diff --git a/recipes/bridge/README.md b/recipes/bridge/README.md
deleted file mode 100644
index 07a57222..00000000
--- a/recipes/bridge/README.md
+++ /dev/null
@@ -1,54 +0,0 @@
-# Bridge
-[](https://gitlab.com/hylkedonker/bridge/-/security/dashboard)
-
-
-
-
-This package acts as a bridge between Mojo native types and those from the Python world.
-
-Example usage, to convert a NumPy array to a Mojo `LayoutTensor` or `Tensor`:
-```mojo
-from python import Python
-from bridge.numpy import ndarray_to_layouttensor, ndarray_to_tensor
-
-var np = Python.import_module("numpy")
-np_array = np.arange(6.0).reshape(2,3)
-
-# Convert to new-style `LayoutTensor`.
-mojo_tensor = ndarray_to_layouttensor[order=2](np_array)
-
-# Convert to old-style `Tensor`.
-mojo_oldtensor = ndarray_to_tensor[DType.float64](np_array)
-```
-Or to achieve the reverse:
-```mojo
-from tensor import Tensor
-
-from bridge.numpy import layouttensor_to_ndarray, tensor_to_ndarray
-
-# Convert new-style `LayoutTensor` to numpy array.
-np_array = layouttensor_to_ndarray(mojo_tensor)
-
-# Convert old-style `Tensor` to numpy array.
-values = List[Float64](0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
-mojo_oldtensor = Tensor[DType.float64](shape=(2, 3), list=values)
-np_array = tensor_to_ndarray(mojo_oldtensor)
-```
-
-# Installation
-Add the `modular-community` channel to your `mojoproject.toml` file and `bridge` to
-your dependencies, by running:
-```bash
-magic project channel add "https://repo.prefix.dev/modular-community"
-magic add bridge
-```
-That's it, success! 🎉
-
-# Dependencies
-Requires numpy and mojo.
-
-# Contributing
-Please refer to the [contribution guidelines](https://gitlab.com/hylkedonker/bridge/-/blob/main/CONTRIBUTING.md) before contributing.
-
-# License
-This code is licensed under the terms of the [MIT License](LICENSE.txt).
\ No newline at end of file
diff --git a/recipes/bridge/avatar.jpeg b/recipes/bridge/avatar.jpeg
deleted file mode 100644
index 9b95bdea..00000000
Binary files a/recipes/bridge/avatar.jpeg and /dev/null differ
diff --git a/recipes/bridge/image.jpeg b/recipes/bridge/image.jpeg
deleted file mode 100644
index f80db956..00000000
Binary files a/recipes/bridge/image.jpeg and /dev/null differ
diff --git a/recipes/bridge/recipe.yaml b/recipes/bridge/recipe.yaml
deleted file mode 100644
index 1d970802..00000000
--- a/recipes/bridge/recipe.yaml
+++ /dev/null
@@ -1,46 +0,0 @@
-context:
- version: "0.2.0"
-
-package:
- name: "bridge"
- version: ${{ version }}
-
-source:
- - git: https://gitlab.com/hylkedonker/bridge.git
- rev: 87f10144b004ff4ef8e73d6b8b52e3f81effd40f
-
-build:
- number: 0
- script:
- - mojo package src/bridge -o ${{ PREFIX }}/lib/mojo/bridge.mojopkg
-requirements:
- host:
- - max=25.2
- run:
- - ${{ pin_compatible('max') }}
-
-tests:
- - script:
- - if: unix
- then:
- - mojo test test_numpy.🔥
- files:
- recipe:
- - test_numpy.🔥
-about:
- homepage: https://gitlab.com/hylkedonker/bridge
- # Remember to specify the license variants for BSD, Apache, GPL, and LGPL.
- # Use the SPDX identifier, e.g: GPL-2.0-only instead of GNU General Public License version 2.0
- # See https://spdx.org/licenses/
- license: MIT
- # It is strongly encouraged to include a license file in the package,
- # (even if the license doesn't require it) using the license_file entry.
- # See https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#license-file
- license_file: LICENSE.txt
- summary: Convert (bridge) Python objects to Mojo and vice versa.
- repository: https://gitlab.com/hylkedonker/bridge
-
-extra:
- maintainers:
- - hylkedonker
- project_name: Bridge
diff --git "a/recipes/bridge/test_numpy.\360\237\224\245" "b/recipes/bridge/test_numpy.\360\237\224\245"
deleted file mode 100644
index 5b690d06..00000000
--- "a/recipes/bridge/test_numpy.\360\237\224\245"
+++ /dev/null
@@ -1,123 +0,0 @@
-from python import Python
-from layout import Layout, LayoutTensor
-from tensor import Tensor
-from testing import assert_equal, assert_raises, assert_true
-
-from bridge.numpy import (
- layouttensor_to_ndarray,
- ndarray_to_layouttensor,
- ndarray_to_tensor,
- tensor_to_ndarray,
-)
-
-
-def test_tensor_identity_transformation():
- """Test that `ndarray_to_tensor` is inverse of `tensor_to_ndarray`."""
- var values = List[Float64](1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
- var in_matrix = Tensor[DType.float64](shape=(3, 2), list=values)
- var np_array = tensor_to_ndarray(in_matrix)
- var out_matrix = ndarray_to_tensor[DType.float64](np_array)
- assert_equal(in_matrix, out_matrix)
-
-
-def test_numpy_tensor_identity_transformation():
- """Test that `tensor_to_ndarray` is inverse of `ndarray_to_tensor`."""
- var np = Python.import_module("numpy")
- var in_array = np.arange(6).reshape(3, 2)
- var tensor = ndarray_to_tensor[DType.float64](in_array)
- var out_array = tensor_to_ndarray(tensor)
- assert_equal(in_array, out_array)
-
-
-def test_ndarray_to_layouttensor():
- """Test numpy array conversion to layouttensor for various tensor shapes."""
- var np = Python.import_module("numpy")
-
- # 1) Test vectors
- var in_vector = np.arange(4.0)
- var out_vector = ndarray_to_layouttensor[order=1](in_vector)
- assert_equal(out_vector[1], 1.0)
- assert_equal(out_vector[3], 3.0)
-
- # 2) Test matrices
- var in_matrix = np.arange(4.0 * 3.0).reshape(3, 4)
- var out_matrix = ndarray_to_layouttensor[order=2](in_matrix)
- assert_equal(out_matrix[0, 0], 0.0)
- assert_equal(out_matrix[1, 1], 5.0)
- assert_equal(out_matrix[1, 3], 7.0)
- assert_equal(out_matrix[2, 1], 9.0)
-
- # Check that non-contiguous arrays raise exceptions.
- with assert_raises():
- var in_matrix_col_major = np.asfortranarray(in_matrix)
- _ = ndarray_to_layouttensor[order=2](in_matrix_col_major)
-
- # 3) Test three-index tensors
- var in_tensor = np.arange(4.0 * 3.0).reshape(3, 1, 4)
- var out_tensor = ndarray_to_layouttensor[order=3](in_tensor)
- assert_equal(out_tensor[0, 0, 0], 0.0)
- assert_equal(out_tensor[1, 0, 1], 5.0)
- assert_equal(out_tensor[1, 0, 3], 7.0)
- assert_equal(out_tensor[2, 0, 1], 9.0)
-
- # 3) Test four-index tensors
- var in_4tensor = np.arange(4.0 * 3.0).reshape(2, 3, 1, 2)
- var out_4tensor = ndarray_to_layouttensor[order=4](in_4tensor)
- assert_equal(out_4tensor[0, 0, 0, 0], 0.0)
- assert_equal(out_4tensor[0, 1, 0, 1], 3.0)
- assert_equal(out_4tensor[1, 0, 0, 1], 7.0)
- assert_equal(out_4tensor[0, 2, 0, 0], 4.0)
-
-
-def test_memory_leaks():
- """Test that we can safely remove the reference to the numpy array."""
- var np = Python.import_module("numpy")
- var np_array = np.arange(6.0).reshape(3, 2)
- var tensor = ndarray_to_layouttensor[order=2](np_array)
- np_array.__del__()
- assert_equal(tensor[1, 0], 2.0)
- assert_equal(tensor[1, 1], 3.0)
- assert_equal(tensor[2, 1], 5.0)
-
-
-# def test_layouttensor_numpy_identity_transformation():
-# """Test that `layouttensor_to_ndarray` is inverse of `ndarray_to_layouttensor`.
-# """
-# values = List[Float64](0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
-# tensor = Tensor[DType.float64](shape=(2, 3), list=values)
-# var ptr = tensor.unsafe_ptr()
-# layouttensor = LayoutTensor[
-# mut=False,
-# DType.float64,
-# Layout.row_major(2, 3),
-# __origin_of(ptr[]),
-# ](ptr=ptr)
-# np_array = layouttensor_to_ndarray(layouttensor)
-# out_layouttensor = ndarray_to_layouttensor[order=2](in_array)
-
-
-def test_numpy_layouttensor_identity_transformation():
- """Test that `ndarray_to_layouttensor` is the inverse of `layouttensor_to_ndarray`.
- """
- var np = Python.import_module("numpy")
-
- # 1) Test vectors
- # TODO: Add support for vectors!
-
- # 2) Test matrices
- var in_matrix = np.arange(4.0 * 3.0).reshape(3, 4)
- var layout_matrix = ndarray_to_layouttensor[order=2](in_matrix)
- var out_matrix = layouttensor_to_ndarray(layout_matrix)
- np.testing.assert_array_equal(in_matrix, out_matrix)
-
- # 3) Test three-index tensors
- var in_tensor = np.arange(4.0 * 3.0).reshape(3, 1, 4)
- var layout_tensor = ndarray_to_layouttensor[order=3](in_tensor)
- var out_tensor = layouttensor_to_ndarray(layout_tensor)
- np.testing.assert_array_equal(in_tensor, out_tensor)
-
- # 3) Test four-index tensors
- var in_4tensor = np.arange(4.0 * 3.0).reshape(2, 3, 1, 2)
- var layout_4tensor = ndarray_to_layouttensor[order=4](in_4tensor)
- var out_4tensor = layouttensor_to_ndarray(layout_4tensor)
- np.testing.assert_array_equal(in_4tensor, out_4tensor)