Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
232 lines (187 sloc) 8.64 KB
"""
Main Agent for DCGAN
"""
import numpy as np
from tqdm import tqdm
import shutil
import random
import torch
from torch import nn
from torch.backends import cudnn
from torch.autograd import Variable
import torchvision.utils as vutils
from agents.base import BaseAgent
from graphs.models.dcgan_generator import Generator
from graphs.models.dcgan_discriminator import Discriminator
from graphs.losses.bce import BinaryCrossEntropy
from datasets.celebA import CelebADataLoader
from tensorboardX import SummaryWriter
from utils.metrics import AverageMeter, AverageMeterList
from utils.misc import print_cuda_statistics
cudnn.benchmark = True
class DCGANAgent(BaseAgent):
def __init__(self, config):
super().__init__(config)
# define models ( generator and discriminator)
self.netG = Generator(self.config)
self.netD = Discriminator(self.config)
# define dataloader
self.dataloader = CelebADataLoader(self.config)
# define loss
self.loss = BinaryCrossEntropy()
# define optimizers for both generator and discriminator
self.optimG = torch.optim.Adam(self.netG.parameters(), lr=self.config.learning_rate, betas=(self.config.beta1, self.config.beta2))
self.optimD = torch.optim.Adam(self.netD.parameters(), lr=self.config.learning_rate, betas=(self.config.beta1, self.config.beta2))
# initialize counter
self.current_epoch = 0
self.current_iteration = 0
self.best_valid_mean_iou = 0
self.fixed_noise = Variable(torch.randn(self.config.batch_size, self.config.g_input_size, 1, 1))
self.real_label = 1
self.fake_label = 0
# set cuda flag
self.is_cuda = torch.cuda.is_available()
if self.is_cuda and not self.config.cuda:
self.logger.info("WARNING: You have a CUDA device, so you should probably enable CUDA")
self.cuda = self.is_cuda & self.config.cuda
# set the manual seed for torch
#if not self.config.seed:
self.manual_seed = random.randint(1, 10000)
#self.manual_seed = self.config.seed
self.logger.info ("seed: " , self.manual_seed)
random.seed(self.manual_seed)
if self.cuda:
self.device = torch.device("cuda")
torch.cuda.set_device(self.config.gpu_device)
torch.cuda.manual_seed_all(self.manual_seed)
self.logger.info("Program will run on *****GPU-CUDA***** ")
print_cuda_statistics()
else:
self.device = torch.device("cpu")
torch.manual_seed(self.manual_seed)
self.logger.info("Program will run on *****CPU***** ")
self.netG = self.netG.to(self.device)
self.netD = self.netD.to(self.device)
self.loss = self.loss.to(self.device)
self.fixed_noise = self.fixed_noise.to(self.device)
# Model Loading from the latest checkpoint if not found start from scratch.
self.load_checkpoint(self.config.checkpoint_file)
# Summary Writer
self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='DCGAN')
def load_checkpoint(self, file_name):
filename = self.config.checkpoint_dir + file_name
try:
self.logger.info("Loading checkpoint '{}'".format(filename))
checkpoint = torch.load(filename)
self.current_epoch = checkpoint['epoch']
self.current_iteration = checkpoint['iteration']
self.netG.load_state_dict(checkpoint['G_state_dict'])
self.optimG.load_state_dict(checkpoint['G_optimizer'])
self.netD.load_state_dict(checkpoint['D_state_dict'])
self.optimD.load_state_dict(checkpoint['D_optimizer'])
self.fixed_noise = checkpoint['fixed_noise']
self.manual_seed = checkpoint['manual_seed']
self.logger.info("Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n"
.format(self.config.checkpoint_dir, checkpoint['epoch'], checkpoint['iteration']))
except OSError as e:
self.logger.info("No checkpoint exists from '{}'. Skipping...".format(self.config.checkpoint_dir))
self.logger.info("**First time to train**")
def save_checkpoint(self, file_name="checkpoint.pth.tar", is_best = 0):
state = {
'epoch': self.current_epoch,
'iteration': self.current_iteration,
'G_state_dict': self.netG.state_dict(),
'G_optimizer': self.optimG.state_dict(),
'D_state_dict': self.netD.state_dict(),
'D_optimizer': self.optimD.state_dict(),
'fixed_noise': self.fixed_noise,
'manual_seed': self.manual_seed
}
# Save the state
torch.save(state, self.config.checkpoint_dir + file_name)
# If it is the best copy it to another file 'model_best.pth.tar'
if is_best:
shutil.copyfile(self.config.checkpoint_dir + file_name,
self.config.checkpoint_dir + 'model_best.pth.tar')
def run(self):
"""
This function will the operator
:return:
"""
try:
self.train()
except KeyboardInterrupt:
self.logger.info("You have entered CTRL+C.. Wait to finalize")
def train(self):
for epoch in range(self.current_epoch, self.config.max_epoch):
self.current_epoch = epoch
self.train_one_epoch()
self.save_checkpoint()
def train_one_epoch(self):
# initialize tqdm batch
tqdm_batch = tqdm(self.dataloader.loader, total=self.dataloader.num_iterations, desc="epoch-{}-".format(self.current_epoch))
self.netG.train()
self.netD.train()
epoch_lossG = AverageMeter()
epoch_lossD = AverageMeter()
for curr_it, x in enumerate(tqdm_batch):
#y = torch.full((self.batch_size,), self.real_label)
x = x[0]
y = torch.randn(x.size(0), )
fake_noise = torch.randn(x.size(0), self.config.g_input_size, 1, 1)
if self.cuda:
x = x.cuda(async=self.config.async_loading)
y = y.cuda(async=self.config.async_loading)
fake_noise = fake_noise.cuda(async=self.config.async_loading)
x = Variable(x)
y = Variable(y)
fake_noise = Variable(fake_noise)
####################
# Update D network: maximize log(D(x)) + log(1 - D(G(z)))
# train with real
self.netD.zero_grad()
D_real_out = self.netD(x)
y.fill_(self.real_label)
loss_D_real = self.loss(D_real_out, y)
loss_D_real.backward()
# train with fake
G_fake_out = self.netG(fake_noise)
y.fill_(self.fake_label)
D_fake_out = self.netD(G_fake_out.detach())
loss_D_fake = self.loss(D_fake_out, y)
loss_D_fake.backward()
#D_mean_fake_out = D_fake_out.mean().item()
loss_D = loss_D_fake + loss_D_real
self.optimD.step()
####################
# Update G network: maximize log(D(G(z)))
self.netG.zero_grad()
y.fill_(self.real_label)
D_out = self.netD(G_fake_out)
loss_G = self.loss(D_out, y)
loss_G.backward()
#D_G_mean_out = D_out.mean().item()
self.optimG.step()
epoch_lossD.update(loss_D.item())
epoch_lossG.update(loss_G.item())
self.current_iteration += 1
self.summary_writer.add_scalar("epoch/Generator_loss", epoch_lossG.val, self.current_iteration)
self.summary_writer.add_scalar("epoch/Discriminator_loss", epoch_lossD.val, self.current_iteration)
gen_out = self.netG(self.fixed_noise)
out_img = self.dataloader.plot_samples_per_epoch(gen_out.data, self.current_iteration)
self.summary_writer.add_image('train/generated_image', out_img, self.current_iteration)
tqdm_batch.close()
self.logger.info("Training at epoch-" + str(self.current_epoch) + " | " + "Discriminator loss: " + str(
epoch_lossD.val) + " - Generator Loss-: " + str(epoch_lossG.val))
def validate(self):
pass
def finalize(self):
"""
Finalize all the operations of the 2 Main classes of the process the operator and the data loader
:return:
"""
self.logger.info("Please wait while finalizing the operation.. Thank you")
self.save_checkpoint()
self.summary_writer.export_scalars_to_json("{}all_scalars.json".format(self.config.summary_dir))
self.summary_writer.close()
self.dataloader.finalize()
You can’t perform that action at this time.