
A Framework for a File View Model in Intranets

Yong Ai
Computer School
Wuhan University

Wuhan, China
aiywhu@gmail.com

Hongbin Dong
State Key Lab of Software Engineering

Wuhan University
Wuhan, China

hbdong@whu.edu.cn

Yiwen Liang
Computer School
Wuhan University

Wuhan, China
ywliang@whu.edu.cn

R.I. McKay
Structural Complexity Laboratory

Seoul National University
South Korea

rim@cse.snu.ac.kr

Abstract—Today, a new security problem is arising in in-
tranets. The threats from inside an organization account for
a rapidly increasing proportion of losses. The DAC (Discre-
tionary Access Control) model, which is the primary access
control mechanism in most intranets, is main responsibility for
this state of affairs. Users can make a duplicate of a confidential
document for which they only have read authorization. They
can then grant access rights the replication to others who
did not previously have authorization. This transformation of
authorizations would result in the contents being divulged to
unauthorized users. This paper proposes a concept of “File
View” to solve this security problem in intranets. First, the
paper proposes a hierarchy of file views which are used to
structure availability of reference to database views. However
there are some challenges in extending this proposal to file
systems because of differences between the two. The paper
proposes a framework for a file view model to solve these
challenges. Finally, under three assumptions, it discusses access
control and proposes read and write process algorithms for
secured access in this framework.

Keywords-File View; Mapping Mechanism; Information Se-
curity; Access Control; Access Tracing

I. INTRODUCTION

Today, the greatest proportion of organizational informa-
tion resides in digital documents. The security policies in
most enterprises have largely evolved to prevent attack from
the extranet. But according to the 2007 CSI/FBI Computer
Crime and Security Survey, almost 64% of respondents
believe that insider threats account for a non-negligible
proportion of their overall cyber losses [1]. Attacks coming
from inside an organization are becoming an important new
issue. Therefore it is important to strengthen the security of
intranets of enterprises and organizations. The confidential
information needs to be protected to the greatest extent
possible.

At present, file security is increasingly important in the in-
tranet. Most intranets adopt some form of access control. [2].
The access control model which is mostly used in intranets
results in poor security. The operating systems used in most
intranets belong to class (C2) [3] of the TCSEC (Trusted
Computer System Evaluation Criteria) – Unix/Linux and
variants of Microsoft Windows. In this TCSEC class, the
access control model is DAC (Discretionary Access Control)
[4, 5]. The central idea of DAC is that the owner of an object

– who is usually its creator – has discretionary authority
over who else can access that object [5, 6]. There is a
security problem in DAC model, in that it is unable to
enforce information flow controls [7]. For example, Alice
has created an object and granted read authorization to Bob.
In this circumstance, Bob can create a replica of Alice’s
object, which is legal in DAC. Since Bob created this
replica, he can grant authorizations on this replica to others
who did not previously have those authorizations. This may
result in the contents being divulged to unauthorized users.
The change of authorizations through information flow is a
serious security problem in intranets.

There are two methods to solve this problem. The first
is to use an EDMS (Enterprise Document Management
System) [8] to manage confidential documents. But in an
EDMS, documents are accessed and manipulated through
a database management system. This mode is inconvenient
for exchanging documents in an intranet. The other is to
change the operating system enterprises to a more secure
one in TCSEC class B1 [3] , such as SELinux (Security-
Enhanced Linux) [9]. SELinux is an implementation of
flexible and fine-grained nondiscretionary access controls in
the Linux kernel [10]. In TCSEC class B1, the access control
model is DAC plus MAC (Mandatory Access Control) [3].
The Mandatory Access Control policy is expressed in terms
of security labels attached to subjects (usually the users)
and objects [11]. There are two principles – read down
and write up – which should be maintained by comparing
a subject’s clearance and the security level of the object
being accessed [5]. But when the subject’s clearance and the
security level of the object are at the same level, no security
principle is defined. Generally, DAC is used as access control
model at the same level, leading to a recurrence of the
security problem mentioned above.

Thus these two methods do not accord well with the
environment in most enterprise intranets. To satisfy the
requirements of an intranet, a solution is needed which

1) uses DAC as access control model
2) uses file systems rather than databases

The idea of a database view is nevertheless a useful per-
spective Database views are used for two purposes: data

2009 Fourth International Conference on Computer Sciences and Convergence Information Technology

978-0-7695-3896-9/09 $26.00 © 2009 IEEE

DOI 10.1109/ICCIT.2009.63

976

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:36 UTC from IEEE Xplore.  Restrictions apply. 



protection and user convenience [12], corresponding to our
purposes. Thus we propose, for a similar concept in file
systems, the term “File View”. The “File View” approach is
intended to improve the DAC model when either used alone,
or used in conjunction with the MAC model, to provide
security control within a single security level. This new
mechanism for intranet file systems can realize three new
functions:

1) Viewing Flexibility
It results in greater flexibility for users viewing doc-
uments. Different users can access different parts of
the same document as appropriate, rather than gaining
access at the whole document level. Different users
might have access to different content from the same
document.

2) Greater Security
It provides greater security when users access the doc-
uments. The access to information being exchanged
between computers can be controlled. Even if users
obtain a duplicate of a file view for which they do not
have authorizations, the authorizations of the source
file view will be validated while they access the dupli-
cate, so they will not be able to perform any operation
they could not perform on the source. This can prevent
information from leaking out unintentionally while
being transferred in an intranet.

3) Access History
The access history – who has tried to access confiden-
tial and sensitive information – can be recorded. These
records can help a manager to locate hidden security
problems in an intranet, and reduce security risks as
far as possible.

The hierarchy of file views uses the structure of database
views for reference. In the rest of this paper, a frame-
work to solve these challenges is proposed. Under three
assumptions, we define structures for security attributes and
access histories, for verifying authorization and tracing the
access history. Finally, we propose two algorithms for access
control in file views.

II. RELATED WORK

The concept of an enterprise document management sys-
tem was proposed in 1991 [8]. The stored objects in an
EDMS are organized, accessed and manipulated through
a database management system. An EDMS is designed
to securely manage the production and delivery of high-
value documents[13]. But all documents must be exchanged
through the database. This can be inconvenient to users in
an intranet.

The traditional access control models most commonly
used are DAC[5, 6], MAC[11] and RBAC(Role-Based Ac-
cess Control Model)[14]. Today, most operating system use
DAC as the access control model. The DAC model, is

Figure 1. The hiberarchy of file views [24]

unable to enforce information flow controls[7]. This security
problem can not be easily avoided in intranets.

There are some studies using an XML(eXtensible Markup
Language) [15] view which is semi-structured. The work
on querying and updating on XML views [16–21] forms a
useful background for file views. But in a file system, there
is no access language corresponding to XPath (XML Path
Language) [22] and XUpdate (XML Update Language) [23].
The files in a file system have no common structure. It would
be infeasible to transform all unstructured files to XML
file before transferring them. So a similar mechanism for
unstructured files to that for semi-structured files is needed.

III. FILE VIEW

A. Preliminaries

In database theory, a view is a stored query, composed
of the result set of a query script. Database views can
be used for two purposes: data protection and user con-
venience [12]. Considering the characteristics of database
views, and the security requirements for operating system in
an intranet [24],we propose the term “File View” as seen in
Fig. 1, using the mechanism of database views for reference.

B. Main Challenges

The differences between database views and file views
arise from the storage format. A database view is structured,
its storage format is strictly controlled by rules. But the
file view based on an operating system is unstructured, its
storage format is only loosely controlled. Because of specific
issues in operating system, there are some challenges we
need to consider in using the structure of database views for
reference.

1) When users query data from a database view, it is not
executed in the database client but actually executed
in the database server. There is no similar server in an
intranet operating system for exchanging documents.

2) The database view is a dynamic virtual table, com-
puted or collated from data in a database. All the data
in views is actually stored in the database server. But
there is no similar server in operating systems. The
whole content has to be attached to the file view while
it is being exchanged through the intranet. Yet the

977

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:36 UTC from IEEE Xplore.  Restrictions apply. 



A DCB

File 1

4321

File n

S
DA1
23B

4
1AD
D2A

B 3
S

H
H

Figure 2. The File View Framework

content of the file view should not be accessible in
an illegal manner.

3) The security attributes of tables and views in database
view are stored in the data dictionary. There is no
similar storage mechanism in operating systems.

4) All the processes executed on tables and views in a
database can be logged, while the process executed on
files in operating systems are not.

C. The File View Framework

To resolve the challenges mentioned above, the security
attributes and process history should be stored in the file
view as part of the data. The framework for file views of [24]
can be improved as shown in Fig. 2.

As seen in figure 2, the logical files in a file system are
divided into logical blocks. This structure makes the access
modes for logical files in a file system more flexible. It is
possible to grant authorizations on parts of a file rather than
as a whole.

Several logical blocks can be recombined as one file
through the file view mechanism. For example, the content
of “File View 1” in figure 2 comes from several logical
files through “File 1”, “File n” and so on. In addition
to the content, the file view contains two more logical
blocks, marked “S” and “H”. The logical block marked
“S” holds security attributes. It stores the information about
access authorizations to logical blocks, which are used for
verifying authorizations in the “Access Control Module” of
the framework. The other, marked “H”, holds the access
history. It records processes affecting logical files in the
file system for verification, whenever they are stored in
computers or transferred though the intranet.

In this file view framework, the challenges mentioned
above can be resolved as follows:

1) There is a distributed module (marked “Access Control
Module” in figure 2) in every file system in the

intranet. It is used to verify the access authorizations
for logical blocks in file views when users try to access
them.

2) As shown in the framework, the logical blocks from
basic files are combined in one file view. The content
of these logical blocks are actually stored in the file
views when they are exchanged in the intranet.

3) The logical block marked “S” in the framework stores
security attributes. It incorporates the information
about access authorizations for logical blocks. This
information is used for authority inspection, to decide
whether blocks in the file view are available to users.

4) The logical block marked “H” in the framework stores
process histories. It is used to record the information
about processes affecting file views, to provide access
tracing.

D. Key Issues
There are some important similarities, but also differ-

ences, between database views and file views.
1) Similarities

As in a database view, the mapping mechanism of
the file view is multi-layered, which means that the
content of a file view can be queried from other file
views. As a result, the file view is both flexible and
secure.

2) Differences
The database environment is closed. The data in a view
is queried from relations through the data dictionary.
But the file system is an open environment, logical
files can be exchanged flexibly through computers
and networks. There is no similar mechanism to the
data dictionary in a file system, so that authorizations
have to be attached to the file view when exchanging
information in an intranet.

Considering the differences between database and file
system, there are five issues that need to be solved in
basing the structure of reference in a file system on that
of databases:

1) What information should be included in the security
attributes of the file view?

2) How should we realize the access control based on the
multi-layered mapping mechanism?

3) File views are based on unstructured documents. The
logical blocks could be defined at many different
levels, from one word, to a sentence or a paragraph.
How to define the size of the logical block in the file
view is a key question.

4) The security attribute of the file view is used to protect
the content in the file view. It is crucial that it cannot
be modified or destroyed maliciously. How should this
information in a file view be protected?

5) The operating systems in an intranet may be hetero-
geneous. How can we deal uniformly with file views

978

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:36 UTC from IEEE Xplore.  Restrictions apply. 



in different operating system?

E. Assumptions
In this paper, we make some basic assumptions for

convenience; these assumptions can be relaxed at the cost
of greater complexity

1) Each logical block is a single document (file) in the
file system.

2) The security attribute in a file view is securely stored,
and cannot be modified or destroyed maliciously.

3) All operating systems in the intranet are isomorphic.

IV. ACCESS CONTROL IN THE FRAMEWORK

The access control for file views has two parts: access
control on the document containing the file view, and access
control on the content of the file view. On the one hand,
access control for the document focuses on whether users
have the authorizations to access the file view at all. On the
other hand, access control for the content focuses on whether
the users have the authorizations to access the content of the
original files to which these blocks referred.

In the operating system mostly used in enterprises, the
authorizations of logical files are usually described as
read(R), write(W) and execute(X). The authorizations of the
documents of file views are the same as those of basic files.
When users access a file view, the authorizations should be
validated just as when they access a file in the file system.
Users can change the documents of file views through the
operating system file system. Thus this paper focusses on
access control for the logical blocks of a file view.

For verifying the authorizations and recording the access
history, the security attribute and structure of the access
history need to be defined first.

A. Security Attribute
The security attribute of the file view is used to store the

information about access authorizations for logical blocks.
It is used to verify the authorizations when a user tries to
process the file view. It should include two parts: the security
attribute for the file view and the security attribute for the
logical blocks in it.

1) The security attribute for the file view includes the
owner’s identification, and the access authorizations
for the document (generally using an access control
list).

2) The security attribute for the logical blocks includes
the count of blocks, access authorizations, and the
source files which these blocks refer to.

As discussed above, the structure of the security attribute
could be defined as in definition 1.

Definition 1: The security attribute SA is a five-tuple
defined as (owner, fvACL, count, lbACL, SourceF ile).
lbACL is a set of access control lists, one for each logical
block. SourceF ile is a set of pointers identifying the source
files these logical blocks refer to.

B. Access History
Once confidential information is stolen from a standard

file system, there is no access history for tracing. To over-
come this, the processes affecting files and file views should
be recorded. These histories are used to reinforce the security
of the file system. They are used for tracing the transfer
paths of files and locating the hidden trouble in the intranet
to reduce the risks as much as possible.

The information recorded in the access history should
include the manipulator’s identification, access time, the type
of process executed (generally would include read, write,
execute and re-grant) and the result of this access.

The data structure for access history could be defined as
in definition 2

Definition 2: The Access History AH is a four-tuple
defined as (user, time, type, result). These four tuples con-
tain the most important information about the process.

C. Read Processes on a File View
The authorizations of the logical blocks in a file view

depend on the authorizations of the original file cited.
When users try to read the content of a file view, they
can only read the content of original files for which they
have read authorization. For example, suppose there is a
file view in which the content refers to two logical files
are created separately by Bob and Charles. Alice has read
authorization for the file created by Bob but does not have
read authorization for the file created by Charles. In this way,
Alice could only read the content of logical blocks which
refer to the file create by Bob.

When users try to access a file view, there are two steps.
First, the authorizations to the document of file view should
be verified. Second, the authorizations to all the logical
blocks in the file view should be verified. The authorizations
of the logical blocks are related to the original files in file
system which are cited in the file view. The algorithm for
the read process on a file view is given in algorithm 1.

Algorithm 1 Read Process on File View
if has read authorizations of file view then

i ⇐ 0
while i < block count do

lb ⇐ current logical blocks
if has read authorizations of lb then

accept read process on lb
else

deny read process on lb
end if
i ⇐ i + 1

end while
end if
update access history in file view

Algorithm 1 has two important advantages:

979

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:36 UTC from IEEE Xplore.  Restrictions apply. 



1) It can prevent the leakage of information seen in the
DAC model. In the example in section 1, Alice has
created an object and grants read access to Bob. In
the framework of file view, Bob can copy Alice’s
object into a replica created by himself. But when
someone else gets the replica, the authorizations of
logical blocks are still verified. He could only get the
document containing the file view, but not the content
in it. This overcomes the security problem in the DAC
model.

2) It can protect the confidential information in the file
view even if an outsider with a malicious purpose
obtains it (for example, by using a trojan horse or some
other hacking tool). As in the previous example, even
if they can obtain the file view document, they cannot
access the content in it. The content authorizations will
still be verified whenever he tries to access it.

D. Write Processes on File a View

When users try to write the content of a file view,
they intend to write the content in logical blocks. In a
database, the data in views is computed from relations, so
that modification of the data in a view should be translated
into modification of relational tables. As in databases, mod-
ification of the content in file views needs to be transformed
into modifications of the logical files in the file system.

The write processes can be classified into modify, delete
and add.

1) Modify
When users modify the content of the logical blocks
of a file view, the modified content in the file view
should be modified in the logical files which are cited
in the file views.

2) Delete
When users delete the content of logical blocks from
a file view, they may want to delete the content
permanently or just delete the citation in the file
view. In the first case, the deletion should deletion the
content of the logical file; in the second case, the delete
process on the file view should just delete the citation
in the file view but leave the logical files untouched.
Considering the first case would affect other file view
cited, this paper suggest to only delete the citation in
the file view.

3) Add
When users add new content to the file view, the new
content cannot be simply stored in the file view. This
would result in a state where some logical blocks in
the file view do not reference a file. The new content
should be stored as a new logical file; then a new
logical block can be created automatically in the file
view to refer to the new file.

The algorithm is shown in algorithm 2.

Algorithm 2 Write Process on File View
if has write authorizations of file view then

i ⇐ 0
while i < block count do

lb ⇐ current logical blocks
if has write authorizations of lb then

check the type of write process on lb
if modify process then

write lb into file view
update content in corresponding source file

else if delete process then
delete lb from file view
update security attribute of file view

else if add process then
create new file N
N ⇐ lb
create reference of N
update security attribute of file view

end if
else

deny process on lb
end if
i ⇐ i + 1

end while
end if
update access history of file view

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the concept of “File View”
to solve some security problems arising in intranets. First,
we proposed a hierarchy which uses a structure modeled
on database views. There are some challenges in using
this hiberarchy in file systems, because of the differing
environments between database and file systems. Then, we
proposes a framework based on the file view model to
overcome these challenges. Finally, under three assumptions,
we discuss the access control mechanism and propose read
and write process algorithms for this framework.

There are some other current and future directions of
work on file view mentioned before in the key issues in
this framework:

For the future, we are working on extending the file view
mechanism defined in this paper in the following directions:

1) The size of logical blocks in logical file should be
defined more flexibly.

2) The security attribute in the file view needs to be
protected from malicious modification or destruction.

3) The operating systems in an intranet may be heteroge-
neous. The file view mechanism needs to be extended
to a variety of different operating systems in a single
intranet.

980

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:36 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENT

This work was supported by Research Grant No.60573038
and No.90204011 from National Natural Science Foundation
of China. This work was supported by the Research Project
No.A1420080183 from Ministry of Education of People’s
Republic of China.

REFERENCES

[1] R. Richardson, “CSI Computer Crime and Security
Survey,” Computer Security Institute, 2007.

[2] H. Zhang, J. Diao, and Q. Wen, “Secure Files Man-
agement System in Intranet,” in Internet Computing in
Science and Engineering, 2008. ICICSE’08. Interna-
tional Conference on, 2008, pp. 306–311.

[3] D. Latham, “Department of Defense Trusted Computer
System Evaluation Criteria,” Department of Defense,
1985.

[4] B. Lampson, “Protection,” ACM SIGOPS Operating
Systems Review, vol. 8, no. 1, pp. 18–24, 1974.

[5] R. Sandhu and P. Samarati, “Access control: princi-
ple and practice,” IEEE Communications Magazine,
vol. 32, no. 9, pp. 40–48, 1994.

[6] ——, “Authentication, access control, and intrusion
detection,” The Computer Science and Engineering
Handbook, vol. 1, pp. 929–1, 1997.

[7] R. Sandhu and Q. Munawer, “How to do discretionary
access control using roles,” in Proceedings of the third
ACM workshop on Role-based access control. ACM
New York, NY, USA, 1998, pp. 47–54.

[8] R. SMITH and M. T MENDELSSOHN, “DOCU-
MENT MANAGEMENT AND PRODUCTION SYS-
TEM,” No.: WO/1991/008538, 1991.

[9] P. Loscocco and S. Smalley, “Integrating flexible sup-
port for security policies into the Linux operating
system,” in Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference table of con-
tents. USENIX Association Berkeley, CA, USA, 2001,
pp. 29–42.

[10] S. Smalley, C. Vance, and W. Salamon, “Implement-
ing SELinux as a Linux security module,” NAI Labs
Report# 01, vol. 43, 2001.

[11] R. Sandhu, “Lattice-based access control models,”
Computer, vol. 26, no. 11, pp. 9–19, 1993.

[12] E. Bertino, “A View Mechanism for Object-Oriented
Databases,” in Proceedings of the 3rd International
Conference on Extending Database Technology: Ad-
vances in Database Technology. Springer, 1992, pp.
136–151.

[13] R. Perry and R. Lancaster, “Enterprise Content Man-
agement: Expected Evolution or Vendor Positioning?”
Yankee Group Report, 2002.

[14] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman,
“Role-based access control models,” Computer,
vol. 29, no. 2, pp. 38–47, 1996.

[15] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and
F. Yergeau, “Extensible markup language (XML) 1.0,”
W3C recommendation, vol. 6, 2000.

[16] W. Fan, C. Chan, and M. Garofalakis, “Secure XML
querying with security views,” in Proceedings of the
2004 ACM SIGMOD international conference on Man-
agement of data. ACM New York, NY, USA, 2004,
pp. 587–598.

[17] V. Braganholo, S. Davidson, and C. Heuser, “From
XML view updates to relational view updates: old
solutions to a new problem,” in Proceedings of the
Thirtieth international conference on Very large data
bases-Volume 30. VLDB Endowment, 2004, pp. 276–
287.

[18] W. Ni and T. Ling, “Update XML data by using
graphical languages,” in ACM International Conference
Proceeding Series; Vol. 334. Australian Computer
Society, Inc. Darlinghurst, Australia, Australia, 2007,
pp. 209–214.

[19] G. Cong, “Query and Update Through XML Views,”
LECTURE NOTES IN COMPUTER SCIENCE, vol.
4777, p. 81, 2007.

[20] B. Choi, G. Cong, W. Fan, and S. Viglas, “Updat-
ing Recursive XML Views of Relations,” Complexity,
vol. 2, no. 2, p. 2, 2007.

[21] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara,
“Securely Updating XML,” LECTURE NOTES IN
COMPUTER SCIENCE, vol. 4694, p. 1098, 2007.

[22] J. Clark, S. DeRose, et al., “XML path language
(XPath) version 1.0,” W3C recommendation, vol. 16,
p. 1999, 1999.

[23] A. Laux and L. Martin, “XUpdatełXML Update Lan-
guage,” XML: DB Working Draft, pp. 09–14, 2000.

[24] Y. Liang, Y. Ai, H. Dong, and T. Li, “File View: Secure
Model in Intranet,” in 2009 International Conference
on Networks and Digital Society, 2009, pp. 198–201.

981

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:36 UTC from IEEE Xplore.  Restrictions apply. 


