-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathconv.py
132 lines (109 loc) · 3.91 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""conv.py
~~~~~~~~~~
A simple convolutional network for the RMNIST data sets. Adapted from
code in the pytorch documentation:
http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py
"""
from __future__ import print_function
import data_loader
# Third-party libraries
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torch.utils.data import Dataset
# Configuration
n = 0 # use RMNIST/n
expanded = True # Whether or not to use expanded RMNIST training data
if n == 0: epochs = 100
if n == 1: epochs = 500
if n == 5: epochs = 400
if n == 10: epochs = 200
# We decrease the learning rate by 20% every 10 epochs
if n == 0: lr = 0.01
else: lr = 0.1
batch_size = 10
momentum = 0.0
mean_data_init = 0.1
sd_data_init = 0.25
seed = 1
torch.manual_seed(seed)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((mean_data_init,), (sd_data_init,))
])
class RMNIST(Dataset):
def __init__(self, n=0, train=True, transform=None, expanded=False):
self.n = n
self.transform = transform
td, vd, ts = data_loader.load_data(n, expanded=expanded)
if train: self.data = td
else: self.data = vd
def __len__(self):
return len(self.data[0])
def __getitem__(self, idx):
data = self.data[0][idx]
img = (data*256)
img = img.reshape(28, 28)
img = Image.fromarray(np.uint8(img))
if self.transform: img = self.transform(img)
label = self.data[1][idx]
return (img, label)
train_dataset = RMNIST(n, train=True, transform=transform, expanded=expanded)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True)
training_data = list(train_loader)
validation_dataset = RMNIST(n, train=False, transform=transform, expanded=expanded)
validation_loader = torch.utils.data.DataLoader(
validation_dataset, batch_size=100, shuffle=True)
validation_data = list(validation_loader)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
def train(epoch):
optimizer = optim.SGD(model.parameters(), lr=lr*((0.8)**(epoch/10+1)), momentum=momentum)
model.train()
for batch_idx, (data, target) in enumerate(training_data):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if epoch % 10 == 0: print('Training epoch: {}'.format(epoch))
def accuracy():
if (n != 0) and (epoch % 10 != 0):
return
model.eval()
validation_loss = 0
correct = 0
for data, target in validation_data:
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
validation_loss += F.nll_loss(output, target, size_average=False).data[0]
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
validation_loss /= 10000
print('Validation set: average loss: {:.4f}, accuracy: {}/{} ({:.0f}%)\n'.format(
validation_loss, correct, 10000, 100. * correct / 10000))
for epoch in range(1, epochs + 1):
train(epoch)
accuracy()