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In this post I shall assume unders§tanding of the concepts described in chapter 4
(Conservation of Energy), chapter 8 (Motion) as well as seftions 11—4 and 11-5 (Vectors
and Vector algebra) of chapter 11 of Richard Feynman’s Lectures on Physics.

It is the continuation of my Introduction to Runge-Kutta Integrators, but it does not
rely on the concepts described in that post.

1  Motivation

We have previously seen how to compute the evolution of physical systems while keep-
ing the buildup of error in check. However, the error will till build up over time. We
would like to ensure that fundamental properties of the physical system are preserved.
For instance, we’d like a low $trongly-bound orbit not to turn into an escape trajectory
(or a reentry) over time: we need conservation of energy.

In order to make an integrator that conserves energy, it is helpful to look at physics
from a viewpoint where the conservation of energy is the fundamental hypothesis,
rather than a consequence of the application of some forces.

2 Gravitation from a Hamiltonian viewpoint

We consider a system of N bodies 1 through N, with masses m; through my. The state
of the system is defined by the positions and momenta of those bodies. For each body
J, the position @; and the momentum P; are 3-dimensional vectors, so the $tate of the
entire syStem lies in a 6N-dimensional space, the classical] phase space. We can write
the State as (q, p), where q = (q4, ..., q3y) and p = (py, ..., p3y) are 3N-dimensional.

The total energy K, the Hamiltonian, is a function of the §tate of the system, the
energy of a given state being H(q, p).

The evolution of the state (q,p) is deﬁnedﬂ for each dimension i € {1,...,3N}, by
the equations of motion
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This can be writtenf] as

dq _dH
dt  ~— dp
dp _ _dx
dt ~— dgq
Where for a function f(x,y), we definefl 3£ = (0?711’0?72’ ddxa ) In this way, we

*A similar formalism exists for quantum mechanics, in which case we talk about the quantum phase
space.

*The interested reader may wish to refer to Wikipedia (http://goo.gl/NiXJY4) or any classical
mechanics book for a derivation from Lagrangian mechanics. We shall take the Hamiltonian formulation as
an axiom.

*Readers familiar with multivariate calculus might prefer the notations % =V, H, ';—’t’ = =VgH, or
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“Note to the pedantic reader: while this notation is nonstandard, and one might expect partial derivatives
here, it does makes sense, since no matter whether the derivative is partial or total, the notations % and flj—f
both mean the projection of the differential form d f (respectively d g) on the corresponding subspace. For
clarity and in order not to introduce more prerequisites we shall use only $traight ds, and define % as the

projection of d f onto the subspace on which d x aéts as the identity.
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Figure 1. The potential V gener-
ated by Pluto and Charon, as a
funétion of the position (x,y) of
a 1 kg body sharing their orbital
plane. V in Joules, x and y in me-
tres.

have defined the change in position and momentum as a function of time, and thus
completely described how the system will evolve from an initial state (g, po)-
From this formulation it immediately follows that energy is conserved: indeed,

dH(p,q) dH dq dH dp

dt  _dq d¢ " dp de

Here the energy is # = T+V, where T is the kinetic energy and V is the gravitational
potential energy. Since T only depends on the momenta p (recall that for body j, T; =
%mjvlz- and P; = m;v;) and V only depends on the positions q, we get:

Hp,q) =T(p)+V(g)

so the equations of motion become
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For a single body j, this gives us
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In other words, the change in position is the velocity, and the change in momentum (the
force) is in the direction which decreases the potential. It helps to visualise the potential
for a two-dimensional problem, where the position of a body j is given by x; and y;.
One can plot the potential V(x;,y;) as a hilly landscape, where wells are created by the
other bodies. The force on j (the change in its momentum) is then direéted downhill
and its magnitude is proportional to the slope of the hill, as if j were a ball rolling atop
those hills. See for instance the potential created by Pluto and Charon in the margin.
A one-dimensional example can be seen at https://xkcd.com/681 large/.

From this formulation of the equation of motions, it is possible to deduce proper-
ties of the trajectories just from the initial energy, even when the trajetories are very
convoluted. Indeed, since the energy is conserved and since the kinetic energy (equal
to %m jv]g for each body j) is never negative (at worét it is 0 for an unmoving body),
the system cannot reach a position q where the potential V(q) is greater than the initial
energy.

Again, this is best seen on a 2-dimensional example with a single body moving in
a fixed potential. If we plot the landscape of the potential, and a waterline at the level
of the initial energy, we know that the body cannot be found on dry land at any time,
no matter how complicated its trajectory is; if the trajectory converts the whole of the
body’s kinetic energy into potential energy, it will only reach the shore.

Moreover, the body cannotf] “jump” over dry land, as that would require going
through areas of potential higher than the total energy. It is confined to the “lake”
in which it Started.

The plots below show various regions allowed by the total energy in the previously
shown potential, together with example trajectories at these energies. Note that the
trajectories are computed assuming the potential is constant (which is not true in the
case of Pluto and Charon, since these bodies revolve around each other). We’ll look at
a more realistic situation in a later post.

3 Generalised coordinates

We will now look at another $trength of the Hamiltonian formulation of classical me-
chanics: it allows for the use of coordinate systems more appropriate to the problem at
hand.

°In quantum mechanics this happens: this is quantum tunnelling.


https://xkcd.com/681_large/

Figure 2. Forbidden regions (due to potential higher than the initial energy) for various
initial energies, with example trajectories. The energy of the body is the blue plane, the
potential is the yellow surface.
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Figure 3. A mathematical pendu-
lum.

Figure 4. The potential of the pen-
dulum, with m = 1 kg and r =
1 m. V in Joules, 6 in radians.

Consider a pendulum made of a point mass m suspended in a vacuum with a mass-
less rod of length r from a frictionless hingefl, under the influence of uniform standard
gravity go.

At fir§t glance, this may seem like a 2-dimensional problem since the pendulum
does not move in a straight line. However, since the pendulum is restricted by the rod
to a circle around the pivot, we can describe its position uniquely by the oriented angle
0 between the rod and the vertical: we shall use this as our generalised position.

Lagrangian mechanics, which is beyond the scope of this overview, is needed to
derive the corresponding generalised momentum. We shall take for granted that this is
the angular momentum L = mr?w, where w = % is the angular velocity.

Our $tate (6, L) thus lies in a 2-dimensonial phase space. We can now compute the

Hamiltonian. The kinetic energy of our mass is
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T= Emvz = Em(rw)2 =

The potential energy is mgyh, where h is the height of the mass, so we can express it
as
V =mgoh = —mgy(cos 6 — 1).

We can then apply the equations of motions to that problem, and solve it as a 1-
dimensional problem, using these more convenient coordinates. We will come back
to this problem in the next post to §tudy another fundamental conservation law related
to Hamiltonian sy$tems.

4 Conclusion

We see that the nature of the possible trajectories changes fundamentally when the
energy changes, from strongly-bound orbits to transfers to outright escapes. It would
therefore be useful to be able to guarantee that energy does not drift too much even
over long periods of time when numerically computing these trajectories. Surprisingly,
while guaranteeing that the actual position does not drift away from the truth is im-
possible, it is possible to ensure that the energy does not drift, thus ensuring that the
essential nature of the traje¢tory remains unchanged.

Integrators which enforce conservation of energy are called sympleétic integrators.
They rely on another property of Hamiltonian systems, symplecticity, which will be the
focus of the next post.

‘We will not be needing the spherical cows today.
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