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Abstract— Privacy and security of information are two important 
concerns for most computer users.  Passwords, keys, and 
encrypted information can be found unencrypted in the swap file 
which is used by the operating systems to support the 
implementation of virtual memory.  Therefore, encrypting the 
swap file is essential to provide more security of users’ private 
and confidential information. However, encrypting the swap file 
comes with an extra overhead cost.  In this paper, we measure the 
overhead cost associated with encrypting the swap file.  To 
effectively measure this cost, we developed our own benchmarks 
that will enforce heavy swapping with disk write and read 
operations.  We measured the overhead cost for Windows 7 
operating system.   In our measurements, we considered a 
number of popular encryption algorithms which include AES, 
Blowfish, Twofish, and GOST. Our experimental measurements 
show that Windows 7 incurs considerable overhead penalties 
when encrypting the swap file. 

Keywords: Swap file, Encryption, Operating system security, 
virtual memory 

I. INTRODUCTION 
Nowadays, most operating systems support two spaces to 

run processes. The first is the physical main memory which is 
the computer RAM. The second is the virtual memory that is 
used to manage the processes along with the physical memory. 
Virtual memory is “a storage allocation scheme in which the 
secondary memory can be addressed as though it were part of 
the main memory” [1]. When the required amount of memory 
space needed to execute a process exceeds the available 
physical memory then the swap space or swap file is used.  The 
operating system creates a large space in the hard disk, known 
as the paging file (or swap space) which holds memory pages.  
The name of this file in the Windows operating system is 
pagefile.sys. The main memory moves some of the inactive 
process pages to the paging file in order to free up memory. 
This mechanism is called swapping, which is an 
implementation of the concept of virtual memory [2]. 

The swap file is a reflection of the running state of the 
machine, with unencrypted swapped-out main memory pages.  
When forensically analyzed, the swap space pages can reveal 
critical keys and passwords.  Therefore, it is important to 
secure the swap file in order to protect this sensitive 
information. This can be achieved by encrypting the swap file. 
As shown in Figure 1, swapped out pages first get encrypted 
using “crypto swap” algorithm before being written to the disk.  
When reading encrypted swapped pages, by performing 
memory read operations, the encrypted swapped pages have to 
be first decrypted before loading them into main memory.  This 
process will definitely secure swapped out pages, but there is a 

performance penalty associated with encrypting and decrypting 
the swapped pages.  The main contribution of this research is to 
assess the cost overhead associated with swap file encryption. 
This overhead cost can significantly slowdown running 
applications and services.  In this paper, we attempt to quantify 
such a cost.  The cost is measured for different encryption 
algorithms.  Such results will be of a great benefit in helping 
the end user choose how to protect their data while making the 
minimal impact on performance.  

 

 
Figure 1.  Encrypting swapped pages 

The rest of the paper is organized as follows. Section II 
describes related work. Section III explains how we 
implemented the experiment to measure the cost overhead 
generated from swap encryption. Section IV describes the 
testing and validation process. In section V, we represent the 
results generated from our experiments. Finally, we conclude 
in section VI. 

II. RELATED WORK 
There has been little research conducted in the area of 

measuring the overhead cost associated with encrypting the 
swap file. The two main bodies of research which are relevant 
to this topic are “Encrypting Virtual Memory” [3] and 
“Efficient Security-Aware Virtual Memory Management” [4]. 
Both papers had limitations that will be addressed by this 
research. 

Encrypting Virtual Memory was proposed by Niels Provos 
from University of Michigan. In 2000, Provos suggested 
encrypting the swap file when pages are being swapped out 
from memory and decrypting the pages when they are brought 
back to the physical memory. He suggested dividing the 
backing store into 512 Kbyte sections. Each section has its own 
key which consists of 128-bit encryption key, reference counter 
and the expiration time. The encryption key is generated 
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randomly at the first time, while the counter is set to zero and 
incremented every time the page is encrypted with its 
encryption key. The reference counter is decremented every 
time the page is freed from the backing store. Once the counter 
reaches to zero, the key is deleted. Therefore, all the data 
encrypted with that key will not be decrypted and will be 
erased. Once the expiration time is reached, all pages with that 
reference should be re-encrypted by the new key. The key is 
stored in the unmanaged part of the kernel so that it will not be 
swapped out.   

The encryption effect on the system performance was then 
evaluated using a test program that allocated 200 Megabyte of 
memory and filled the memory sequentially with zeros. After 
memory allocation, the program read the whole memory 
sequentially. Provos noticed that there was an increase in the 
run time when encryption was enabled [3]. 

One of the main limitations of this research is that it was 
implemented using one encryption algorithm, namely AES. 
The implementation was also done on obsolete hardware with 
128 MB of main memory and a 333 MHz Celeron processor. 

The second relevant work was the Efficient Security 
Aware Virtual Memory Management that suggested encrypting 
confidential pages and segments of the process being swapped 
out. Rather than encrypting the whole swap file, this paper 
proposed encrypting only the confidential parts. This would 
reduce the overhead cost associated with encryption by 
minimizing the amount of cryptographic operations. The idea 
of this approach was based on adding a security label to each 
process. The page fault handler then uses this label to decide 
whether to apply the encryption on the process pages. 

The researchers then analyzed the performance overhead 
generated from their approach. They developed a C++ 
simulator which showed that the performance of their solution 
is acceptable and can be used as a solution [4]. 

One of the main limitations of this paper is that it will add 
an overhead on the process owner side. The process owner in 
this case has to decide which portions of the process should be 
encrypted and which should not. Moreover, an overhead will 
be added because of the page fault handler which checks the 
security label for each process and decides whether to apply the 
encryption or not. 

III. IMPLEMENTATION 
This section describes the implementation method that we 

adopted to measure the overhead cost associated with 
encrypting the swap file. The section explains the different 
encryption techniques used for the purpose of this research. It 
will then list the platform specifications of the PC on which the 
test was performed. It will also present the developed 
benchmark for assessing and measuring the overhead cost 
associated with encrypting the swap file. 

A. Techniques of Encrypting the Swap File 
There are different techniques by which the swap file can 

be encrypted. This includes the operating system standard 
utilities or using the available encryption tools. In Windows, 
the page file can be encrypted using the Encryption File 
System (EFS) technique. There are many other tools that are 

available that feature a swap file encryption utility as well. The 
most popular tools are Crypto-Swap, True-Crypt and Best-
Crypt. For the purpose of this research, Crypto-Swap with the 
different encryption mechanisms available was used. The main 
encryption algorithms supported by Crypto Swap are AES 
(Rijndael) 256-bit key, Blowfish 448-bit key, GOST 256-bit 
key and Twofish 256-bit key [7]. 

B. Platform Specifications 
The testing was implemented on a 32-bit operating system 

with 4 GB RAM. The system had four Intel Xeon processors 
running at 2.8 GHz each. The system was running the 
Windows 7 operating system. 

C. Developed Benchmark 
Due to the lack of benchmarking software, a program was 

written in the C programming language. The objective of the 
program was to stress the memory and therefore force page file 
swapping. The program allocates 2 GB of memory and fills it 
up sequentially with any letter, in our case we were filling it up 
with ‘z’. It will then iterate writing to memory five times over 
the allocated buffer to overwrite the contents of the swap file 
and force swapping. Another program was also developed that 
aims to read sequentially from memory. 

As shown in Algorithm 1, Lines 1-4 define the input 
parameters. The MAX constant represents the maximum buffer 
size which is 2 GB in this benchmark. The 2GB of memory is 
divided into 1 MB blocks that is (1024x1024) bytes. Therefore 
the total block size dividing the 2GB by 1 Mb is equal to 2000 
blocks.  As shown in Line 7, the buffer gets initialized with ‘z’ 
letter in a while loop. After that in Lines 14-20, the memory 
pages are writing with different values to force writing 
operations of process memory pages to the hard disk.  The 
time incurred is recorded with TotalT, and the average is 
calculated for each run. In our experiments, we record the 
average of 5 runs.  Similarly, a disk read benchmark is 
constructed but with read operations. 

 
Algorithm 1: Disk Write Benchmark 

Input: 
1    MAX ←  2000 

2    b[MAX] ←  Memory buffer with the maximum size of 2GB 

3    T0 ←  Initial time  

4    TotalT ←  Total time 

6    Begin: 
7       while ((b[mb]=malloc(1024*1024)) != NULL && mb < MAX) { 
9             t0  =  current time 
10  b[mb] = ‘z’ 
11  TotalT  =  current time – t0 + TotalT 
12  mb++ 
13 } 
14 for (j=0; j<5; j++) {           // Force swapping by re-writing pages 
16       for ( i=0; i<MAX; i++) { 
18  t0= current time 
19  b[i] = ‘b’+i+j 
20  TotalT = current time – t0 + TotalT 
21      } 
22 } 
23 End 
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IV. TESTING AND VALIDATION 
The first step was to verify that the developed code was 

working properly and inserting specific values into the page 
file. That was done by updating the writing to memory 
benchmark to write a specific character into the memory, in 
this case letter ‘b’. After that, two instances of the program ran 
concurrently for several iterations. The swap file was then 
captured using the FTK imager tool. A hex editor tool was used 
to read and analyze the page file. It was shown that the letter 
‘b’ occured 3,056,195,533 times in the file. That represented 
81.71% of the total file bytes. The second most frequent letter 
was ‘0h’ which represented only 10.10% of the total bytes in 
the page file. This proved that the program was inserting letter 
‘b’ in the memory and was being swapped out after running the 
concurrent benchmarks several times. 

It was also verified that the data in the swap file is being 
encrypted when NTFS or crypto swap encryption was enabled. 
That was done by enabling the swap file encryption utility and 
running the writing to memory benchmark several times. It was 
verified that the data in the swap file was not legible. 
Moreover, all the bytes had close to the same frequency. This 
proved that the swap file encryption was being applied. 

V.  RESULTS AND DISCUSSION 
To evaluate the performance overhead, two instances from 

the benchmark were running at the same. The observation was 
then repeated ten times and the average overhead was 
calculated for each encryption algorithm. This section 
describes the generated results in more detail. 

A. Writing to Memory Results 
The writing to memory benchmark was run ten times and 

the results were measured. Figure 2 shows the average time 
required to write to memory while applying the different 
encryption mechanisms on the swap file. The program took 
more time to be executed when the encryption was enabled. It 
took the longest time when the encryption used was AES. 
Moreover, it took the least time with Blowfish encryption. In 
ranking terms, the AES encryption was taking the highest 
execution time, then GOST, NTFS, Twofish and the least 
execution time was with Blowfish encryption. 

 

 
Figure 2.  Average Writing Time 

 

 
Figure 3.  Writing Penalty Percentage 

 
The results generated agreed with the expectation for some 

of the encryption algorithms. As was stated in Jetico website 
[5], Blowfish is faster than GOST and the results we got is 
showing that the program takes less time to execute with 
Blowfish than with GOST encryption. Furthermore, in the 
paper “Performance Comparison of the Five AES Finalist”, it 
was shown that AES-256 bit key is slower than Twofish-256 
bit key [6]. This explains the result we got when running the 
program when Twofish encryption was used. 

Figure 3 depicts the penalty associated with writing with 
encryption.  The formula to compute this penalty is expressed 
as follows: 

100(%) ×−=
ryptionWithoutEncAvgWriting

ryptionWithoutEncAvgWritingtionWithEncrypAvgWritingPenalty

 
This measures the penalty or overhead generated after 

applying the encryption algorithm compared to running the 
benchmark without encryption. As shown in Figure 3, the 
writing time was increased by about 91.9% when AES 
encryption was applied. The least penalty generated was when 
Blowfish was used causing 21.5% increase. The overhead 
generated from GOST and NTFS encryptions is considered 
high which was above 65%.  Furthermore, Twofish encryption 
overhead was 40% more than running the benchmark without 
encryption. 

B. Reading from Memory Results 
The reading from memory benchmark was also executed 

ten times to measure the penalty issued from each encryption 
mechanism while reading from the memory. Figure 4 shows 
the average time needed to read from memory while applying 
different encryption algorithms. It is shown that there is little 
difference while applying the different encryptions compared 
to the differences generated from writing to memory 
benchmark. AES took the most time to read from memory 
which was about 53 seconds. Blowfish was again taking the 
least time to read from memory which was about 49.3 seconds. 
The ranking of the average time needed to read from the 
memory was the same as with writing to memory except for 
the NTFS encryption which was higher than GOST encryption. 
Thus AES took the most time then NTFS, GOST, Twofish and 
finally Blowfish. 
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Figure 4.  Average Reading Time 

 

 
Figure 5.  Reading Penalty Percentage 

As shown in Figure 5, the highest overhead was associated 
with AES encryption that was 28.3%. After that was the 
overhead associated with applying NTFS at 27.8%.Then the 
GOST encryption penalty at 26.16%. The least overhead was 
associated with Blowfish and Twofish encryptions at 19.7% 
and 25.5% respectively. 

In general, the time to read from memory was less than the 
time to write to memory. That was due to the fact that writing 
to the memory benchmark was updating the pages that were 
being swapped out from the memory. This will affect the 
modify bit attached to the page. The modify bit is used to 
indicate whether a page in memory has been modified since it 
was last swapped out of memory. If that bit is not set (page is 
not modified), then the page is just discarded without re-
writing it and it is replaced with the new page. If this bit is set 
which means that the page has been modified, then it must be 
written back into the swap space [2]. In writing to memory, 
this bit will be set. Therefore if the page needs to be replaced 
then it should be written back into the swap space before 
replacing it. In reading from memory, the benchmark was just 
reading the data from the memory without updating the values 
of the pages. Thus the modify bit was not set and the page 
could be discarded without re-writing it in the swap space. This 
explains why reading from memory was taking less time than 
writing to memory.  

C. Performance Monitoring Results 
Two main applications were used to monitor the 

performance while executing the benchmark in Windows 7. 
The objective of these tools was to monitor the memory 
performance and to make sure that it was updating normally as 
predicted. The first application used was Windows Task 
Manager. The performance was monitored before and during 
execution of the benchmark. The below figures were captured 
using the Task Manager tool. 

 

 
Figure 6.  Memory performance prior to running the benchmark (captured 

from Task Manager) 

As shown in Figure 6, there were fifty processes running prior 
running the benchmark. These were consuming 16% of the 
total physical memory. The CPU usage was almost 0%. While 
the benchmark was running, as shown in Figure 7, the 
physical memory usage increased to 97% with 53 processes. 
Those three processes were related to the benchmark 
execution. The CPU usage also increased to 16% during 
execution. The commit memory prior benchmark execution 
was 979 MB compared to 4774 MB while running the 
benchmark. The commit value represents the size of virtual 
memory that is in use by all processes [8]. 
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Figure 7.  Memory performance while executing the benchmark (shown by 

Task Manager) 

 

Figure 8.  Memory performance prior to running the benchmark (shown by 
Process Explorer) 

The second application used to monitor the memory 
performance in the Windows operating system was the Process 
Explorer. Below are the snapshots captured from Process 
Explorer before and while running the benchmark with and 
without enabling the swap file encryption. 

Figure 8 shows that the current available memory was 
3,120,088 kilo bytes and the total available memory was 
3,652,836 kilo bytes prior benchmark execution. The total used 
memory represents 14.58% of the total physical memory. Page 
fault delta, that represents the difference between the page 
faults, was 302. The commit memory at that time was 859,912 
kilo bytes. On the other hand, after executing the benchmark 
the available memory was reduced to 18,120 kilo bytes that 
represent 99.51% of the total memory as shown in Figure 9. 
The commit memory at that time was 4,792,872 kilo bytes. 
Therefore the commit memory increased from 11.77% to 
65.62% after executing the benchmark. 

 
Figure 9.  Memory performance while running the benchmark (shown by 

Process Explorer) 

VI. CONCLUSION 
In this paper, we have measured the overhead cost 

associated with encrypting swapped-out pages.  We have 
considered a number of popular encryption algorithms which 
include NTFS encryption, AES, Blowfish, TwoFish, and 
GOST. Our results show that a considerable overhead penalty 
can be incurred when encrypting the swap space.  Different 
encryption algorithms have generated various overhead costs.  
For both write and read operations, AES encryption produced 
the highest overhead cost; whereas Blowfish produced the least 
overhead cost.   Our measurements in the paper were 
conducted for Windows 7 platforms.  As a future work, we are 
in the process of assessing the overhead cost associated with 
encrypting the swap space under Linux 2.6.32 platforms.    
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