Skip to content
Go to file
Cannot retrieve contributors at this time
52 lines (38 sloc) 1.26 KB
Implement transfer learning for RMNIST, based on the features learnt
by ResNet-18.
#### Libraries
# My libraries
import data_loader
# Third-party libraries
import sklearn
import sklearn.svm
import sklearn.neighbors
import sklearn.tree
import sklearn.ensemble
import sklearn.neural_network
# Configuration: whether to use expanded training data or not
expanded = False
def all_transfers():
if expanded: sizes = [1, 5, 10]
else: sizes = [1, 5, 10, 0]
for n in sizes:
print "\n\nUsing RMNIST/{}".format(n)
def transfer(n):
td, vd, ts = data_loader.load_data(n, abstract=True, expanded=expanded)
classifiers = [
#sklearn.svm.SVC(kernel="linear", C=0.1),
#sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
sklearn.neural_network.MLPClassifier(alpha=1.0, hidden_layer_sizes=(300,), max_iter=500)
for clf in classifiers:[0], td[1])
print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2))
if __name__ == "__main__":
You can’t perform that action at this time.