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In this post I shall assume understanding of the concepts described in apter 
(Conservation of Energy), apter  (Motion) as well as seions – and – (Veors
and Veor algebra) of apter  of Riard Feynman’s Leures on Physics.

It is the continuation of my Introduion to Runge-Kua Integrators, but it does not
rely on the concepts described in that post.

 Motivation
We have previously seen how to compute the evolution of physical systems while keep-
ing the buildup of error in e. However, the error will still build up over time. We
would like to ensure that fundamental properties of the physical system are preserved.
For instance, we’d like a low strongly-bound orbit not to turn into an escape trajeory
(or a reentry) over time: we need conservation of energy.

In order to make an integrator that conserves energy, it is helpful to look at physics
from a viewpoint where the conservation of energy is the fundamental hypothesis,
rather than a consequence of the application of some forces.

 Gravitation from a Hamiltonian viewpoint
We consider a system of 𝑁 bodies 1 through 𝑁, with masses 𝑚ଵ through 𝑚ே. e state
of the system is defined by the positions and momenta of those bodies. For ea body
𝑗, the position 𝑸௝ and the momentum 𝑷௝ are -dimensional veors, so the state of the
entire system lies in a 6𝑁-dimensional space, the classical¹ phase space. We can write
the state as 𝒒, 𝒑( ), where 𝒒 = 𝑞ଵ, … , 𝑞ଷே( ) and 𝒑 = 𝑝ଵ, … , 𝑝ଷே( ) are 3𝑁-dimensional.

e total energy ℋ, the Hamiltonian, is a funion of the state of the system, the
energy of a given state beingℋ(𝒒, 𝒑).

e evolution of the state 𝒒, 𝒑( ) is defined² for ea dimension 𝑖 ∈ 1, … , 3𝑁{ }, by
the equations of motion
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is can be wrien³ as
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Where for a funion 𝑓 𝒙, 𝒚( ), we define⁴ ୢ ௙
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¹A similar formalism exists for quantum meanics, in whi case we talk about the quantum phase
space.

²e interested reader may wish to refer to Wikipedia (http://goo.gl/NiXJY4) or any classical
meanics book for a derivation from Lagrangian meanics. We shall take the Hamiltonian formulation as
an axiom.

³Readers familiar with multivariate calculus might prefer the notations ౚ 𝒒
ౚ೟ ୀ 𝛁𝒑ℋ, ౚ 𝒑
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⁴Note to the pedantic reader: while this notation is nonstandard, and onemight expe partial derivatives
here, it does makes sense, since no maer whether the derivative is partial or total, the notations ങ೑

ങೣ and ౚ ೒
ౚ೟

both mean the projeion of the differential form ୢ௙ (respeively ୢ௚) on the corresponding subspace. For
clarity and in order not to introduce more prerequisites we shall use only straight ୢs, and define ౚ ೑

ౚ𝒙 as the
projeion of ୢ௙ onto the subspace on whi ୢ𝒙 as as the identity.

http://goo.gl/NiXJY4
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Figure . e potential ௏ gener-
ated by Pluto and Charon, as a
funion of the position ௫, ௬( ) of
a ଵ ୩୥ body sharing their orbital
plane. ௏ in Joules, ௫ and ௬ in me-
tres.

have defined the ange in position and momentum as a funion of time, and thus
completely described how the system will evolve from an initial state 𝒒଴, 𝒑଴( ).

From this formulation it immediately follows that energy is conserved: indeed,

dℋ 𝒑, 𝒒( )
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Here the energy isℋ = 𝑇+𝑉, where 𝑇 is the kinetic energy and𝑉 is the gravitational
potential energy. Since 𝑇 only depends on the momenta 𝒑 (recall that for body 𝑗, 𝑇௝ =
ଵ
ଶ𝑚௝𝑣ଶ௝ and 𝑷௝ = 𝑚௝𝒗௝) and 𝑉 only depends on the positions 𝒒, we get:

ℋ 𝒑, 𝒒( ) = 𝑇 𝒑( ) + 𝑉 𝒒( )

so the equations of motion become
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For a single body 𝑗, this gives us
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In other words, theange in position is the velocity, and theange in momentum (the
force) is in the direion whi decreases the potential. It helps to visualise the potential
for a two-dimensional problem, where the position of a body 𝑗 is given by 𝑥௝ and 𝑦௝ .
One can plot the potential 𝑉 𝑥௝ , 𝑦௝( ) as a hilly landscape, where wells are created by the
other bodies. e force on 𝑗 (the ange in its momentum) is then direed downhill
and its magnitude is proportional to the slope of the hill, as if 𝑗 were a ball rolling atop
those hills. See for instance the potential created by Pluto and Charon in the margin.
A one-dimensional example can be seen at https://xkcd.com/681_large/.

From this formulation of the equation of motions, it is possible to deduce proper-
ties of the trajeories just from the initial energy, even when the trajeories are very
convoluted. Indeed, since the energy is conserved and since the kinetic energy (equal
to ଵ

ଶ𝑚௝𝑣ଶ௝ for ea body 𝑗) is never negative (at worst it is 0 for an unmoving body),
the system cannot rea a position 𝒒where the potential 𝑉 𝒒( ) is greater than the initial
energy.

Again, this is best seen on a -dimensional example with a single body moving in
a fixed potential. If we plot the landscape of the potential, and a waterline at the level
of the initial energy, we know that the body cannot be found on dry land at any time,
no maer how complicated its trajeory is; if the trajeory converts the whole of the
body’s kinetic energy into potential energy, it will only rea the shore.

Moreover, the body cannot⁵ “jump” over dry land, as that would require going
through areas of potential higher than the total energy. It is confined to the “lake”
in whi it started.

e plots below show various regions allowed by the total energy in the previously
shown potential, together with example trajeories at these energies. Note that the
trajeories are computed assuming the potential is constant (whi is not true in the
case of Pluto and Charon, since these bodies revolve around ea other). We’ll look at
a more realistic situation in a later post.

 Generalised coordinates
We will now look at another strength of the Hamiltonian formulation of classical me-
anics: it allows for the use of coordinate systems more appropriate to the problem at
hand.

⁵In quantum meanics this happens: this is quantum tunnelling.

https://xkcd.com/681_large/
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Figure . Forbidden regions (due to potential higher than the initial energy) for various
initial energies, with example trajeories. e energy of the body is the blue plane, the
potential is the yellow surface.
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Figure . A mathematical pendu-
lum.

Figure . e potential of the pen-
dulum, with ௠ ୀ ଵ ୩୥ and ௥ ୀ
ଵ୫. ௏ in Joules, ఏ in radians.

Consider a pendulum made of a point mass𝑚 suspended in a vacuum with a mass-
less rod of length 𝑟 from a friionless hinge⁶, under the influence of uniform standard
gravity 𝑔଴.

At first glance, this may seem like a -dimensional problem since the pendulum
does not move in a straight line. However, since the pendulum is restried by the rod
to a circle around the pivot, we can describe its position uniquely by the oriented angle
𝜃 between the rod and the vertical: we shall use this as our generalised position.

Lagrangian meanics, whi is beyond the scope of this overview, is needed to
derive the corresponding generalised momentum. We shall take for granted that this is
the angular momentum 𝐿 = 𝑚𝑟ଶ𝜔, where 𝜔= ୢ ఏ

ୢ ௧ is the angular velocity.
Our state 𝜃, 𝐿( ) thus lies in a -dimensonial phase space. We can now compute the

Hamiltonian. e kinetic energy of our mass is

𝑇 = 1
2𝑚𝑣

ଶ = 1
2𝑚 𝑟𝜔( )ଶ = 𝐿ଶ

2𝑚𝑟ଶ .

e potential energy is 𝑚𝑔଴ℎ, where ℎ is the height of the mass, so we can express it
as

𝑉 = 𝑚𝑔଴ℎ = −𝑚𝑔଴(cos 𝜃 − 1).

We can then apply the equations of motions to that problem, and solve it as a -
dimensional problem, using these more convenient coordinates. We will come ba
to this problem in the next post to study another fundamental conservation law related
to Hamiltonian systems.

 Conclusion
We see that the nature of the possible trajeories anges fundamentally when the
energy anges, from strongly-bound orbits to transfers to outright escapes. It would
therefore be useful to be able to guarantee that energy does not dri too mu even
over long periods of time when numerically computing these trajeories. Surprisingly,
while guaranteeing that the aual position does not dri away from the truth is im-
possible, it is possible to ensure that the energy does not dri, thus ensuring that the
essential nature of the trajeory remains unanged.

Integrators whi enforce conservation of energy are called sympleic integrators.
ey rely on another property of Hamiltonian systems, sympleicity, whiwill be the
focus of the next post.

⁶We will not be needing the spherical cows today.
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