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Idea

The underlying idea of stacking is that a combination of models should perform better than just a

single one. This is generally known as ensemble. Other ensemble methods work the same way,

connecting typically multiple weak learners to build a strong one. Examples are random forest which

consists of many single trees, or boosting which uses trees as well as linear models as weak

components. However, there are some differences: Stacking nowadays (normally) make use of well

perfoming base learners, whereas the idea of classical ensembles is to use learners which

“performs only slightly better than random guessing” as stated in Schapire (1990). Another point

where these two methods differ is that ensembles are usually aggregated employing simple

average method or majority voting, whereas stacking – in addition to that – also makes use of more

sophisticated aggregation methods like ensemble selection or classification/regression learners. In

addtion to these classical stacking methods a new, fourth method is implemented called boosted

stacking.

Basic Setup

In the following some naming conventions for the basic setup will be provided. Stacking was

introduced by Wolpert (1992) as a 2-staged method. As every learning problem it starts with the

data set, referred as level 0 data. Using this data, the so called level 0 learners/generalizer or base

learners are applied. Depending on the stacking method, obtained base learner predictions are

created employing cross-validation or simple training and prediction on the same observations. The

obtained predictions create a new data set which is called level 1 data. Now the combiner is

deployed, which aggregates the data to the final prediction. The combiner is also known as level 1

generaliser, level 1 learner, aggregator or just combiner. In reference to van der Laan, Polley, and

Hubbard (2007) the term super learner is only used for the stacking method which uses a



supervised method as combiner.

Four stacking methods are implemented:

Aggregation Method,

Super Learner,

Ensemble Selection,

in function makeStackedLearner , and

Boosted Stacking

in function makeBoostedStackingLearner .

Base Learners

Any learner which is implemented can be used as base learner. Use listLearners  to find all

learners which are currently implemented and use the arguments to select learners which are useful

for your use case and data.

Note that currently only regression, binary and multiclass classification are supported for stacking.

Moreover, it is mandatory that base learners have unique ids.

bls = list(makeLearner("classif.kknn"), 
makeLearner("classif.randomForest"),
makeLearner("classif.rpart", id = "rp1", minsplit = 5),
makeLearner("classif.rpart", id = "rp2", minsplit = 10),
makeLearner("classif.rpart", id = "rp3", minsplit = 15),
makeLearner("classif.rpart", id = "rp4", minsplit = 20),
makeLearner("classif.rpart", id = "rp5", minsplit = 25)

)

For classification two prediction types are available: probabilites and response labels. It is useful to

use predict.type = "prob"  to obtain prediction probabilites. Using the alternative

( predict.type = "response" ) will lead to a loss in information as stated in Ting and Witten

(1999). While response lables are the default as prediction type, you need to change it which can

be done with only one line of code:

bls = lapply(bls, function(x) setPredictType(x, predict.type = "prob"))

The base learners for boosted stacking are created using ModelMultiplexer  and are described in

the corresponsing subsection below.

Stacking Algorithms

Aggregation Method

Aggregation is the easiest stacking method, nevertheless it is often used. For regression method

“average” is always employed, that means that the final prediction is created by calculating the



arithmetic mean of the predicted results. For classification, aggregation methods depend on the

prediction type of the base learners as well as of the type of the final prediction. It is referenced to

the table below.

Table 1: Aggregation methods for classification tasks.

Base learner prediction type Final prediction type Method

probabilites probabilites average

probabilites labels average

labels probabilites ratio

lables labels mode

When base learner prediction types are probabilites, the method is always the arithmetic mean

(“average”). Method “ratio” counts the ratio of labels predicted from base learners in relation to the

totel number of learners. Whereas “mode” means that the label will be predicted which occurs the

most regarding one observation.

Note that the final prediction type needs to be specified within makeStackedLearner  by passing

"prob"  or "response"  to predict.type .

ave = makeStackedLearner(method = "aggregate", base.learners = bls, 
predict.type = "prob")

train.idx = sample(1:getTaskSize(iris.task), 100)
test.idx = setdiff(1:getTaskSize(iris.task), train.idx)
mod = train(ave, subsetTask(iris.task, train.idx))
pred = predict(mod, subsetTask(iris.task, test.idx))
performance(pred)

## mmce 
## 0.04

Super Learner

Stacking using a classification or regression learner as combiner is a common approach. In the first

step all base learners are run using a cross-validation. Moreover, models (=base models) are

generated using the whole training set. The cross-validated prediction results are used as level 1

data. On top of this new data set the super learner is applied. All models regarding base and super

learner are saved in the train object. When the stacking model is employed on new test data,

predictions are generated using base models to obtain level 1 (test) data. On top of that the super

model is applied which leads to the final predictions results.

The usage of cross-validation to obtain level 1 data is crucial to cope overfitting. The default is a

5-fold CV. With use.feat  the original features can be appended to the level 1 data set, which may

improve the performance in some cases.



base = c("regr.rpart", "regr.randomForest", "regr.svm")
lrns = lapply(base, makeLearner)
spr = makeStackedLearner(method = "superlearner", 

base.learners = lrns, predict.type = "response", resampling = cv3, 
super.learner = "regr.kknn", use.feat = TRUE)

bh.train = subsetTask(bh.task, 1:450)
bh.test = subsetTask(bh.task, 451:getTaskSize(bh.task))
mod = train(spr, bh.train)
pred = predict(mod, bh.test)
performance(pred)

##     mse 
## 10.3847

Ensemble Selection

Ensemble selection was introduced by Caruana et al. (2004). It is a greedy forwards search, which

chooses the best models from a library of (base) models. To prevent overfitting the selection takes

place based on the performance obtained by cross-validated prediction results. The algorithm

consists of two loops: In the outer loop a subset of models regarding bagprop is chosen. It is

conducted as often as defined in bagtime. Within each iteration a fixed number (init) of best

learners is picked depending on the metric defined. In addition to that an inner loop is conducted.

Here as many models are added until the performance does not improve at least the value of the

tolerance parameter or until maxiter is reached.

The parameters in detail:

bagtime: An integer which determines the number of bagging iterations where models are

added to the ensemble (this is not equal to the number of models added).

bagprop: A numeric value between zero and one, which defines the fraction of models which

will be part of every single bagging iteration.

init: An integer value (starting at 1), which defines the number of best models from a bag

added to the ensemble at the beginning of each iteration.

replace: A logical indicator controlling if base models can be added only once or several

times within a bagging iteration.

maxiter: The maximal number of iterations within a bagging step (where models will be

added).

tolerance: When performance does not improve at least the value specified here, the inner

loop is stopped (for measures which needs to be minimized). Note, that for metrics which

need to be maximied, a negative value need to be specified to obtain the same result.

metric: Specifies the metric which should be optimized.

To apply the model on new test data, predictions are obtained using the base models which were

selected. These predictions (=level 1 data) are expanded regarding the frequency they are chosen.

Finally, the predictions are combined using aggregation method.

Note, that tolerance should be carefully selected according to the metric in use. Performance

differences between models are usually smaller for acc  than for auc . When the tolerance is set to



a negative value the adding of models will terminate at a later point (more diverse models will be

added). In Caruana et al. (2004) 2000 base models were used. Regarding that setting they suggest

bagtime of 20 or 25 and bagprop = 0.5.

ensel = makeStackedLearner(method = "ensembleselection", 
base.learners = bls, predict.type = "prob", 
es.par.vals = list(bagtime = 10, init = 3, metric = logloss))

res.ensel = resample(ensel, pid.task, cv3, measures = logloss, 
model = TRUE)

performance(res.ensel$pred, measures = logloss)

##   logloss 
## 0.4872104

Boosted Stacking

Boosted stacking is a new stacking method. It combines stacking of models in an iterative boosting

fashion. The basic idea is to tune a well performing model, and then add the prediction as a new

feature to the data set. The base learners are described in the ModelMultiplexer  and the

corresponding parameter space is defined in the ParamSet  object. For tuning, a tuning algorithm

(here named ctrl ), containing the budget (here maxit ), and a resampling strategy (here cv10 )

need to be specified. Moreover, the maximal number of boosting steps ( niter ) and the

tolerance  need to be set. If the tolerance is set to a negative value, boosting does not stop even if

the performance worsen. With the argument subsemble.prop  the observation size can be reduced.

In every boosting step another subset will be created, where tuning and model fitting will be

employed. The default is 80%.

lrns = list(
makeLearner("classif.kknn"), 
makeLearner("classif.gbm", distribution = "bernoulli"),
makeLearner("classif.randomForest"))

lrns = lapply(lrns, setPredictType, "prob")
mm = makeModelMultiplexer(lrns)
ps = makeModelMultiplexerParamSet(mm,

makeIntegerParam("k", lower = 1L, upper = 20L),
makeIntegerParam("n.trees", lower = 1L, upper = 500L),
makeIntegerParam("interaction.depth", lower = 1L, upper = 10L),
makeIntegerParam("ntree", lower = 1L, upper = 500L),
makeIntegerParam("nodesize", lower = 1L, upper = 20L))

ctrl = makeTuneControlRandom(maxit = 5L)
boost = makeBoostedStackingLearner(model.multiplexer = mm, 

predict.type = "prob", resampling = cv10, mm.ps = ps, 
control = ctrl, measures = mmce, niter = 5L, 
tolerance = -.5)

res.boost = resample(boost, task = pid.task, resampling = hout, 
models = TRUE)



res.boost$models[[1]]$learner.model$score

##         classif.kknn.1 classif.randomForest.2 classif.randomForest.3 
##              0.2493902              0.2295732              0.2492683 
##         classif.kknn.4 classif.randomForest.5 
##              0.2590244              0.2590244

Reducing Computation Time

Parallelization

Stacking can be computational expensive especially when many base learners or big data sets are

used. In mlr  several functionalities can be run in parallel. For parallelization the package

parallelMap  is used. The function parallelGetRegisteredLevels  lists all levels which can be

parallelized.

library(parallelMap)
parallelGetRegisteredLevels()

## mlr: mlr.benchmark, mlr.resample, mlr.selectFeatures, mlr.tuneParams, m
lr.stackedLearner

For StackedLearner mlr.resample  and mlr.stackedLearner  are interesting. For

BoostedStacking use mlr.resample  or mlr.tuneParams . See ?parallelStart  for more

information about the parallelization setup. In general it is good practice to stop parallelization after

its usage with parallelStop .

StackedLearner

Level mlr.resample  runs the resampling procedure in parallel (in the case below it would be a

maximal parallelization of three, because 3-fold CV is used). The second method

( mlr.stackedLearner ) leads to a parallelization of the single base learners in the training task.

Hence, in case of a stack of seven base learners (as it is in ensel ) a maximum of seven

procedures can run at once.

parallelStartMulticore(cpus = 3, logging = FALSE, 
level = "mlr.stackedLearner", show.info = FALSE)

res.ensel2 = resample(ensel, pid.task, cv3, models = T)
parallelStop()

BoostedStacking

For boosted stacking the outer resampling (here cv3 ) or the single learners in the parameter tuning

(here maxit = 5L ) can be parallelized.



parallelStartMulticore(cpus = 3, logging = FALSE, 
level = "mlr.tuneParams", show.info = FALSE)

res.boost2 = resample(boost, pid.task, cv3)
parallelStop()

Reuse results

In case a resampling for StackedLearner  should be run with different settings it is easiest to use

resampleStackedLearnerAgain . This function reuses already done work from the

ResampleResult , i.e. reuses fitted base models (needed to obtain level 1 data based on test data)

and level 1 training data. Note, that models need to be present (i.e. save.preds = TRUE  in

makeStackedLearner ). When using save.on.disc = TRUE in makeStackedLearner  resampling

procedure “Holdout” is allowed only (model names are not unique regarding CV fold number).

To make use of that function the ResampleResult , the task, and the new parameter settings need

to be passed. Use super.learner  and use.feat  for super learner method, es.par.vals  for

ensemble selection or keep all empty for aggregation method.

# 2 new ensemble selection settings
reuse1 = resampleStackedLearnerAgain(obj = res.ensel, 

task = pid.task, es.par.vals = list(init = 2, bagtime = 5))
reuse2 = resampleStackedLearnerAgain(obj = res.ensel, 

task = pid.task, measures = list(mmce, auc), 
es.par.vals = list(bagprop = .8, bagtime = 15, metric = auc))

# 1 new super learner setting
reuse3 = resampleStackedLearnerAgain(obj = res.ensel, 

task = pid.task, measures = mmce, super.learner = bls[[2]], 
use.feat = TRUE)

# new aggregation setting (no parameter specified)
reuse4 = resampleStackedLearnerAgain(obj = res.ensel, 

task = pid.task, measures = list(mmce))

Compare performance:

all.res = list(Base = res.ensel, Reuse1 = reuse1, 
Reuse2 = reuse2, Reuse3 = reuse3, Reuse4 = reuse4)

extractSubList(all.res, "aggr")



## $Base
## logloss.test.mean 
##         0.4872104 
## 
## $Reuse1
## mmce.test.mean 
##      0.2447917 
## 
## $Reuse2
## mmce.test.mean  auc.test.mean 
##      0.2773438      0.7961199 
## 
## $Reuse3
## mmce.test.mean 
##      0.2369792 
## 
## $Reuse4
## mmce.test.mean 
##      0.2760417

Compare running time (in seconds):

sapply(all.res, function(x) round(x$runtime, 2))

##   Base Reuse1 Reuse2 Reuse3 Reuse4 
##  15.83   1.89   2.14   1.17   0.34

A comparable function for BoostedStackingLearner  is not available.

Save Memory

R is not famous for being memory efficient. If you use a big number of base learners as well as

large data sets computation can break due to memory limits. To overcome this problem there are

two possibilites.

Don’t save everything: you can set models = FALSE  in resample. As a consequence no

models will be saved.

1. 

spr = makeStackedLearner(method = "superlearner", 
base.learners = bls, predict.type = "prob", resampling = cv5, 
super.learner = "classif.randomForest")

res.withmodels = resample(spr, pid.task, cv2, models = TRUE)
res.nomodels = resample(spr, pid.task, cv2, models = FALSE)

res = list(WithModels = res.withmodels, NoModels = res.nomodels)
sapply(res, function(x) paste(round(object.size(x) / 10^6, 2), "MB"))



## WithModels   NoModels 
## "13.97 MB"  "0.05 MB"

This comes with the disadvantage that all models will be lost, i.e. all information regarding models in

super learner and selected learners in ensemble selection are not available.

Yet, you still have the possibility to save only the interesting part of the model. For random forest

this might be feature importance.

res = resample(spr, pid.task, cv2, models = FALSE, 
extract = function(x) x$learner.model$super.model$learner.model$importan

ce)
paste(round(object.size(res) / 10^6, 2), "MB")

## [1] "0.05 MB"

Save the base models on disc (in your working directory).2. 

This is only implemented for stacking methods accessible through makeStackedLearner .

spr.disc = makeStackedLearner(method = "superlearner", base.learners = bls
, predict.type = "prob", resampling = cv5, super.learner = "classif.random
Forest", save.on.disc = TRUE)
res.disc = resample(spr.disc, pid.task, cv2, models = TRUE)

res = list(WithModels = res.withmodels, OnDisc = res.disc)
sapply(res, function(x) paste(round(object.size(x) / 10^6, 2), "MB"))

## WithModels     OnDisc 
## "13.97 MB"  "6.96 MB"

Here all models are still available and resampleStackedLearnerAgain  can be used.
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