.rdocumentation.org/packages/mlr/

27.2 Visualizing the effect of a single hyperparameter27 EVALUATING HYPERPARAMETER TUNING

plt + ggtitle("Analyzing convergence of simulated annealing") +
theme_minimal()

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●●

●●●

0.21

0.22

0.23

0.24

0 25 50 75 100
iteration

M
ea

n
m

is
cl

as
si

fic
at

io
n

er
ro

r

Analyzing convergence of simulated annealing

In the case of a learner crash, mlr will impute the crash with the worst value
graphically and indicate the point. In the example below, we give the C param-
eter negative values, which will result in a learner crash for SVM.
ps = makeParamSet(

makeDiscreteParam("C", values = c(-1, -0.5, 0.5, 1, 1.5))
)
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 2L)
res = tuneParams("classif.ksvm", task = pid.task, control = ctrl,
measures = list(acc, mmce), resampling = rdesc, par.set = ps,

show.info = FALSE)
data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "C", y = "acc.test.mean")

243

http://www.rdocumentation.org/packages/mlr/

27.2 Visualizing the effect of a single hyperparameter27 EVALUATING HYPERPARAMETER TUNING

plt + ggtitle("SVM learner crashes with negative C") +
theme_bw()

0.7320

0.7325

0.7330

0.7335

0.7340

0.7345

−1.0 −0.5 0.0 0.5 1.0 1.5
C

A
cc

ur
ac

y learner_status
Failure

Success

SVM learner crashes with negative C

The example below uses nested cross validation with an outer loop of 2 runs.
mlr indicates each run within the visualization.
ps = makeParamSet(

makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)
2^x)

)
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("Holdout")
lrn = makeTuneWrapper("classif.ksvm", control = ctrl,
measures = list(acc, mmce), resampling = rdesc, par.set = ps,

show.info = FALSE)
res = resample(lrn, task = pid.task, resampling = cv2, extract =

getTuneResult, show.info = FALSE)

244

http://www.rdocumentation.org/packages/mlr/

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "C", y = "acc.test.mean", plot.type =

"line")

● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

0.650

0.675

0.700

0.725

0.750

0.775

−5.0 −2.5 0.0 2.5 5.0
C

A
cc

ur
ac

y nested_cv_run
●

●

1

2

27.3 Visualizing the effect of 2 hyperparameters

In the case of tuning 2 hyperparameters simultaneously, mlr provides the ability
to plot a heatmap and contour plot in addition to a scatterplot or line.

In the example below, we tune the C and sigma parameters for SVM on the
Pima dataset. We use interpolation to produce a regular grid for plotting the
heatmap. The interpolation argument accepts any regression learner from mlr
to perform the interpolation. The z argument will be used to fill the heatmap
or color lines, depending on the plot.type used.

ps = makeParamSet(

245

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)
2^x),

makeNumericParam("sigma", lower = -5, upper = 5, trafo =
function(x) 2^x))

ctrl = makeTuneControlRandom(maxit = 100L)
rdesc = makeResampleDesc("Holdout")
learn = makeLearner("classif.ksvm", par.vals = list(kernel =

"rbfdot"))
res = tuneParams(learn, task = pid.task, control = ctrl, measures =

acc,
resampling = rdesc, par.set = ps, show.info = FALSE)

data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "C", y = "sigma", z =

"acc.test.mean",
plot.type = "heatmap", interpolate = "regr.earth")

min_plt = min(data$data$acc.test.mean, na.rm = TRUE)
max_plt = max(data$data$acc.test.mean, na.rm = TRUE)
med_plt = mean(c(min_plt, max_plt))
plt + scale_fill_gradient2(breaks = seq(min_plt, max_plt, length.out

= 5),
low = "blue", mid = "white", high = "red", midpoint = med_plt)

246

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0
C

si
gm

a

0.6484375

0.6796875

0.7109375

0.7421875

Accuracy

We can use the show.experiments argument in order to visualize which points
were specifically passed to the learner in the original experiment and which
points were interpolated by mlr:

plt = plotHyperParsEffect(data, x = "C", y = "sigma", z =
"acc.test.mean",

plot.type = "heatmap", interpolate = "regr.earth",
show.experiments = TRUE)

plt + scale_fill_gradient2(breaks = seq(min_plt, max_plt, length.out
= 5),

low = "blue", mid = "white", high = "red", midpoint = med_plt)

247

http://www.rdocumentation.org/packages/mlr/

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0
C

si
gm

a

learner_status

Success

0.6484375

0.6796875

0.7109375

0.7421875

Accuracy

We can also visualize how long the optimizer takes to reach an optima for the
same example:

plotHyperParsEffect(data, x = "iteration", y = "acc.test.mean",
plot.type = "line")

248

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.73

0.74

0.75

0.76

0.77

0 25 50 75 100
iteration

A
cc

ur
ac

y

In the case where we are tuning 2 hyperparameters and we have a learner crash,
mlr will indicate the respective points and impute them with the worst value.
In the example below, we tune C and sigma, forcing C to be negative for some
instances which will crash SVM. We perform interpolation to get a regular grid
in order to plot a heatmap. We can see that the interpolation creates axis
parallel lines resulting from the learner crashes.

ps = makeParamSet(
makeDiscreteParam("C", values = c(-1, 0.5, 1.5, 1, 0.2, 0.3, 0.4,

5)),
makeDiscreteParam("sigma", values = c(-1, 0.5, 1.5, 1, 0.2, 0.3,

0.4, 5)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("Holdout")
learn = makeLearner("classif.ksvm", par.vals = list(kernel =

"rbfdot"))
res = tuneParams(learn, task = pid.task, control = ctrl, measures =

249

http://www.rdocumentation.org/packages/mlr/

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

acc,
resampling = rdesc, par.set = ps, show.info = FALSE)

data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "C", y = "sigma", z = "acc.test.mean",
plot.type = "heatmap", interpolate = "regr.earth")

0

2

4

0 2 4
C

si
gm

a

learner_status

Failure

Success

0.0

0.2

0.4

0.6

Accuracy

A slightly more complicated example is using nested cross validation while simul-
taneously tuning 2 hyperparameters. In order to plot a heatmap in this case, mlr
will aggregate each of the nested runs by a user-specified function. The default
function is mean. As expected, we can still take advantage of interpolation.
ps = makeParamSet(

makeNumericParam("C", lower = -5, upper = 5, trafo = function(x)
2^x),

makeNumericParam("sigma", lower = -5, upper = 5, trafo =
function(x) 2^x))

ctrl = makeTuneControlRandom(maxit = 100)

250

http://www.rdocumentation.org/packages/mlr/

27.3 Visualizing the effect of 2 hyperparameters27 EVALUATING HYPERPARAMETER TUNING

rdesc = makeResampleDesc("Holdout")
learn = makeLearner("classif.ksvm", par.vals = list(kernel =

"rbfdot"))
lrn = makeTuneWrapper(learn, control = ctrl, measures = list(acc,

mmce),
resampling = rdesc, par.set = ps, show.info = FALSE)

res = resample(lrn, task = pid.task, resampling = cv2, extract =
getTuneResult, show.info = FALSE)

data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "C", y = "sigma", z =

"acc.test.mean",
plot.type = "heatmap", interpolate = "regr.earth",

show.experiments = TRUE,
nested.agg = mean)

min_plt = min(plt$data$acc.test.mean, na.rm = TRUE)
max_plt = max(plt$data$acc.test.mean, na.rm = TRUE)
med_plt = mean(c(min_plt, max_plt))
plt + scale_fill_gradient2(breaks = seq(min_plt, max_plt, length.out

= 5),
low = "red", mid = "white", high = "blue", midpoint = med_plt)

251

28 INTEGRATING ANOTHER LEARNER

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0
C

si
gm

a

0.5822070

0.6237602

0.6653134

0.7068666

0.7484198Accuracy

learner_status

Success

28 Integrating Another Learner

In order to integrate a learning algorithm into mlr some interface code has to
be written. Three functions are mandatory for each learner.

• First, define a new learner class with a name, description, capabilities,
parameters, and a few other things. (An object of this class can then be
generated by makeLearner.)

• Second, you need to provide a function that calls the learner function and
builds the model given data (which makes it possible to invoke training
by calling mlr’s train function).

• Finally, a prediction function that returns predicted values given new data
is required (which enables invoking prediction by calling mlr’s predict
function).

252

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/train.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/predict.WrappedModel.html

28.1 Classes, constructors, and naming schemes28 INTEGRATING ANOTHER LEARNER

Technically, integrating a learning method means introducing a new S3 class
and implementing the corresponding methods for the generic functions mak-
eRLerner, trainLearner, and predictLearner. Therefore we start with a quick
overview of the involved classes and constructor functions.

28.1 Classes, constructors, and naming schemes

As you already know makeLearner generates an object of class Learner.

class(makeLearner(cl = "classif.lda"))
#> [1] "classif.lda" "RLearnerClassif" "RLearner"

"Learner"

class(makeLearner(cl = "regr.lm"))
#> [1] "regr.lm" "RLearnerRegr" "RLearner" "Learner"

class(makeLearner(cl = "surv.coxph"))
#> [1] "surv.coxph" "RLearnerSurv" "RLearner" "Learner"

class(makeLearner(cl = "cluster.kmeans"))
#> [1] "cluster.kmeans" "RLearnerCluster" "RLearner"

"Learner"

class(makeLearner(cl = "multilabel.rFerns"))
#> [1] "multilabel.rFerns" "RLearnerMultilabel" "RLearner"
#> [4] "Learner"

The first element of each class attribute vector is the name of the learner class
passed to the cl argument of makeLearner. Obviously, this adheres to the
naming conventions

• "classif.<R_method_name>" for classification,
• "multilabel.<R_method_name>" for multilabel classification,
• "regr.<R_method_name>" for regression,
• "surv.<R_method_name>" for survival analysis, and
• "cluster.<R_method_name>" for clustering.

Additionally, there exist intermediate classes that reflect the type of learning
problem, i.e., all classification learners inherit from RLearnerClassif, all regres-
sion learners from RLearnerRegr and so on. Their superclasses are RLearner
and finally Learner. For all these (sub)classes there exist constructor functions
makeRLearner, makeRLearnerClassif, makeRLearneRegr etc. that are called
internally by makeLearner.

A short side remark: As you might have noticed there does not exist a spe-
cial learner class for cost-sensitive classification (costsens) with example-specific

253

http://www.rdocumentation.org/packages/base/functions/class.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/trainLearner.html
http://www.rdocumentation.org/packages/mlr/functions/predictLearner.html
http://www.rdocumentation.org/packages/base/functions/class.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/base/functions/class.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/RLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html

28.2 Classification 28 INTEGRATING ANOTHER LEARNER

costs. This type of learning task is currently exclusively handled through wrap-
pers like makeCostSensWeightedPairsWrapper.

In the following we show how to integrate learners for the five types of learning
tasks mentioned above. Defining a completely new type of learner that has
special properties and does not fit into one of the existing schemes is of course
possible, but much more advanced and not covered here.

We use a classification example to explain some general principles (so even if
you are interested in integrating a learner for another type of learning task you
might want to read the following section). Examples for other types of learning
tasks are shown later on.

28.2 Classification

We show how the Linear Discriminant Analysis from package MASS has been
integrated into the classification learner classif.lda in mlr as an example.

28.2.1 Definition of the learner

The minimal information required to define a learner is the mlr name of the
learner, its package, the parameter set, and the set of properties of your learner.
In addition, you may provide a human-readable name, a short name and a note
with information relevant to users of the learner.

First, name your learner. According to the naming conventions above the name
starts with classif. and we choose classif.lda.

Second, we need to define the parameters of the learner. These are any options
that can be set when running it to change how it learns, how input is interpreted,
how and what output is generated, and so on. mlr provides a number of func-
tions to define parameters, a complete list can be found in the documentation
of LearnerParam of the ParamHelpers package.

In our example, we have discrete and numeric parameters, so we use makeDis-
creteLearnerParam and makeNumericLearnerParam to incorporate the com-
plete description of the parameters. We include all possible values for discrete
parameters and lower and upper bounds for numeric parameters. Strictly speak-
ing it is not necessary to provide bounds for all parameters and if this informa-
tion is not available they can be estimated, but providing accurate and specific
information here makes it possible to tune the learner much better (see the
section on tuning).

Next, we add information on the properties of the learner (see also the section
on learners). Which types of features are supported (numerics, factors)? Are
case weights supported? Are class weights supported? Can the method deal
with missing values in the features and deal with NA’s in a meaningful way (not

254

http://www.rdocumentation.org/packages/mlr/functions/makeCostSensWeightedPairsWrapper.html
http://www.rdocumentation.org/packages/MASS/functions/lda.html
http://www.rdocumentation.org/packages/MASS/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/ParamHelpers/functions/LearnerParam.html
http://www.rdocumentation.org/packages/ParamHelpers/
http://www.rdocumentation.org/packages/ParamHelpers/functions/LearnerParam.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/LearnerParam.html
http://www.rdocumentation.org/packages/ParamHelpers/functions/LearnerParam.html

28.2 Classification 28 INTEGRATING ANOTHER LEARNER

na.omit)? Are one-class, two-class, multi-class problems supported? Can the
learner predict posterior probabilities?

If the learner supports class weights the name of the relevant learner parameter
can be specified via argument class.weights.param.

Below is the complete code for the definition of the LDA learner. It has one
discrete parameter, method, and two continuous ones, nu and tol. It supports
classification problems with two or more classes and can deal with numeric and
factor explanatory variables. It can predict posterior probabilities.
makeRLearner.classif.lda = function() {

makeRLearnerClassif(
cl = "classif.lda",
package = "MASS",
par.set = makeParamSet(

makeDiscreteLearnerParam(id = "method", default = "moment",
values = c("moment", "mle", "mve", "t")),

makeNumericLearnerParam(id = "nu", lower = 2, requires =
quote(method == "t")),

makeNumericLearnerParam(id = "tol", default = 1e-4, lower = 0),
makeDiscreteLearnerParam(id = "predict.method", values =

c("plug-in", "predictive", "debiased"),
default = "plug-in", when = "predict"),

makeLogicalLearnerParam(id = "CV", default = FALSE, tunable =
FALSE)

),
properties = c("twoclass", "multiclass", "numerics", "factors",

"prob"),
name = "Linear Discriminant Analysis",
short.name = "lda",
note = "Learner param 'predict.method' maps to 'method' in

predict.lda."
)

}

28.2.2 Creating the training function of the learner

Once the learner has been defined, we need to tell mlr how to call it to train
a model. The name of the function has to start with trainLearner., followed
by the mlr name of the learner as defined above (classif.lda here). The
prototype of the function looks as follows.
function(.learner, .task, .subset, .weights = NULL, ...) { }

This function must fit a model on the data of the task .task with regard to
the subset defined in the integer vector .subset and the parameters passed in

255

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/

28.2 Classification 28 INTEGRATING ANOTHER LEARNER

the ... arguments. Usually, the data should be extracted from the task using
getTaskData. This will take care of any subsetting as well. It must return the
fitted model. mlr assumes no special data type for the return value – it will be
passed to the predict function we are going to define below, so any special code
the learner may need can be encapsulated there.

For our example, the definition of the function looks like this. In addition to
the data of the task, we also need the formula that describes what to predict.
We use the function getTaskFormula to extract this from the task.

trainLearner.classif.lda = function(.learner, .task, .subset,
.weights = NULL, ...) {

f = getTaskFormula(.task)
MASS::lda(f, data = getTaskData(.task, .subset), ...)

}

28.2.3 Creating the prediction method

Finally, the prediction function needs to be defined. The name of this function
starts with predictLearner., followed again by the mlr name of the learner.
The prototype of the function is as follows.

function(.learner, .model, .newdata, ...) { }

It must predict for the new observations in the data.frame .newdata with
the wrapped model .model, which is returned from the training function. The
actual model the learner built is stored in the $learner.model member and
can be accessed simply through .model$learner.model.

For classification, you have to return a factor of predicted classes if
.learner$predict.type is "response", or a matrix of predicted proba-
bilities if .learner$predict.type is "prob" and this type of prediction is
supported by the learner. In the latter case the matrix must have the same
number of columns as there are classes in the task and the columns have to be
named by the class names.

The definition for LDA looks like this. It is pretty much just a straight pass-
through of the arguments to the predict function and some extraction of predic-
tion data depending on the type of prediction requested.

predictLearner.classif.lda = function(.learner, .model, .newdata,
predict.method = "plug-in", ...) {

p = predict(.model$learner.model, newdata = .newdata, method =
predict.method, ...)

if (.learner$predict.type == "response")
return(p$class) else return(p$posterior)

}

256

http://www.rdocumentation.org/packages/mlr/functions/getTaskData.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/getTaskFormula.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/base/functions/predict.html

28.3 Regression 28 INTEGRATING ANOTHER LEARNER

28.3 Regression

The main difference for regression is that the type of predictions are different
(numeric instead of labels or probabilities) and that not all of the properties
are relevant. In particular, whether one-, two-, or multi-class problems and
posterior probabilities are supported is not applicable.

Apart from this, everything explained above applies. Below is the definition for
the earth learner from the earth package.

makeRLearner.regr.earth = function() {
makeRLearnerRegr(

cl = "regr.earth",
package = "earth",
par.set = makeParamSet(

makeLogicalLearnerParam(id = "keepxy", default = FALSE,
tunable = FALSE),

makeNumericLearnerParam(id = "trace", default = 0, upper = 10,
tunable = FALSE),

makeIntegerLearnerParam(id = "degree", default = 1L, lower =
1L),

makeNumericLearnerParam(id = "penalty"),
makeIntegerLearnerParam(id = "nk", lower = 0L),
makeNumericLearnerParam(id = "thres", default = 0.001),
makeIntegerLearnerParam(id = "minspan", default = 0L),
makeIntegerLearnerParam(id = "endspan", default = 0L),
makeNumericLearnerParam(id = "newvar.penalty", default = 0),
makeIntegerLearnerParam(id = "fast.k", default = 20L, lower =

0L),
makeNumericLearnerParam(id = "fast.beta", default = 1),
makeDiscreteLearnerParam(id = "pmethod", default = "backward",

values = c("backward", "none", "exhaustive", "forward",
"seqrep", "cv")),

makeIntegerLearnerParam(id = "nprune")
),
properties = c("numerics", "factors"),
name = "Multivariate Adaptive Regression Splines",
short.name = "earth",
note = ""

)
}

trainLearner.regr.earth = function(.learner, .task, .subset,
.weights = NULL, ...) {

f = getTaskFormula(.task)
earth::earth(f, data = getTaskData(.task, .subset), ...)

}

257

http://www.rdocumentation.org/packages/earth/functions/earth.html
http://www.rdocumentation.org/packages/earth/

28.4 Survival analysis 28 INTEGRATING ANOTHER LEARNER

predictLearner.regr.earth = function(.learner, .model, .newdata,
...) {

predict(.model$learner.model, newdata = .newdata)[, 1L]
}

Again most of the data is passed straight through to/from the train/predict
functions of the learner.

28.4 Survival analysis

For survival analysis, you have to return so-called linear predictors in or-
der to compute the default measure for this task type, the cindex (for
.learner$predict.type == "response"). For .learner$predict.type ==
"prob", there is no substantially meaningful measure (yet). You may either
ignore this case or return something like predicted survival curves (cf. example
below).

There are three properties that are specific to survival learners: “rcens”, “lcens”
and “icens”, defining the type(s) of censoring a learner can handle – right, left
and/or interval censored.

Let’s have a look at how the Cox Proportional Hazard Model from package
survival has been integrated into the survival learner surv.coxph in mlr as an
example:
makeRLearner.surv.coxph = function() {

makeRLearnerSurv(
cl = "surv.coxph",
package = "survival",
par.set = makeParamSet(

makeDiscreteLearnerParam(id = "ties", default = "efron",
values = c("efron", "breslow", "exact")),

makeLogicalLearnerParam(id = "singular.ok", default = TRUE),
makeNumericLearnerParam(id = "eps", default = 1e-09, lower =

0),
makeNumericLearnerParam(id = "toler.chol", default =

.Machine$double.eps^0.75, lower = 0),
makeIntegerLearnerParam(id = "iter.max", default = 20L, lower

= 1L),
makeNumericLearnerParam(id = "toler.inf", default =

sqrt(.Machine$double.eps^0.75), lower = 0),
makeIntegerLearnerParam(id = "outer.max", default = 10L, lower

= 1L),
makeLogicalLearnerParam(id = "model", default = FALSE, tunable

= FALSE),
makeLogicalLearnerParam(id = "x", default = FALSE, tunable =

FALSE),

258

http://www.rdocumentation.org/packages/survival/functions/coxph.html
http://www.rdocumentation.org/packages/survival/
http://www.rdocumentation.org/packages/mlr/

28.5 Clustering 28 INTEGRATING ANOTHER LEARNER

makeLogicalLearnerParam(id = "y", default = TRUE, tunable =
FALSE)

),
properties = c("missings", "numerics", "factors", "weights",

"prob", "rcens"),
name = "Cox Proportional Hazard Model",
short.name = "coxph",
note = ""

)
}

trainLearner.surv.coxph = function(.learner, .task, .subset,
.weights = NULL, ...) {

f = getTaskFormula(.task)
data = getTaskData(.task, subset = .subset)
if (is.null(.weights)) {

mod = survival::coxph(formula = f, data = data, ...)
} else {

mod = survival::coxph(formula = f, data = data, weights =
.weights, ...)

}
mod

}

predictLearner.surv.coxph = function(.learner, .model, .newdata,
...) {

if (.learner$predict.type == "response") {
predict(.model$learner.model, newdata = .newdata, type = "lp",

...)
}

}

28.5 Clustering

For clustering, you have to return a numeric vector with the IDs of the clusters
that the respective datum has been assigned to. The numbering should start at
1.

Below is the definition for the FarthestFirst learner from the RWeka package.
Weka starts the IDs of the clusters at 0, so we add 1 to the predicted clusters.
RWeka has a different way of setting learner parameters; we use the special
Weka_control function to do this.

makeRLearner.cluster.FarthestFirst = function() {
makeRLearnerCluster(

259

http://www.rdocumentation.org/packages/RWeka/functions/FarthestFirst.html
http://www.rdocumentation.org/packages/RWeka/

28.6 Multilabel classification 28 INTEGRATING ANOTHER LEARNER

cl = "cluster.FarthestFirst",
package = "RWeka",
par.set = makeParamSet(

makeIntegerLearnerParam(id = "N", default = 2L, lower = 1L),
makeIntegerLearnerParam(id = "S", default = 1L, lower = 1L),
makeLogicalLearnerParam(id = "output-debug-info", default =

FALSE, tunable = FALSE)
),
properties = c("numerics"),
name = "FarthestFirst Clustering Algorithm",
short.name = "farthestfirst"

)
}

trainLearner.cluster.FarthestFirst = function(.learner, .task,
.subset, .weights = NULL, ...) {

ctrl = RWeka::Weka_control(...)
RWeka::FarthestFirst(getTaskData(.task, .subset), control = ctrl)

}

predictLearner.cluster.FarthestFirst = function(.learner, .model,
.newdata, ...) {

as.integer(predict(.model$learner.model, .newdata, ...)) + 1L
}

28.6 Multilabel classification

As stated in the multilabel section, multilabel classification methods can be di-
vided into problem transformation methods and algorithm adaptation methods.

At this moment the only problem transformation method implemented in mlr is
the binary relevance method. Integrating more of these methods requires good
knowledge of the architecture of the mlr package.

The integration of an algorithm adaptation multilabel classification learner is
easier and works very similar to the normal multiclass-classification. In contrast
to the multiclass case, not all of the learner properties are relevant. In particu-
lar, whether one-, two-, or multi-class problems are supported is not applicable.
Furthermore the prediction function output must be a matrix with each pre-
diction of a label in one column and the names of the labels as column names.
If .learner$predict.type is "response" the predictions must be logical. If
.learner$predict.type is "prob" and this type of prediction is supported by
the learner, the matrix must consist of predicted probabilities.

Below is the definition of the rFerns learner from the rFerns package, which does
not support probability predictions.

260

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeMultilabelBinaryRelevanceWrapper.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/rFerns/functions/rFerns.html
http://www.rdocumentation.org/packages/rFerns/

28.7 Creating a new feature importance method28 INTEGRATING ANOTHER LEARNER

makeRLearner.multilabel.rFerns = function() {
makeRLearnerMultilabel(

cl = "multilabel.rFerns",
package = "rFerns",
par.set = makeParamSet(

makeIntegerLearnerParam(id = "depth", default = 5L),
makeIntegerLearnerParam(id = "ferns", default = 1000L)

),
properties = c("numerics", "factors", "ordered"),
name = "Random ferns",
short.name = "rFerns",
note = ""

)
}

trainLearner.multilabel.rFerns = function(.learner, .task, .subset,
.weights = NULL, ...) {

d = getTaskData(.task, .subset, target.extra = TRUE)
rFerns::rFerns(x = d$data, y = as.matrix(d$target), ...)

}

predictLearner.multilabel.rFerns = function(.learner, .model,
.newdata, ...) {

as.matrix(predict(.model$learner.model, .newdata, ...))
}

28.7 Creating a new feature importance method

Some learners, for example decision trees and random forests, can calculate
feature importance values, which can be extracted from a fitted model using
function getFeatureImportance.

If your newly integrated learner supports this you need to

• add "featimp" to the learner properties and
• implement a new S3 method for function getFeatureImportanceLearner

(which later is called internally by getFeatureImportance).

in order to make this work.

This method takes the Learner .learner, the WrappedModel .model and po-
tential further arguments and calculates or extracts the feature importance. It
must return a named vector of importance values.

Below are two simple examples. In case of "classif.rpart" the feature impor-
tance values can be easily extracted from the fitted model.

261

http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html
http://www.rdocumentation.org/packages/mlr/functions/getFeatureImportance.html
http://www.rdocumentation.org/packages/mlr/functions/getFeatureImportanceLearner.html
http://www.rdocumentation.org/packages/mlr/functions/getFeatureImportance.html
http://www.rdocumentation.org/packages/mlr/functions/Learner.html
http://www.rdocumentation.org/packages/mlr/functions/makeWrappedModel.html

29 INTEGRATING ANOTHER MEASURE

getFeatureImportanceLearner.classif.rpart = function(.learner,
.model, ...) {

mod = getLearnerModel(.model)
mod$variable.importance

}

For the random forest from package randomForestSRC function vimp is called.

getFeatureImportanceLearner.classif.randomForestSRC =
function(.learner, .model, ...) {

mod = getLearnerModel(.model)
randomForestSRC::vimp(mod, ...)$importance[, "all"]

}

29 Integrating Another Measure

In some cases, you might want to evaluate a Prediction or ResamplePrediction
with a Measure which is not yet implemented in mlr. This could be either a
performance measure which is not listed in the Appendix or a measure that uses
a misclassification cost matrix.

29.1 Performance measures and aggregation schemes

Performance measures in mlr are objects of class Measure. For example the mse
(mean squared error) looks as follows.

str(mse)
#> List of 10
#> $ id : chr "mse"
#> $ minimize : logi TRUE
#> $ properties: chr [1:3] "regr" "req.pred" "req.truth"
#> $ fun :function (task, model, pred, feats, extra.args)
#> $ extra.args: list()
#> $ best : num 0
#> $ worst : num Inf
#> $ name : chr "Mean of squared errors"
#> $ note : chr ""
#> $ aggr :List of 4
#> ..$ id : chr "test.mean"
#> ..$ name : chr "Test mean"
#> ..$ fun :function (task, perf.test, perf.train, measure,

group, pred)
#> ..$ properties: chr "req.test"
#> ..- attr(*, "class")= chr "Aggregation"

262

http://www.rdocumentation.org/packages/randomForestSRC/functions/rfsrc.html
http://www.rdocumentation.org/packages/randomForestSRC/
http://www.rdocumentation.org/packages/randomForestSRC/functions/vimp.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/ResamplePrediction.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html

29.1 Performance measures and aggregation schemes29 INTEGRATING ANOTHER MEASURE

#> - attr(*, "class")= chr "Measure"

mse$fun
#> function (task, model, pred, feats, extra.args)
#> {
#> measureMSE(pred$data$truth, pred$data$response)
#> }
#> <bytecode: 0xb82cd30>
#> <environment: namespace:mlr>

measureMSE
#> function (truth, response)
#> {
#> mean((response - truth)^2)
#> }
#> <bytecode: 0xb4d73f0>
#> <environment: namespace:mlr>

See the Measure documentation page for a detailed description of the object
slots.

At the core is slot $fun which contains the function that calculates the per-
formance value. The actual work is done by function measureMSE. Similar
functions, generally adhering to the naming scheme measure followed by the
capitalized measure ID, exist for most performance measures. See the measures
help page for a complete list.

Just as Task and Learner objects each Measure has an identifier $id which is for
example used to annotate results and plots. For plots there is also the option
to use the longer measure $name instead. See the tutorial page on Visualization
for more information.

Moreover, a Measure includes a number of $properties that indicate for
which types of learning problems it is suitable and what information is
required to calculate it. Obviously, most measures need the Prediction object
("req.pred") and, for supervised problems, the true values of the target
variable(s) ("req.truth").

For tuning or feature selection each Measure knows its extreme values $best
and $worst and if it wants to be minimized or maximized ($minimize).

For resampling slot $aggr specifies how the overall performance across all re-
sampling iterations is calculated. Typically, this is just a matter of aggregating
the performance values obtained on the test sets perf.test or the training sets
perf.train by a simple function. The by far most common scheme is test.mean,
i.e., the unweighted mean of the performances on the test sets.

str(test.mean)
#> List of 4

263

http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/measures.html
http://www.rdocumentation.org/packages/mlr/functions/measures.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/makeLearner.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html

29.2 Constructing a performance measure29 INTEGRATING ANOTHER MEASURE

#> $ id : chr "test.mean"
#> $ name : chr "Test mean"
#> $ fun :function (task, perf.test, perf.train, measure,

group, pred)
#> $ properties: chr "req.test"
#> - attr(*, "class")= chr "Aggregation"

test.mean$fun
#> function (task, perf.test, perf.train, measure, group, pred)
#> mean(perf.test)
#> <bytecode: 0xa13cf70>
#> <environment: namespace:mlr>

All aggregation schemes are objects of class Aggregation with the function in slot
$fun doing the actual work. The $properties member indicates if predictions
(or performance values) on the training or test data sets are required to calculate
the aggregation.

You can change the aggregation scheme of a Measure via function setAggrega-
tion. See the tutorial page on resampling for some examples and the aggrega-
tions help page for all available aggregation schemes.

You can construct your own Measure and Aggregation objects via func-
tions makeMeasure, makeCostMeasure, makeCustomResampledMeasure and
makeAggregation. Some examples are shown in the following.

29.2 Constructing a performance measure

Function makeMeasure provides a simple way to construct your own perfor-
mance measure.

Below this is exemplified by re-implementing the mean misclassification error
(mmce). We first write a function that computes the measure on the basis of the
true and predicted class labels. Note that this function must have certain formal
arguments listed in the documentation of makeMeasure. Then the Measure
object is created and we work with it as usual with the performance function.

See the R documentation of makeMeasure for more details on the various pa-
rameters.

Define a function that calculates the misclassification rate
my.mmce.fun = function(task, model, pred, feats, extra.args) {

tb = table(getPredictionResponse(pred), getPredictionTruth(pred))
1 - sum(diag(tb)) / sum(tb)

}

Generate the Measure object

264

http://www.rdocumentation.org/packages/mlr/functions/Aggregation.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/setAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/setAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/Aggregation.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeCustomResampledMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/performance.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html

29.3 Constructing a measure for ordinary misclassification costs29 INTEGRATING ANOTHER MEASURE

my.mmce = makeMeasure(
id = "my.mmce", name = "My Mean Misclassification Error",
properties = c("classif", "classif.multi", "req.pred",

"req.truth"),
minimize = TRUE, best = 0, worst = 1,
fun = my.mmce.fun

)

Train a learner and make predictions
mod = train("classif.lda", iris.task)
pred = predict(mod, task = iris.task)

Calculate the performance using the new measure
performance(pred, measures = my.mmce)
#> my.mmce
#> 0.02

Apparently the result coincides with the mlr implementation
performance(pred, measures = mmce)
#> mmce
#> 0.02

29.3 Constructing a measure for ordinary misclassification
costs

For in depth explanations and details see the tutorial page on cost-sensitive
classification.

To create a measure that involves ordinary, i.e., class-dependent misclassification
costs you can use function makeCostMeasure. You first need to define the cost
matrix. The rows indicate true and the columns predicted classes and the rows
and columns have to be named by the class labels. The cost matrix can then
be wrapped in a Measure object and predictions can be evaluated as usual with
the performance function.

See the R documentation of function makeCostMeasure for details on the vari-
ous parameters.

Create the cost matrix
costs = matrix(c(0, 2, 2, 3, 0, 2, 1, 1, 0), ncol = 3)
rownames(costs) = colnames(costs) = getTaskClassLevels(iris.task)

Encapsulate the cost matrix in a Measure object
my.costs = makeCostMeasure(

id = "my.costs", name = "My Costs",
costs = costs,

265

http://www.rdocumentation.org/packages/mlr/functions/makeCostMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/makeMeasure.html
http://www.rdocumentation.org/packages/mlr/functions/performance.html
http://www.rdocumentation.org/packages/mlr/functions/makeCostMeasure.html

29.4 Creating an aggregation scheme29 INTEGRATING ANOTHER MEASURE

minimize = TRUE, best = 0, worst = 3
)

Train a learner and make a prediction
mod = train("classif.lda", iris.task)
pred = predict(mod, newdata = iris)

Calculate the average costs
performance(pred, measures = my.costs)
#> my.costs
#> 0.02666667

29.4 Creating an aggregation scheme

It is possible to create your own aggregation scheme using function makeAg-
gregation. You need to specify an identifier id, the properties, and write
a function that does the actual aggregation. Optionally, you can name your
aggregation scheme.

Possible settings for properties are "req.test" and "req.train" if pre-
dictions on either the training or test sets are required, and the vector
c("req.train", "req.test") if both are needed.

The aggregation function must have a certain signature detailed in the documen-
tation of makeAggregation. Usually, you will only need the performance values
on the test sets perf.test or the training sets perf.train. In rare cases, e.g.,
the Prediction object pred or information stored in the Task object might be
required to obtain the aggregated performance. For an example have a look at
the definition of function test.join.

29.4.1 Example: Evaluating the range of measures

Let’s say you are interested in the range of the performance values obtained on
individual test sets.

my.range.aggr = makeAggregation(id = "test.range", name = "Test
Range",

properties = "req.test",
fun = function (task, perf.test, perf.train, measure, group, pred)
diff(range(perf.test))

)

perf.train and perf.test are both numerical vectors containing the perfor-
mances on the train and test data sets. In most cases (unless you are using

266

http://www.rdocumentation.org/packages/mlr/functions/makeAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/makeAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/makeAggregation.html
http://www.rdocumentation.org/packages/mlr/functions/Prediction.html
http://www.rdocumentation.org/packages/mlr/functions/Task.html
https://github.com/mlr-org/mlr/blob/master/R/aggregations.R#L211
http://www.rdocumentation.org/packages/mlr/functions/aggregations.html

29.4 Creating an aggregation scheme29 INTEGRATING ANOTHER MEASURE

bootstrap as resampling strategy or have set predict = "both" in makeRe-
sampleDesc) the perf.train vector is empty.

Now we can run a feature selection based on the first measure in the provided
list and see how the other measures turn out.

mmce with default aggregation scheme test.mean
ms1 = mmce

mmce with new aggregation scheme my.range.aggr
ms2 = setAggregation(ms1, my.range.aggr)

Minimum and maximum of the mmce over test sets
ms1min = setAggregation(ms1, test.min)
ms1max = setAggregation(ms1, test.max)

Feature selection
rdesc = makeResampleDesc("CV", iters = 3)
res = selectFeatures("classif.rpart", iris.task, rdesc, measures =

list(ms1, ms2, ms1min, ms1max),
control = makeFeatSelControlExhaustive(), show.info = FALSE)

Optimization path, i.e., performances for the 16 possible feature
subsets

perf.data = as.data.frame(res$opt.path)
head(perf.data[1:8])
#> Sepal.Length Sepal.Width Petal.Length Petal.Width mmce.test.mean
#> 1 0 0 0 0 0.70666667
#> 2 1 0 0 0 0.31333333
#> 3 0 1 0 0 0.50000000
#> 4 0 0 1 0 0.09333333
#> 5 0 0 0 1 0.04666667
#> 6 1 1 0 0 0.28666667
#> mmce.test.range mmce.test.min mmce.test.max
#> 1 0.16 0.60 0.76
#> 2 0.02 0.30 0.32
#> 3 0.22 0.36 0.58
#> 4 0.10 0.04 0.14
#> 5 0.08 0.02 0.10
#> 6 0.08 0.24 0.32

pd = position_jitter(width = 0.005, height = 0)
p = ggplot(aes(x = mmce.test.range, y = mmce.test.mean, ymax =

mmce.test.max, ymin = mmce.test.min,
color = as.factor(Sepal.Width), pch = as.factor(Petal.Width)),

data = perf.data) +
geom_pointrange(position = pd) +

267

http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/mlr/functions/makeResampleDesc.html
http://www.rdocumentation.org/packages/base/functions/list.html

30 CREATING AN IMPUTATION METHOD

coord_flip()
print(p)

●

●

●

●

●

●
●
●

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6
mmce.test.mean

m
m

ce
.te

st
.r

an
ge

as.factor(Petal.Width)
● 0

1

as.factor(Sepal.Width)
●

●

0

1

The plot shows the range versus the mean misclassification error. The value
on the y-axis thus corresponds to the length of the error bars. (Note that the
points and error bars are jittered in y-direction.)

30 Creating an Imputation Method

Function makeImputeMethod permits to create your own imputation method.
For this purpose you need to specify a learn function that extracts the necessary
information and an impute function that does the actual imputation. The learn
and impute functions both have at least the following formal arguments:

• data is a data.frame with missing values in some features.
• col indicates the feature to be imputed.
• target indicates the target variable(s) in a supervised learning task.

30.1 Example: Imputation using the mean

Let’s have a look at function imputeMean.

268

http://www.rdocumentation.org/packages/mlr/functions/makeImputeMethod.html
http://www.rdocumentation.org/packages/base/functions/data.frame.html
http://www.rdocumentation.org/packages/mlr/functions/imputations.html

30.2 Writing your own imputation method30 CREATING AN IMPUTATION METHOD

imputeMean = function() {
makeImputeMethod(learn = function(data, target, col)

mean(data[[col]], na.rm = TRUE),
impute = simpleImpute)

}

imputeMean calls the unexported mlr function simpleImpute which is defined
as follows.
simpleImpute = function(data, target, col, const) {
if (is.na(const))

stopf("Error imputing column '%s'. Maybe all input data was
missing?", col)

x = data[[col]]
if (is.factor(x) && const %nin% levels(x)) {
levels(x) = c(levels(x), as.character(const))

}
replace(x, is.na(x), const)

}

The learn function calculates the mean of the non-missing observations in col-
umn col. The mean is passed via argument const to the impute function that
replaces all missing values in feature col.

30.2 Writing your own imputation method

Now let’s write a new imputation method: A frequently used simple technique
for longitudinal data is last observation carried forward (LOCF). Missing values
are replaced by the most recent observed value.

In the R code below the learn function determines the last observed value
previous to each NA (values) as well as the corresponding number of consecutive
NA's (times). The impute function generates a vector by replicating the entries
in values according to times and replaces the NA's in feature col.
imputeLOCF = function() {

makeImputeMethod(
learn = function(data, target, col) {

x = data[[col]]
ind = is.na(x)
dind = diff(ind)
lastValue = which(dind == 1) # position of the last observed

value previous to NA
lastNA = which(dind == -1) # position of the last of

potentially several consecutive NA's
values = x[lastValue] # last observed value previous

to NA

269

http://www.rdocumentation.org/packages/mlr/functions/imputations.html
http://www.rdocumentation.org/packages/mlr/

31 INTEGRATING ANOTHER FILTER METHOD

times = lastNA - lastValue # number of consecutive NA's
return(list(values = values, times = times))

},
impute = function(data, target, col, values, times) {

x = data[[col]]
replace(x, is.na(x), rep(values, times))

}
)

}

Note that this function is just for demonstration and is lacking some checks
for real-world usage (for example ‘What should happen if the first value in x
is already missing?’). Below it is used to impute the missing values in features
Ozone and Solar.R in the airquality data set.

data(airquality)
imp = impute(airquality, cols = list(Ozone = imputeLOCF(), Solar.R =

imputeLOCF()),
dummy.cols = c("Ozone", "Solar.R"))

head(imp$data, 10)
#> Ozone Solar.R Wind Temp Month Day Ozone.dummy Solar.R.dummy
#> 1 41 190 7.4 67 5 1 FALSE FALSE
#> 2 36 118 8.0 72 5 2 FALSE FALSE
#> 3 12 149 12.6 74 5 3 FALSE FALSE
#> 4 18 313 11.5 62 5 4 FALSE FALSE
#> 5 18 313 14.3 56 5 5 TRUE TRUE
#> 6 28 313 14.9 66 5 6 FALSE TRUE
#> 7 23 299 8.6 65 5 7 FALSE FALSE
#> 8 19 99 13.8 59 5 8 FALSE FALSE
#> 9 8 19 20.1 61 5 9 FALSE FALSE
#> 10 8 194 8.6 69 5 10 TRUE FALSE

31 Integrating Another Filter Method

A lot of feature filter methods are already integrated in mlr and a complete list
is given in the Appendix or can be obtained using listFilterMethods. You can
easily add another filter, be it a brand new one or a method which is already
implemented in another package, via function makeFilter.

31.1 Filter objects

In mlr all filter methods are objects of class Filter and are registered in an
environment called .FilterRegister (where listFilterMethods looks them up

270

http://www.rdocumentation.org/packages/datasets/functions/airquality.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/listFilterMethods.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html
http://www.rdocumentation.org/packages/mlr/functions/listFilterMethods.html

31.2 Writing a new filter method31 INTEGRATING ANOTHER FILTER METHOD

to compile the list of available methods). To get to know their structure let’s
have a closer look at the "rank.correlation" filter which interfaces function
rank.correlation in package FSelector.

filters = as.list(mlr:::.FilterRegister)
filters$rank.correlation
#> Filter: 'rank.correlation'
#> Packages: 'FSelector'
#> Supported tasks: regr
#> Supported features: numerics

str(filters$rank.correlation)
#> List of 6
#> $ name : chr "rank.correlation"
#> $ desc : chr "Spearman's correlation between

feature and target"
#> $ pkg : chr "FSelector"
#> $ supported.tasks : chr "regr"
#> $ supported.features: chr "numerics"
#> $ fun :function (task, nselect, ...)
#> - attr(*, "class")= chr "Filter"

filters$rank.correlation$fun
#> function (task, nselect, ...)
#> {
#> y = FSelector::rank.correlation(getTaskFormula(task), data =

getTaskData(task))
#> setNames(y[["attr_importance"]], getTaskFeatureNames(task))
#> }
#> <bytecode: 0xbbdeb38>
#> <environment: namespace:mlr>

The core element is $fun which calculates the feature importance. For the
"rank.correlation" filter it just extracts the data and formula from the task
and passes them on to the rank.correlation function.

Additionally, each Filter object has a $name, which should be short and is for
example used to annotate graphics (cp. plotFilterValues), and a slightly more
detailed description in slot $desc. If the filter method is implemented by another
package its name is given in the $pkg member. Moreover, the supported task
types and feature types are listed.

31.2 Writing a new filter method

You can integrate your own filter method using makeFilter. This function gen-
erates a Filter object and also registers it in the .FilterRegister environment.

271

http://www.rdocumentation.org/packages/FSelector/functions/correlation.html
http://www.rdocumentation.org/packages/FSelector/
http://www.rdocumentation.org/packages/FSelector/functions/correlation.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html
http://www.rdocumentation.org/packages/mlr/functions/plotFilterValues.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html

31.2 Writing a new filter method31 INTEGRATING ANOTHER FILTER METHOD

The arguments of makeFilter correspond to the slot names of the Filter object
above. Currently, feature filtering is only supported for supervised learning tasks
and possible values for supported.tasks are "regr", "classif" and "surv".
supported.features can be "numerics", "factors" and "ordered".

fun must be a function with at least the following formal arguments:

• task is a mlr learning Task.
• nselect corresponds to the argument of generateFilterValuesData of the

same name and specifies the number of features for which to calculate
importance scores. Some filter methods have the option to stop after a
certain number of top-ranked features have been found, in order to save
time and ressources when the number of features is high. The majority
of filter methods integrated in mlr doesn’t support this and thus nselect
is ignored in most cases. An exception is the minimum redundancy maxi-
mum relevance filter from package mRMRe.

• ... for additional arguments.

fun must return a named vector of feature importance values. By convention
the most important features receive the highest scores.

If nselect is actively used fun can either return a vector of nselect scores or
a vector as long as the numbers of features in the task that contains NAs for all
features whose scores weren’t calculated.

For writing fun many of the getter functions for Tasks come in handy, par-
ticularly getTaskData, getTaskFormula and getTaskFeatureNames. It’s worth
having a closer look at getTaskData which provides many options for formatting
the data and recoding the target variable.

As a short demonstration we write a totally meaningless filter that determines
the importance of features according to alphabetical order, i.e., giving high-
est scores to features with names that come first (decreasing = TRUE) or last
(decreasing = FALSE) in the alphabet.

makeFilter(
name = "nonsense.filter",
desc = "Calculates scores according to alphabetical order of

features",
pkg = "",
supported.tasks = c("classif", "regr", "surv"),
supported.features = c("numerics", "factors", "ordered"),
fun = function(task, nselect, decreasing = TRUE, ...) {

feats = getTaskFeatureNames(task)
imp = order(feats, decreasing = decreasing)
names(imp) = feats
imp

}
)

272

http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilter.html
http://www.rdocumentation.org/packages/base/functions/function.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mRMRe/
http://www.rdocumentation.org/packages/mlr/functions/Task.html
http://www.rdocumentation.org/packages/mlr/functions/getTaskData.html
http://www.rdocumentation.org/packages/mlr/functions/getTaskFormula.html
http://www.rdocumentation.org/packages/mlr/functions/getTaskFeatureNames.html
http://www.rdocumentation.org/packages/mlr/functions/getTaskData.html

31.2 Writing a new filter method31 INTEGRATING ANOTHER FILTER METHOD

#> Filter: 'nonsense.filter'
#> Packages: ''
#> Supported tasks: classif,regr,surv
#> Supported features: numerics,factors,ordered

The nonsense.filter is now registered in mlr and shown by listFilterMethods.

listFilterMethods()$id
#> [1] anova.test carscore
#> [3] cforest.importance chi.squared
#> [5] gain.ratio information.gain
#> [7] kruskal.test linear.correlation
#> [9] mrmr nonsense.filter
#> [11] oneR permutation.importance
#> [13] randomForest.importance randomForestSRC.rfsrc
#> [15] randomForestSRC.var.select rank.correlation
#> [17] relief rf.importance
#> [19] rf.min.depth symmetrical.uncertainty
#> [21] univariate univariate.model.score
#> [23] variance
#> 23 Levels: anova.test carscore cforest.importance ... variance

You can use it like any other filter method already integrated in mlr (i.e., via
the method argument of generateFilterValuesData or the fw.method argument
of makeFilterWrapper; see also the page on feature selection).

d = generateFilterValuesData(iris.task, method =
c("nonsense.filter", "anova.test"))

d
#> FilterValues:
#> Task: iris-example
#> name type nonsense.filter anova.test
#> 1 Sepal.Length numeric 2 119.26450
#> 2 Sepal.Width numeric 1 49.16004
#> 3 Petal.Length numeric 4 1180.16118
#> 4 Petal.Width numeric 3 960.00715

plotFilterValues(d)

273

http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/listFilterMethods.html
http://www.rdocumentation.org/packages/mlr/
http://www.rdocumentation.org/packages/mlr/functions/generateFilterValuesData.html
http://www.rdocumentation.org/packages/mlr/functions/makeFilterWrapper.html

31.2 Writing a new filter method31 INTEGRATING ANOTHER FILTER METHOD

nonsense.filter anova.test

0

1

2

3

4

0

300

600

900

1200

Pet
al.

Le
ng

th

Pet
al.

W
idt

h

Sep
al.

Le
ng

th

Sep
al.

W
idt

h

Pet
al.

Le
ng

th

Pet
al.

W
idt

h

Sep
al.

Le
ng

th

Sep
al.

W
idt

h

iris−example (4 features)

iris.task.filtered = filterFeatures(iris.task, method =
"nonsense.filter", abs = 2)

iris.task.filtered
#> Supervised task: iris-example
#> Type: classif
#> Target: Species
#> Observations: 150
#> Features:
#> numerics factors ordered
#> 2 0 0
#> Missings: FALSE
#> Has weights: FALSE
#> Has blocking: FALSE
#> Classes: 3
#> setosa versicolor virginica
#> 50 50 50

274

31.2 Writing a new filter method31 INTEGRATING ANOTHER FILTER METHOD

#> Positive class: NA

getTaskFeatureNames(iris.task.filtered)
#> [1] "Petal.Length" "Petal.Width"

You might also want to have a look at the source code of the filter methods
already integrated in mlr for some more complex and meaningful examples.

275

https://github.com/mlr-org/mlr/blob/master/R/Filter.R#L95
http://www.rdocumentation.org/packages/mlr/

	mlr Tutorial
	Quick start

	Learning Tasks
	Task types and creation
	Regression
	Classification
	Survival analysis
	Multilabel classification
	Cluster analysis
	Cost-sensitive classification

	Further settings
	Accessing a learning task
	Modifying a learning task
	Example tasks and convenience functions

	Learners
	Constructing a learner
	Accessing a learner
	Modifying a learner
	Listing learners

	Training a Learner
	Accessing learner models
	Further options and comments

	Predicting Outcomes for New Data
	Accessing the prediction
	Extract Probabilities

	Adjusting the threshold
	Visualizing the prediction

	Evaluating Learner Performance
	Available performance measures
	Listing measures
	Calculate performance measures
	Requirements of performance measures

	Access a performance measure
	Binary classification: Plot performance versus threshold

	Resampling
	Stratified resampling
	Accessing individual learner models
	Resample descriptions and resample instances
	Aggregating performance values
	Example: Different measures and aggregations
	Example: Calculating the training error
	Example: Bootstrap

	Convenience functions

	Tuning Hyperparameters
	Basics
	Specifying the search space
	Specifying the optimization algorithm
	Performing the tuning
	Accessing the tuning result
	Investigating hyperparameter tuning effects

	Further comments

	Benchmark Experiments
	Conducting benchmark experiments
	Accessing benchmark results
	Learner performances
	Predictions
	IDs
	Learner models
	Learners and measures

	Merging benchmark results
	Benchmark analysis and visualization
	Example: Comparing lda, rpart and random Forest
	Integrated plots
	Comparing learners using hypothesis tests
	Critical differences diagram
	Custom plots

	Further comments

	Parallelization
	Parallelization levels
	Custom learners and parallelization
	The end

	Visualization
	Generation and plotting functions
	Some examples
	Customizing plots

	Available generation and plotting functions

	Configuring mlr
	Example: Reducing the output on the console
	Accessing and resetting the configuration
	Example: Turning off parameter checking
	Example: Handling errors in a learning method

	Wrapper
	Example: Bagging wrapper

	Data Preprocessing
	Fusing learners with preprocessing
	Preprocessing with makePreprocWrapperCaret
	Joint tuning of preprocessing options and learner parameters

	Writing a custom preprocessing wrapper
	Specifying the train function
	Specifying the predict function
	Creating the preprocessing wrapper
	Joint tuning of preprocessing and learner parameters
	Preprocessing wrapper functions

	Imputation of Missing Values
	Imputation and reimputation
	Fusing a learner with imputation

	Generic Bagging
	Changing the type of prediction

	Advanced Tuning
	Iterated F-Racing for mixed spaces and dependencies
	Tuning across whole model spaces with ModelMultiplexer
	Multi-criteria evaluation and optimization

	Feature Selection
	Filter methods
	Calculating the feature importance
	Selecting a feature subset
	Fuse a learner with a filter method
	Tuning the size of the feature subset

	Wrapper methods
	Select a feature subset
	Fuse a learner with feature selection

	Nested Resampling
	Tuning
	Accessing the tuning result

	Feature selection
	Wrapper methods
	Filter methods with tuning

	Benchmark experiments
	Example 1: Two tasks, two learners, tuning
	Example 2: One task, two learners, feature selection
	Example 3: One task, two learners, feature filtering with tuning

	Cost-Sensitive Classification
	Class-dependent misclassification costs
	Binary classification problems
	Multi-class problems

	Example-dependent misclassification costs

	Imbalanced Classification Problems
	Sampling-based approaches
	(Simple) over- and undersampling
	Over- and undersampling wrappers
	Extensions to oversampling

	Cost-based approaches
	Weighted classes wrapper

	ROC Analysis and Performance Curves
	Performance plots with plotROCCurves
	Example 1: Single predictions
	Example 2: Benchmark experiment

	Performance plots with asROCRPrediction
	Example 1: Single predictions (continued)
	Example 2: Benchmark experiments (continued)

	Viper charts

	Multilabel Classification
	Creating a task
	Constructing a learner
	Algorithm adaptation methods
	Problem transformation methods

	Train
	Predict
	Performance
	Resampling
	Binary performance

	Learning Curve Analysis
	Plotting the learning curve

	Exploring Learner Predictions
	Generating partial dependences
	Functional ANOVA
	Plotting partial dependences

	Classifier Calibration
	Evaluating Hyperparameter Tuning
	Generating hyperparameter tuning data
	Visualizing the effect of a single hyperparameter
	Visualizing the effect of 2 hyperparameters

	Integrating Another Learner
	Classes, constructors, and naming schemes
	Classification
	Definition of the learner
	Creating the training function of the learner
	Creating the prediction method

	Regression
	Survival analysis
	Clustering
	Multilabel classification
	Creating a new feature importance method

	Integrating Another Measure
	Performance measures and aggregation schemes
	Constructing a performance measure
	Constructing a measure for ordinary misclassification costs
	Creating an aggregation scheme
	Example: Evaluating the range of measures

	Creating an Imputation Method
	Example: Imputation using the mean
	Writing your own imputation method

	Integrating Another Filter Method
	Filter objects
	Writing a new filter method

