
Assessing Overhead Cost Associated with Encrypting Swap File

B. AlBelooshi K. Salah T. Marin A. Bentiba
Department of Electrical and Computer Engineering

Khalifah University of Science, Technology and Research
Sharjah,UAE

Email: bushra.albelooshi@kustar.ac.ae

Abstract— Privacy and security of information are two important
concerns for most computer users. Passwords, keys, and
encrypted information can be found unencrypted in the swap file
which is used by the operating systems to support the
implementation of virtual memory. Therefore, encrypting the
swap file is essential to provide more security of users’ private
and confidential information. However, encrypting the swap file
comes with an extra overhead cost. In this paper, we measure the
overhead cost associated with encrypting the swap file. To
effectively measure this cost, we developed our own benchmarks
that will enforce heavy swapping with disk write and read
operations. We measured the overhead cost for Windows 7
operating system. In our measurements, we considered a
number of popular encryption algorithms which include AES,
Blowfish, Twofish, and GOST. Our experimental measurements
show that Windows 7 incurs considerable overhead penalties
when encrypting the swap file.

Keywords: Swap file, Encryption, Operating system security,
virtual memory

I. INTRODUCTION
Nowadays, most operating systems support two spaces to

run processes. The first is the physical main memory which is
the computer RAM. The second is the virtual memory that is
used to manage the processes along with the physical memory.
Virtual memory is “a storage allocation scheme in which the
secondary memory can be addressed as though it were part of
the main memory” [1]. When the required amount of memory
space needed to execute a process exceeds the available
physical memory then the swap space or swap file is used. The
operating system creates a large space in the hard disk, known
as the paging file (or swap space) which holds memory pages.
The name of this file in the Windows operating system is
pagefile.sys. The main memory moves some of the inactive
process pages to the paging file in order to free up memory.
This mechanism is called swapping, which is an
implementation of the concept of virtual memory [2].

The swap file is a reflection of the running state of the
machine, with unencrypted swapped-out main memory pages.
When forensically analyzed, the swap space pages can reveal
critical keys and passwords. Therefore, it is important to
secure the swap file in order to protect this sensitive
information. This can be achieved by encrypting the swap file.
As shown in Figure 1, swapped out pages first get encrypted
using “crypto swap” algorithm before being written to the disk.
When reading encrypted swapped pages, by performing
memory read operations, the encrypted swapped pages have to
be first decrypted before loading them into main memory. This
process will definitely secure swapped out pages, but there is a

performance penalty associated with encrypting and decrypting
the swapped pages. The main contribution of this research is to
assess the cost overhead associated with swap file encryption.
This overhead cost can significantly slowdown running
applications and services. In this paper, we attempt to quantify
such a cost. The cost is measured for different encryption
algorithms. Such results will be of a great benefit in helping
the end user choose how to protect their data while making the
minimal impact on performance.

Figure 1. Encrypting swapped pages

The rest of the paper is organized as follows. Section II
describes related work. Section III explains how we
implemented the experiment to measure the cost overhead
generated from swap encryption. Section IV describes the
testing and validation process. In section V, we represent the
results generated from our experiments. Finally, we conclude
in section VI.

II. RELATED WORK
There has been little research conducted in the area of

measuring the overhead cost associated with encrypting the
swap file. The two main bodies of research which are relevant
to this topic are “Encrypting Virtual Memory” [3] and
“Efficient Security-Aware Virtual Memory Management” [4].
Both papers had limitations that will be addressed by this
research.

Encrypting Virtual Memory was proposed by Niels Provos
from University of Michigan. In 2000, Provos suggested
encrypting the swap file when pages are being swapped out
from memory and decrypting the pages when they are brought
back to the physical memory. He suggested dividing the
backing store into 512 Kbyte sections. Each section has its own
key which consists of 128-bit encryption key, reference counter
and the expiration time. The encryption key is generated

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-4745-9/12 $26.00 © 2012 IEEE

DOI 10.1109/TrustCom.2012.96

1119

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

randomly at the first time, while the counter is set to zero and
incremented every time the page is encrypted with its
encryption key. The reference counter is decremented every
time the page is freed from the backing store. Once the counter
reaches to zero, the key is deleted. Therefore, all the data
encrypted with that key will not be decrypted and will be
erased. Once the expiration time is reached, all pages with that
reference should be re-encrypted by the new key. The key is
stored in the unmanaged part of the kernel so that it will not be
swapped out.

The encryption effect on the system performance was then
evaluated using a test program that allocated 200 Megabyte of
memory and filled the memory sequentially with zeros. After
memory allocation, the program read the whole memory
sequentially. Provos noticed that there was an increase in the
run time when encryption was enabled [3].

One of the main limitations of this research is that it was
implemented using one encryption algorithm, namely AES.
The implementation was also done on obsolete hardware with
128 MB of main memory and a 333 MHz Celeron processor.

The second relevant work was the Efficient Security
Aware Virtual Memory Management that suggested encrypting
confidential pages and segments of the process being swapped
out. Rather than encrypting the whole swap file, this paper
proposed encrypting only the confidential parts. This would
reduce the overhead cost associated with encryption by
minimizing the amount of cryptographic operations. The idea
of this approach was based on adding a security label to each
process. The page fault handler then uses this label to decide
whether to apply the encryption on the process pages.

The researchers then analyzed the performance overhead
generated from their approach. They developed a C++
simulator which showed that the performance of their solution
is acceptable and can be used as a solution [4].

One of the main limitations of this paper is that it will add
an overhead on the process owner side. The process owner in
this case has to decide which portions of the process should be
encrypted and which should not. Moreover, an overhead will
be added because of the page fault handler which checks the
security label for each process and decides whether to apply the
encryption or not.

III. IMPLEMENTATION
This section describes the implementation method that we

adopted to measure the overhead cost associated with
encrypting the swap file. The section explains the different
encryption techniques used for the purpose of this research. It
will then list the platform specifications of the PC on which the
test was performed. It will also present the developed
benchmark for assessing and measuring the overhead cost
associated with encrypting the swap file.

A. Techniques of Encrypting the Swap File
There are different techniques by which the swap file can

be encrypted. This includes the operating system standard
utilities or using the available encryption tools. In Windows,
the page file can be encrypted using the Encryption File
System (EFS) technique. There are many other tools that are

available that feature a swap file encryption utility as well. The
most popular tools are Crypto-Swap, True-Crypt and Best-
Crypt. For the purpose of this research, Crypto-Swap with the
different encryption mechanisms available was used. The main
encryption algorithms supported by Crypto Swap are AES
(Rijndael) 256-bit key, Blowfish 448-bit key, GOST 256-bit
key and Twofish 256-bit key [7].

B. Platform Specifications
The testing was implemented on a 32-bit operating system

with 4 GB RAM. The system had four Intel Xeon processors
running at 2.8 GHz each. The system was running the
Windows 7 operating system.

C. Developed Benchmark
Due to the lack of benchmarking software, a program was

written in the C programming language. The objective of the
program was to stress the memory and therefore force page file
swapping. The program allocates 2 GB of memory and fills it
up sequentially with any letter, in our case we were filling it up
with ‘z’. It will then iterate writing to memory five times over
the allocated buffer to overwrite the contents of the swap file
and force swapping. Another program was also developed that
aims to read sequentially from memory.

As shown in Algorithm 1, Lines 1-4 define the input
parameters. The MAX constant represents the maximum buffer
size which is 2 GB in this benchmark. The 2GB of memory is
divided into 1 MB blocks that is (1024x1024) bytes. Therefore
the total block size dividing the 2GB by 1 Mb is equal to 2000
blocks. As shown in Line 7, the buffer gets initialized with ‘z’
letter in a while loop. After that in Lines 14-20, the memory
pages are writing with different values to force writing
operations of process memory pages to the hard disk. The
time incurred is recorded with TotalT, and the average is
calculated for each run. In our experiments, we record the
average of 5 runs. Similarly, a disk read benchmark is
constructed but with read operations.

Algorithm 1: Disk Write Benchmark

Input:
1 MAX ← 2000

2 b[MAX] ← Memory buffer with the maximum size of 2GB

3 T0 ← Initial time

4 TotalT ← Total time

6 Begin:
7 while ((b[mb]=malloc(1024*1024)) != NULL && mb < MAX) {
9 t0 = current time
10 b[mb] = ‘z’
11 TotalT = current time – t0 + TotalT
12 mb++
13 }
14 for (j=0; j<5; j++) { // Force swapping by re-writing pages
16 for (i=0; i<MAX; i++) {
18 t0= current time
19 b[i] = ‘b’+i+j
20 TotalT = current time – t0 + TotalT
21 }
22 }
23 End

1120

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

IV. TESTING AND VALIDATION
The first step was to verify that the developed code was

working properly and inserting specific values into the page
file. That was done by updating the writing to memory
benchmark to write a specific character into the memory, in
this case letter ‘b’. After that, two instances of the program ran
concurrently for several iterations. The swap file was then
captured using the FTK imager tool. A hex editor tool was used
to read and analyze the page file. It was shown that the letter
‘b’ occured 3,056,195,533 times in the file. That represented
81.71% of the total file bytes. The second most frequent letter
was ‘0h’ which represented only 10.10% of the total bytes in
the page file. This proved that the program was inserting letter
‘b’ in the memory and was being swapped out after running the
concurrent benchmarks several times.

It was also verified that the data in the swap file is being
encrypted when NTFS or crypto swap encryption was enabled.
That was done by enabling the swap file encryption utility and
running the writing to memory benchmark several times. It was
verified that the data in the swap file was not legible.
Moreover, all the bytes had close to the same frequency. This
proved that the swap file encryption was being applied.

V. RESULTS AND DISCUSSION
To evaluate the performance overhead, two instances from

the benchmark were running at the same. The observation was
then repeated ten times and the average overhead was
calculated for each encryption algorithm. This section
describes the generated results in more detail.

A. Writing to Memory Results
The writing to memory benchmark was run ten times and

the results were measured. Figure 2 shows the average time
required to write to memory while applying the different
encryption mechanisms on the swap file. The program took
more time to be executed when the encryption was enabled. It
took the longest time when the encryption used was AES.
Moreover, it took the least time with Blowfish encryption. In
ranking terms, the AES encryption was taking the highest
execution time, then GOST, NTFS, Twofish and the least
execution time was with Blowfish encryption.

Figure 2. Average Writing Time

Figure 3. Writing Penalty Percentage

The results generated agreed with the expectation for some

of the encryption algorithms. As was stated in Jetico website
[5], Blowfish is faster than GOST and the results we got is
showing that the program takes less time to execute with
Blowfish than with GOST encryption. Furthermore, in the
paper “Performance Comparison of the Five AES Finalist”, it
was shown that AES-256 bit key is slower than Twofish-256
bit key [6]. This explains the result we got when running the
program when Twofish encryption was used.

Figure 3 depicts the penalty associated with writing with
encryption. The formula to compute this penalty is expressed
as follows:

100(%) ×−=
ryptionWithoutEncAvgWriting

ryptionWithoutEncAvgWritingtionWithEncrypAvgWritingPenalty

This measures the penalty or overhead generated after

applying the encryption algorithm compared to running the
benchmark without encryption. As shown in Figure 3, the
writing time was increased by about 91.9% when AES
encryption was applied. The least penalty generated was when
Blowfish was used causing 21.5% increase. The overhead
generated from GOST and NTFS encryptions is considered
high which was above 65%. Furthermore, Twofish encryption
overhead was 40% more than running the benchmark without
encryption.

B. Reading from Memory Results
The reading from memory benchmark was also executed

ten times to measure the penalty issued from each encryption
mechanism while reading from the memory. Figure 4 shows
the average time needed to read from memory while applying
different encryption algorithms. It is shown that there is little
difference while applying the different encryptions compared
to the differences generated from writing to memory
benchmark. AES took the most time to read from memory
which was about 53 seconds. Blowfish was again taking the
least time to read from memory which was about 49.3 seconds.
The ranking of the average time needed to read from the
memory was the same as with writing to memory except for
the NTFS encryption which was higher than GOST encryption.
Thus AES took the most time then NTFS, GOST, Twofish and
finally Blowfish.

1121

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Average Reading Time

Figure 5. Reading Penalty Percentage

As shown in Figure 5, the highest overhead was associated
with AES encryption that was 28.3%. After that was the
overhead associated with applying NTFS at 27.8%.Then the
GOST encryption penalty at 26.16%. The least overhead was
associated with Blowfish and Twofish encryptions at 19.7%
and 25.5% respectively.

In general, the time to read from memory was less than the
time to write to memory. That was due to the fact that writing
to the memory benchmark was updating the pages that were
being swapped out from the memory. This will affect the
modify bit attached to the page. The modify bit is used to
indicate whether a page in memory has been modified since it
was last swapped out of memory. If that bit is not set (page is
not modified), then the page is just discarded without re-
writing it and it is replaced with the new page. If this bit is set
which means that the page has been modified, then it must be
written back into the swap space [2]. In writing to memory,
this bit will be set. Therefore if the page needs to be replaced
then it should be written back into the swap space before
replacing it. In reading from memory, the benchmark was just
reading the data from the memory without updating the values
of the pages. Thus the modify bit was not set and the page
could be discarded without re-writing it in the swap space. This
explains why reading from memory was taking less time than
writing to memory.

C. Performance Monitoring Results
Two main applications were used to monitor the

performance while executing the benchmark in Windows 7.
The objective of these tools was to monitor the memory
performance and to make sure that it was updating normally as
predicted. The first application used was Windows Task
Manager. The performance was monitored before and during
execution of the benchmark. The below figures were captured
using the Task Manager tool.

Figure 6. Memory performance prior to running the benchmark (captured

from Task Manager)

As shown in Figure 6, there were fifty processes running prior
running the benchmark. These were consuming 16% of the
total physical memory. The CPU usage was almost 0%. While
the benchmark was running, as shown in Figure 7, the
physical memory usage increased to 97% with 53 processes.
Those three processes were related to the benchmark
execution. The CPU usage also increased to 16% during
execution. The commit memory prior benchmark execution
was 979 MB compared to 4774 MB while running the
benchmark. The commit value represents the size of virtual
memory that is in use by all processes [8].

1122

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

Figure 7. Memory performance while executing the benchmark (shown by

Task Manager)

Figure 8. Memory performance prior to running the benchmark (shown by
Process Explorer)

The second application used to monitor the memory
performance in the Windows operating system was the Process
Explorer. Below are the snapshots captured from Process
Explorer before and while running the benchmark with and
without enabling the swap file encryption.

Figure 8 shows that the current available memory was
3,120,088 kilo bytes and the total available memory was
3,652,836 kilo bytes prior benchmark execution. The total used
memory represents 14.58% of the total physical memory. Page
fault delta, that represents the difference between the page
faults, was 302. The commit memory at that time was 859,912
kilo bytes. On the other hand, after executing the benchmark
the available memory was reduced to 18,120 kilo bytes that
represent 99.51% of the total memory as shown in Figure 9.
The commit memory at that time was 4,792,872 kilo bytes.
Therefore the commit memory increased from 11.77% to
65.62% after executing the benchmark.

Figure 9. Memory performance while running the benchmark (shown by

Process Explorer)

VI. CONCLUSION
In this paper, we have measured the overhead cost

associated with encrypting swapped-out pages. We have
considered a number of popular encryption algorithms which
include NTFS encryption, AES, Blowfish, TwoFish, and
GOST. Our results show that a considerable overhead penalty
can be incurred when encrypting the swap space. Different
encryption algorithms have generated various overhead costs.
For both write and read operations, AES encryption produced
the highest overhead cost; whereas Blowfish produced the least
overhead cost. Our measurements in the paper were
conducted for Windows 7 platforms. As a future work, we are
in the process of assessing the overhead cost associated with
encrypting the swap space under Linux 2.6.32 platforms.

REFERENCES
[1] Stallings, W. (2009). Virtual Memory. Operating systems: internals and

design principles (6th ed., internat. ed., p. 346). Upper Saddle River, NJ:
Pearson/Prentice Hall.

[2] Silberschatz, A., Galvin, P. B., & Gagne, G. (2009). Virtual Memory
Management. Operating system concepts (8th ed., pp. 357-359).
Hoboken, NJ: J. Wiley & Sons.

[3] N. Provos, “Encrypting Virtual Memory,” In Proceedings of the Ninth
USENIX Security Symposium, pages 35-44, August 2000.

[4] R. Amirsoufi, M. Taghiloo and A. Ahmadi, “Efficient Security-Aware
Virtual Memory Management,” In Proceedings of 2009 International
Conference of Soft Computing and Pattern Recognition, pages 208-
2011, December 2009.

[5] "Encryption Algorithms." Jetico. Web. 10 Nov. 2011.
<http://www.jetico.com/bc8_web_help/html>

[6] Schneier, Bruce and Doug Whiting, “A performance comparison of the
five AES finalists,” April-2000.

[7] “Swap File Encryption Utility (CryptoSwap),” Jetico - Military-Standard
Data Protection Software - Wiping, Encryption, Firewall. Retrieved
March 14, 2011, from http://www.jetico.com/bc8_web_help

[8] “Effective use of Task Manager,” (n.d.). Express Computer. Retrieved
October 4, 2011, from http://www.expresscomputeronline.com/

1123

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

