-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtransfer.py
52 lines (38 loc) · 1.26 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""transfer.py
~~~~~~~~~~~~~~
Implement transfer learning for RMNIST, based on the features learnt
by ResNet-18.
"""
#### Libraries
# My libraries
import data_loader
# Third-party libraries
import sklearn
import sklearn.svm
import sklearn.neighbors
import sklearn.tree
import sklearn.ensemble
import sklearn.neural_network
# Configuration: whether to use expanded training data or not
expanded = False
def all_transfers():
if expanded: sizes = [1, 5, 10]
else: sizes = [1, 5, 10, 0]
for n in sizes:
print "\n\nUsing RMNIST/{}".format(n)
transfer(n)
def transfer(n):
td, vd, ts = data_loader.load_data(n, abstract=True, expanded=expanded)
classifiers = [
#sklearn.svm.SVC(),
#sklearn.svm.SVC(kernel="linear", C=0.1),
#sklearn.neighbors.KNeighborsClassifier(1),
#sklearn.tree.DecisionTreeClassifier(),
#sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
sklearn.neural_network.MLPClassifier(alpha=1.0, hidden_layer_sizes=(300,), max_iter=500)
]
for clf in classifiers:
clf.fit(td[0], td[1])
print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2))
if __name__ == "__main__":
all_transfers()