Permalink
Cannot retrieve contributors at this time
Fetching contributors…
| # -*- coding: utf-8 -*- | |
| """ | |
| pygments.lexers._stan_builtins | |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| This file contains the names of functions for Stan used by | |
| ``pygments.lexers.math.StanLexer. | |
| :copyright: Copyright 2006-2013 by the Pygments team, see AUTHORS. | |
| :license: BSD, see LICENSE for details. | |
| """ | |
| CONSTANTS=[ 'e', | |
| 'epsilon', | |
| 'log10', | |
| 'log2', | |
| 'negative_epsilon', | |
| 'negative_infinity', | |
| 'not_a_number', | |
| 'pi', | |
| 'positive_infinity', | |
| 'sqrt2'] | |
| FUNCTIONS=[ 'Phi', | |
| 'abs', | |
| 'acos', | |
| 'acosh', | |
| 'asin', | |
| 'asinh', | |
| 'atan', | |
| 'atan2', | |
| 'atanh', | |
| 'bernoulli_log', | |
| 'beta_binomial_log', | |
| 'beta_log', | |
| 'binary_log_loss', | |
| 'binomial_coefficient_log', | |
| 'categorical_log', | |
| 'cauchy_log', | |
| 'cbrt', | |
| 'ceil', | |
| 'chi_square_log', | |
| 'cholesky_decompose', | |
| 'col', | |
| 'cols', | |
| 'cos', | |
| 'cosh', | |
| 'determinant', | |
| 'diag_matrix', | |
| 'diagonal', | |
| 'dirichlet_log', | |
| 'dot_product', | |
| 'dot_self', | |
| 'double_exponential_log', | |
| 'eigenvalues', | |
| 'eigenvalues_sym', | |
| 'erf', | |
| 'erfc', | |
| 'exp', | |
| 'exp2', | |
| 'expm1', | |
| 'exponential_cdf', | |
| 'exponential_log', | |
| 'fabs', | |
| 'fdim', | |
| 'floor', | |
| 'fma', | |
| 'fmax', | |
| 'fmin', | |
| 'fmod', | |
| 'gamma_log', | |
| 'hypergeometric_log', | |
| 'hypot', | |
| 'if_else', | |
| 'int_step', | |
| 'inv_chi_square_log', | |
| 'inv_cloglog', | |
| 'inv_gamma_log', | |
| 'inv_logit', | |
| 'inv_wishart_log', | |
| 'inverse', | |
| 'lbeta', | |
| 'lgamma', | |
| 'lkj_corr_cholesky_log', | |
| 'lkj_corr_log', | |
| 'lkj_cov_log', | |
| 'lmgamma', | |
| 'log', | |
| 'log10', | |
| 'log1m', | |
| 'log1p', | |
| 'log1p_exp', | |
| 'log2', | |
| 'log_sum_exp', | |
| 'logistic_log', | |
| 'logit', | |
| 'lognormal_cdf', | |
| 'lognormal_log', | |
| 'max', | |
| 'mean', | |
| 'min', | |
| 'multi_normal_cholesky_log', | |
| 'multi_normal_log', | |
| 'multi_student_t_log', | |
| 'multinomial_log', | |
| 'multiply_log', | |
| 'multiply_lower_tri_self_transpose', | |
| 'neg_binomial_log', | |
| 'normal_cdf', | |
| 'normal_log', | |
| 'ordered_logistic_log', | |
| 'pareto_log', | |
| 'poisson_log', | |
| 'pow', | |
| 'prod', | |
| 'round', | |
| 'row', | |
| 'rows', | |
| 'scaled_inv_chi_square_log', | |
| 'sd', | |
| 'sin', | |
| 'singular_values', | |
| 'sinh', | |
| 'softmax', | |
| 'sqrt', | |
| 'square', | |
| 'step', | |
| 'student_t_log', | |
| 'sum', | |
| 'tan', | |
| 'tanh', | |
| 'tgamma', | |
| 'trace', | |
| 'trunc', | |
| 'uniform_log', | |
| 'variance', | |
| 'weibull_cdf', | |
| 'weibull_log', | |
| 'wishart_log'] | |
| DISTRIBUTIONS=[ 'bernoulli', | |
| 'beta', | |
| 'beta_binomial', | |
| 'categorical', | |
| 'cauchy', | |
| 'chi_square', | |
| 'dirichlet', | |
| 'double_exponential', | |
| 'exponential', | |
| 'gamma', | |
| 'hypergeometric', | |
| 'inv_chi_square', | |
| 'inv_gamma', | |
| 'inv_wishart', | |
| 'lkj_corr', | |
| 'lkj_corr_cholesky', | |
| 'lkj_cov', | |
| 'logistic', | |
| 'lognormal', | |
| 'multi_normal', | |
| 'multi_normal_cholesky', | |
| 'multi_student_t', | |
| 'multinomial', | |
| 'neg_binomial', | |
| 'normal', | |
| 'ordered_logistic', | |
| 'pareto', | |
| 'poisson', | |
| 'scaled_inv_chi_square', | |
| 'student_t', | |
| 'uniform', | |
| 'weibull', | |
| 'wishart'] | |