
EncFS goes Multi-User: Adding Access Control to
an Encrypted File System

Dominik Leibenger
CISPA, Saarland University

dominik.leibenger@uni-saarland.de

Jonas Fortmann
University of Paderborn
jonas.fortmann@web.de

Christoph Sorge
CISPA, Saarland University

christoph.sorge@uni-saarland.de

Abstract—Among the different existing cryptographic file
systems, EncFS has a unique feature that makes it attractive for
backup setups involving untrusted (cloud) storage. It is a file-
based overlay file system in normal operation (i.e., it maintains
a directory hierarchy by storing encrypted representations of
files and folders in a specific source folder), but its reverse mode
allows to reverse this process: Users can mount deterministic,
encrypted views of their local, unencrypted files on the fly,
allowing synchronization to untrusted storage using standard
tools like rsync without having to store encrypted representations
on the local hard drive.

So far, EncFS is a single-user solution: All files of a folder
are encrypted using the same, static key; file access rights
are passed through to the encrypted representation, but not
otherwise considered. In this paper, we work out how multi-
user support can be integrated into EncFS and its reverse mode
in particular. We present an extension that a) stores individual
files’ owner/group information and permissions in a confidential
and authenticated manner, and b) cryptographically enforces
thereby specified read rights. For this, we introduce user-specific
keys and an appropriate, automatic key management. Given
a user’s key and a complete encrypted source directory, the
extension allows access to exactly those files the user is authorized
for according to the corresponding owner/group/permissions
information. Just like EncFS, our extension depends only on
symmetric cryptographic primitives.

I. INTRODUCTION

Usage of cloud storage for backup purposes either requires
strong trust into the provider with respect to its confidentiality
guarantees, or use of an appropriate end-to-end encryption
layer. A solution often used in practice is EncFS [1], which
also serves as basis for, e.g., the cloud security service
BoxCryptor [2].

EncFS manages a folder hierarchy by mapping files and
folders one-to-one to an encrypted folder hierarchy stored in a
designated source folder of an existing file system. File/folder
names and file contents are thereby encrypted symmetrically
using a single secret key; metadata like timestamps, owner
information and access rights are simply passed through to the
entities (i.e., files and folders) stored in the source directory.

While confidentiality can also be achieved by volume-
based solutions (e.g., Veracrypt [3] or dm-crypt [4]) or special-
ized backup tools (e.g., duplicity [5]), the mentioned approach
has the advantage of being mostly transparent to the cloud
storage as it works at the granularity of files as envisaged
by typical cloud APIs. Arbitrary files can be read without
touching other entities and write operations affect only single

entities, which especially preserves the opportunity of creating
efficient, server-side snapshots if supported by the provider.1

In contrast to other file-based encryption tools, EncFS
has a unique feature: It allows to reverse its functionality
as to generate a deterministic, encrypted view of an existing
(unencrypted) folder on a local file system on the fly. The
encrypted view can be synchronized to external, untrusted
cloud storage using standard tools like rsync [6] without hav-
ing to store a local copy and without requiring changes to the
local file system. This so-called reverse mode might be used,
e.g., to create backups of folders that are already otherwise
encrypted—avoiding overhead due to two encryption layers
in normal operation.

A. Scenario

Exemplarily, EncFS reverse mode can be used in the
following scenario that we focus on in this paper: Different
members of a household (family members or people sharing a
flat) or of a small company share a Linux server for managing
individual data and exchanging data with one another. All data
are stored in a shared folder; the standard Linux file system
access rights are used to restrict access to specific entities.
Both the server and its administrator (e.g., a designated
member) are ultimately trusted, but the remaining members
are not. To ensure that the data remains recoverable in case
of a hard drive failure, the administrator has set up a nightly
backup to some cloud storage shared by all members: Every
night, an encrypted view on the shared folder is mounted
using EncFS reverse mode2 on the shared server, its content
is synchronized to the cloud storage via rsync, a server-side
snapshot is created, and EncFS is stopped afterwards.

EncFS has two important limitations in this scenario: First,
since all members have access to the cloud storage, they might
tamper with access rights of files stored there as to gain access
to them on the (local) shared server after a recovery. Since
access rights are stored in file system metadata, they might
not even be present in the remote copy at all—depending
on the file system and protocols used by the cloud provider.
Second, in case of a failure of the shared server, data can only
be recovered by the administrator as she is the only person in
possession of the encryption key used by EncFS. This might
be a problem, e.g., if she is on vacation. To circumvent this,

1Although encryption causes some overhead since small changes to file
contents typically change their complete ciphertexts.

2Normal operation would be possible as well by using a permanently
mounted EncFS folder as shared folder and backing up its source folder.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

978-1-5090-3065-1/16/$31.00 ©2016 IEEE

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

the administrator could provide the respective key to other
members, but this would counteract access controls set up
on the server: Any member in possession of the key could
decrypt any other user’s files irrespective of whether she has
been granted the required rights on the server.

PC PC PC

Remote Storage

write

… …

User User User

re
ad

 &
 w

ri
te

……

TrustedUntrusted

Admin
Encrypted

Folder

Shared Server

Shared
Folder

EncFS

Encrypted
Folder

PC

EncFS

Plaintext
Folder

re
ad

password

normal
operation

recovery

Fig. 1. Scenario. Several users have access to a shared server, which is
managed by a designated administrator. Both server and admin are ultimately
trusted (light gray). The server stores encrypted backups created via EncFS on
external untrusted storage (red) accessible to all users. Using their individual
passwords, users shall be able to recover exactly those files they are authorized
for directly from the remote storage using an arbitrary PC running EncFS.

B. Goals and Contribution

The contribution of this paper is to improve upon the state
of the art of cloud storage security by introducing a solution
for encrypted backups on untrusted cloud storage for multiple
users that is easy to set up and simple to administer. For this,
we build upon EncFS’s unique reverse mode and show how
to overcome the aforementioned limitations as to support the
usage scenario illustrated in Figure 1: An administrator shall
be able to back up shared folders using EncFS’s reverse mode
just like before, but users shall be able to recover files they
have access rights for from these backups directly using their
passwords.

To this end, we extend EncFS’s reverse mode so that

1) ownership information and access rights for files can be
stored and remain recoverable even if a storage provider
lacks support for file system metadata,

2) users are able to recover files they have access rights for
with respect to the previous scenario even if the secret
key managed by the administrator is not available, and

3) required changes to EncFS’s architecture and concepts—
and, thus, implementation costs—are small. In particular,
we do not introduce dependencies to asymmetric cryp-
tographic primitives (which might seem natural) as they
are not necessarily required.

We introduce additional file- and user-specific keys and de-
velop a hierarchical key management mapping file system ac-
cess rights to keys in such a way that users are able to decrypt
exactly those files they are authorized to read according to
the file system’s access rights. We further investigate security
aspects of our extension and present a working prototype
implementation that is based on a recent development version
of EncFS.

C. Structure

Section II explains basics on EncFS and Linux access
rights and Section III describes our threat model. The concept
is described in detail in Section IV; some words on our
implementation follow in Section V. Security is evaluated
in Section VI and related work is presented in Section VII;
Section VIII concludes the paper.

II. BASICS

We present EncFS’s architecture in an abstraction allowing
to develop our extension and we summarize the traditional
Linux file system access rights semantics so that we can derive
a consistent mapping from access rights to a key hierarchy
later on.

A. EncFS

EncFS [1] is a FUSE[7]-based virtual file system devel-
oped by Valient Gough. As mentioned in Section I, it is an
overlay file system that encrypts individual entities of a folder
hierarchy. It uses a single, symmetric, global key—the volume
key.

Execution of EncFS requires two folders to be provided:
A source folder where encrypted representations of files
and folders reside, and a mountpoint that allows access to
the cleartext representation of the managed folder hierarchy.
When EncFS is first started with a specific (empty) source
folder, some initialization is required. The user may define
different parameters affecting EncFS’s operation, including
choice of an encryption scheme and a password required to
decrypt the source folder later on. For the actual encryption,
a random volume key is generated. Together with the chosen
parameters, it is stored encrypted (using a key derived from
the user’s password via PBKDF2 [8]) in a configuration file
located in the source folder which is evaluated on subsequent
starts.

While EncFS is running, de- and encryption are performed
on the fly: When a folder is accessed, the names of its files
and subfolders are decrypted; when file contents are read or
written, they are transparently de- or encrypted, respectively.
To be able to determine corresponding paths in the encrypted
and decrypted views without requiring a designated database
that stores this mapping, EncFS encrypts entity names using
deterministic encryption. Given a cleartext path, EncFS com-
putes its encrypted counterpart by deterministically encrypting
each of its individual components.

EncFS provides a plethora of options that allow to adjust
the trade-off between security and efficiency with respect to
different operations. Ciphertexts of path components, e.g., can
either be encrypted in isolation or depending on the respective
parent path (which affects move operations), file contents
can be encrypted either deterministically or using a—more
secure—randomized scheme, etc. In principle, our concept is
independent from a specific choice of these options, so we
skip a detailed discussion and refer the interested reader to the
EncFS documentation [9], [10] and to EncFS’s recent security
audit [11].

The reverse mode of EncFS is basically identical to its
normal operation, but the direction of en- and decryption

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

is reversed. Here, a folder containing an unencrypted folder
hierarchy is used as source folder and the encrypted view
is provided at the mountpoint as illustrated in Figure 2.
As already described in Section I-A, this encrypted view
can be synchronized to some cloud storage provider and
later mounted in normal mode to recover data. Again, a
configuration file is generated on EncFS’s first start and stored
and only visible in the source folder.3 There is one major
difference from a security perspective, though: As encrypted
views are created on the fly but have to be consistent across
different invocations to be suitable for backups, deterministic
encryption has to be used. Some security options are, thus,
currently not available in reverse mode.

Note that these restrictions apply to our prototype imple-
mentation as we focus on reverse mode in this paper. They
are not conceptional restrictions for our work, though: First,
it is straightforward to extend our concept to EncFS’s normal
mode (although re-implementation of some features would be
required which are provided for free by EncFS reverse mode).
Second, some reverse mode restrictions could by eliminated
with further implementation efforts (e.g., by introducing a
persistent cache for IVs as to allow randomized encryption).

EncFS
(reverse mode)

EncFS
(normal mode)

/shared/clear

Document A

Document B

p
as

sw
o

rd

p
assw

o
rd

co
p

y

Document C rsync

/shared/crypt

AEJdfjdfD4kf

XVpqEgTrs2kI

ZdGhtGLM3F

User

Shared Server

/storage/crypt

AEJdfjdfD4kf

XVpqEgTrs2kI

ZdGhtGLM3F

Source Folder
(persistent)

Mountpoint
(virtual view)

/user/clear

Document A

Document B

Document C

User PC Remote Storage

Mountpoint
(virtual view)

Source Folder
(persistent)

mount /
copy

Fig. 2. EncFS reverse mode in backup scenario. The source folder is a
folder on the shared server containing some unencrypted data. The mountpoint
contains an encrypted version which can be copied to remote storage as a
backup. To recover data, EncFS is started in normal mode on a user’s system,
using the copy of the encrypted view as source folder and providing the
cleartext view at another mountpoint.

B. Linux Access Rights

Users under Linux are organized as follows: Each user is
identified by a uid (user id) and can be in an arbitrary number
of groups (each identified by gid, group id). Traditionally,
access rights to files/folders are organized as follows: Each
entity has exactly one owner and one group, identified by
uid and gid, respectively. An entity’s owner does not have to
be in its group. Permissions can be specified with respect to
three sets of users: The owner, group, and others (i.e., system
users that are neither the owner nor in the respective group).

3If using reverse mode, the admin thus has to remember also backing up the
configuration file when synchronizing the encrypted view to remote storage.
This file, however, only has to be backed up once and is preferably stored at
a separate, secure location as offline brute force attacks on a user’s password
are possible given that file (data is encrypted using a password-derived key).

For each set, read (r), write (w) and execute (x) rights can
be assigned. The precise semantics of the respective rights
depends on the type of the entity they are assigned for (i.e.,
file or folder), as shown in Table I:

For files, read access allows to read their contents; write
access allows modification of contents, but not reading of
data written before. Execute access allows execution of binary
(executable) file contents, even without permission to read the
executed code.

For folders, read allows listing names of child entities.
Write allows creation/deletion/renaming of entities, irrespec-
tive of permissions of the respective entities. Execute allows to
open the folder and is required to access any of its children. A
user with execute but no read right can thus access children
as long as she knows their names; a user with read but no
execute right may see the children’s names, but cannot access
any of them.

An important aspect of the distinction between owner,
group and others rights is that these sets of users are consid-
ered non-overlapping. Effective rights are defined by the first
matching set of users: If, e.g., rights to a file are exclusively
granted to a group, the file owner cannot exercise them even if
she is a member of that group. Rights only granted to others
apply to everyone but the owner and members of the file’s
group.

Right File Folder
Read Read file content List names of files and subfolders
Write Modify content Create/delete/modify files/subfolders
Execute Execute binary file Open folder and access child entities

TABLE I. ACCESS RIGHTS ON LINUX-BASED FILE SYSTEMS

In addition to the described access control model, many
file systems support access control lists (ACLs) that allow
for more fine-grained access rights. They are, however, less
commonly used than the traditional rights that we focus on in
this paper.

III. THREAT MODEL

The foundation of our work is the scenario described in
Section I-A. We distinguish three parties: The local server
administrator (including the server), other local users of the
server (including their devices having access to the server),
and an external cloud storage provider that is accessible by
all local users and used for backing up data from the local
server. While read access to the cloud storage is sufficient for
local users in our scenario (since all backups are uploaded by
the local server), we consider a stronger security model where
all users have write access to the cloud storage as well.

We require the admin to be benign, i.e., we assume that
she sets up access control on the local server in a correct
and effective way. She is completely trusted by all users.
The remaining users are considered potentially malicious,
i.e., they are attackers who try to get access to data of
other users they are not authorized for, either via passive
attacks or actively, e.g., by trying to tamper with access
rights in an outsourced backup. They are interested in entity
names and file contents. With respect to a flat share, this
would correspond to a scenario where only a single user—
the administrator—is IT-savvy and trusted to keep her system

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

EncFS

Generate keys for

uids, gids, everyone

/shared/clear /shared/crypt
Admin

config Create config file

uid key

gid keys

everyone key

encfsctl

User

Send password and uid to

EncFS process

keys

uid keys

gid keys

everyone key

Update user key lists

user

keys

Register to EncFS

Create user config file and user key list

Create key list

Create folder’s metadata + folder key list

Update admin’s key list

Key Distribution

Encrypt each file with file key
(metadata / folder key list with folder key)

Generate file keys

Key Generation

Update file keys and

folder key lists

Update File Keys

Key Management

user

config

meta-

data

list

folder

key

list

Fig. 3. Multi-user EncFS overview. The admin starts an EncFS process on the shared server which creates the required keys, takes care of key management
and encrypts all entities in the source folder with the file keys. Users can set user-specific passwords using encfsctl, yielding user config files and key lists.

secure, while the remaining users have good intentions but
might be working on potentially infected systems due to lack
of IT expertise.

The cloud provider is considered honest but curious, i.e.,
it is assumed that it stores data correctly (as it has a financial
incentive in doing so) but tries to gain information about
stored data (file contents and file/folder names).

To be able to prove our work’s security, we assume
the deterministic encryption scheme used by EncFS’s re-
verse mode is DAE-secure (see [12]) and that the HMAC
scheme [13] used for symmetric authentication produces un-
forgeable MACs.4

IV. CONCEPT

Now we present the concept of our multi-user extension.
First, an overview of the overall concept is given; afterwards,
the main components—key management and metadata man-
agement (encryption / authentication of access rights)—are
presented in detail before concluding with some specifics
on our extension’s usage for creation of backups and later
recovery.

A. Overview

In plain EncFS, every volume—i.e., every instance con-
sisting of source folder and mountpoint—has a global volume
key used to encrypt every single file. Encrypted with a key
derived from a password specified by the volume’s admin, the
volume key is stored in a configuration file. The configuration
file is supposed to be stored separately from the actual backup
data as to prevent an untrusted cloud storage provider, e.g.,
from performing brute-force attacks on the volume admin’s
password. Metadata like ownership information, access rights
and timestamps are not specifically considered but passed
through to the source folder’s entities.

4This is not the case in practice since EncFS insecurely uses AES-CBC for
deterministic encryption. This issue is out of scope of this paper, though, and
could be resolved easily, e.g., by using SIV-mode [12] encryption instead.

The core concept of our extension is illustrated in Figure 3
and explained in more detail below. Every entity gets an
individual key, the file key5, which is used to encrypt its name
and content and chosen at random when first required. For
directories, the key is further used to encrypt two adminis-
trative data structures which are serialized to files residing in
the encrypted representations of the respective directories: The
metadata list stores owner, group and specified permissions
for a directory’s child entities, each symmetrically encrypted
and authenticated using the file key of the respective entity
as to decouple these metadata from the capabilities of the
source file system or used external storage. The folder key
list contains the file keys of all child entities, each encrypted
using a single uid key which is generated randomly and made
available to the administrator.

Then, further keys are introduced to enable limited access
for specific other users: For each user, we introduce a uid
key that is associated to her uid; for each group, we create a
corresponding gid key associated to its gid, and we generate an
everyone key6 that represents all users of a system at a certain
point of time. Each key is generated randomly on its first
use and made available to users with respect to their uids and
group memberships and to the admin. According to the owner
and group information and permissions of respective files, we
then create copies of their file key items in the folder key
list and encrypt them with respective uid, gid and/or everyone
keys instead of the admin’s uid key as to allow their decryption
to all authorized users (including the admin as she has access
to all uid/gid keys and everyone key). Since there is no folder
key list that could contain the file key of the root folder, the
everyone key is used for the root folder instead, making sure
that all users can access the volume root.

Similar to the configuration file containing the encrypted
volume key of the admin, each user who wants to be able to

5For simplicity, we refer to a key corresponding to a folder as file key, too.
6We chose this name to emphasize that there is no 1:1 relationship between

the everyone key (which is distributed to all users) and the others group
(which encapsulates only users that neither match an entity’s owner nor
group).

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

access her files independently from the admin has to generate
an individual configuration file containing a randomly chosen
user volume key encrypted with a key derived from her
password. User volume keys are used to distribute uid, gid
and everyone keys: For each user, a list containing her uid
key, the everyone key and all gid keys of groups she is in are
stored in a key list file. The file is encrypted with her user
volume key7 and located in the volume’s encrypted root folder
so that it is included in external backups.

Note that our extension preserves EncFS’s concept of
separating password-derived keys from actual backup data:
Password-derived keys are used only in user-specific config-
uration files which have to be backed up once at a secure
location. Only the key graph consisting solely of randomly-
generated keys is stored as part of the backup data as it might
change frequently.

B. Key Management

According to the traditional Linux file system access rights
(see Section II-B), a user is allowed to read an entity’s content
(file content or names of a folder’s children) iff the following
two conditions hold: a) She has the execute right for the
entity’s parent folder, and b) she has read permission for the
entity itself. To be able to access the entity, the user further
has to know its precise name or she must have a read right
for the parent folder allowing her to list its children’s names.

Considering the backup scenario described in Section I-A,
there is no functional requirement for leaking names of entities
to users who are not authorized to access them. Users would
only suffer from decreased confidentiality with respect to their
own files. For this reason, we continue EncFS’s strategy of
encrypting file contents and metadata (i.e., the file’s name)
using the same key, i.e., we reveal plaintext names only to
users that are also authorized to access the respective entity.
If a user only has execute permission for a directory and a
read right for a file in that directory, however, this concept
would reveal the file’s name to the user although she is not
authorized to see it in the local file system. As this would be in
conflict with our threat model (see Section III) since it reveals
information to users for which they are not authorized, we
restrict access to folders to users having both execute and read
permission. Note that this decision imposes a limitation on
recovery as in principle, it might prevent users from recovering
some file contents they had access to. This, however, is only
true for contents of files that are invisible to the respective
user (as they reside in folders the user is not authorized to
read). We argue that in the considered scenario, such situations
are more likely to occur due to configuration errors than
being actually intended, so we opted for the much simpler
(thus, cleaner) concept that ensures that files hidden from
users cannot be decrypted with additional knowledge like path
names under any circumstances. In the rare case that such
rights are actually intended, the respective files can still be
restored by the server administrator, though.

Based on these considerations, we distribute file keys as
follows to users having access to their corresponding entity’s
parent folder: The file key for an entity accessible only to its
owner (i.e., the owner has read permission in case of a file or

7Note that the global volume key is the admin’s user volume key.

read and execute in case of a directory) is encrypted with the
owner’s uid key; for entities accessible to owner and group,
copies of their file keys are encrypted with the uid key and
gid key8, respectively. For entities accessible by everyone, the
everyone key is used; for entities accessible only by root, the
admin’s volume key is used. In the remaining special cases (see
Section II-B), we determine the list of users that are effectively
authorized and encrypt the file key with each of their uid
keys, respectively. The detailed mapping of rights to keys used
to construct folder key lists is given in Table II. To prevent
users from determining file keys of entities without access to
parents, each folder key list is encrypted using its folder’s file
key. An overview of this hierarchic key management concept
is given in Figure 4.

File permissions (Folder permissions)
Owner r (rx) r (rx) r (rx) r (rx) - (-) - (-) - (-) - (-)
Group r (rx) r (rx) - (-) - (-) r (rx) r (rx) - (-) - (-)
Others r (rx) - (-) r (rx) - (-) r (rx) - (-) r (rx) - (-)
Keys every-

one
owner
uid (if
owner
/∈
group),
gid

uid ∀
users
/∈
group

owner
uid

uid ∀
users ∈
system
\
{owner}

uid ∀
users ∈
group \
{owner}

uid ∀
users /∈
group ∪
{owner}

vo-
lume

TABLE II. MAPPING OF TRADITIONAL FILE SYSTEM ACCESS RIGHTS
TO KEYS

rootroot

keyskeys
YYXX

X.XX.X X.YX.Y keyskeys

Key List

Key for X.X enc. with gid key A

Key for X.Y enc. with gid key B

Y.XY.X keyskeys

Access Rights

User 1 = rx

Group A = rx

Others = -

Access Rights

User 1 = rx

Group A = rx

Others = -

Access Rights

User 2 = rx

Group B = rx

Others = -

Key List

Key for X enc. with gid key A

Key for Y enc. with uid key 1

…

Key for Y enc. with uid key n

Access Rights

User 1 = rx

Group A = rx

Others = -

Access Rights

User 3 = rx

Group C = -

Others = rx

Key List

Key for Y.X enc. with gid key A

Fig. 4. Example of key management in multi-user EncFS where users 1, 2,
3 are in groups A, B, C, respectively. The root directory contains a folder key
list encrypted with the everyone key so that every user can decrypt it. The
list contains keys needed for files/folders in the root folder, each encrypted
using appropriate uid/gid keys or everyone key w.r.t. the entity’s access rights.
Every subfolder contains a separate folder key list containing the keys for
its child entities. The key list is encrypted with the file key of the folder; its
keys are encrypted w.r.t. the rights of the respective entities.

Whenever rights change, key management has to ensure
that affected file keys are changed and re-distributed ac-
cordingly. Our extension detects such changes by comparing
the rights set on the local file system with its internal data
structures (i.e., metadata and folder key lists) on each access of
an entity. A change is handled as follows: If rights of an entity
change, the scope of the change is limited to the respective
entity. The extension determines whether there are any users
that lose access to the entity. If so, a new random file key
is generated for the entity and distributed to authorized users
using its parent folder’s folder key list as described above. In
case of a folder, all children’s file keys are recursively renewed
as well. If the set of authorized users grows due to the change,
the file key remains unchanged and only the folder key list is
updated.

8If the owner is in the entity’s group anyway, only the gid key is used.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

If a user’s group memberships change, the affected gid
keys are renewed. As the change is not necessarily limited to
certain subtrees of the EncFS volume, the whole volume is
scanned recursively and the effective rights of each individual
entity are compared against the internal data structures. For
any affected entity, key renewal and distribution is performed
as described before. Added/removed users are handled simi-
larly.

Note that with regard to computation costs, access right
changes are relatively cheap due to the nature of EncFS’s
unique reverse mode we focus on: Even if the whole volume
has to be scanned and many keys have to be renewed as
described before, this operation affects only metadata, i.e., the
folder key list files. The reason is that the actual encryption is
performed lazily as soon as a folder or file in the mountpoint
is accessed. In fact, encryption is always performed on the fly
and ciphertexts of file contents are not stored at all, so costs
to access a file content are identical irrespective of whether
its key has changed since a previous access. Moreover, for
access right changes of files/folders within the source folder
of an EncFS folder (in contrast to changes to the system’s
user/group database), even metadata changes (i.e., changes to
folder key lists) are computed lazily on access of respective
directories. We emphasize that this laziness does not have
security implications since all changes are applied as soon
as the respective parts of the encrypted volume are accessed
(which is trivial considering that the encrypted volume is
generated on the fly). After a backup tool has traversed the
encrypted volume for synchronization to remote storage, for
instance, the external backup includes all lazy changes.

C. Metadata Management

Metadata management is simple. We have a metadata
list file for each folder that stores metadata for its children:
Every line contains the name, owner (uid), group (gid) and
permissions of a child entity and is encrypted and authenti-
cated symmetrically with the entity’s file key to ensure that
it can only be read/modified by users who are at least read-
authorized. EncFS’s filename encryption function is used for
that as it guarantees confidentiality and authenticity.

To ensure that access to metadata of a folder’s children
requires access to the folder itself, metadata files (i.e., lists of
encrypted items) are encrypted with their folders’ file keys.

D. Recovery

The presented solution allows users to recover any files
they had access to from a shared folder given a backup
created with EncFS reverse mode, provided that they have
created a user volume key and backed up the corresponding
user-specific configuration file before. Recovery is performed
as follows: A user starts EncFS in normal mode, using the
encrypted backup (e.g., the cloud storage) as source folder
and specifying her configuration file including her password.
EncFS uses the user’s volume key to decrypt her key list,
yielding her uid key, everyone key and all gid keys of groups
she is in; the everyone key allows decryption of the root
folder’s folder key list.

Whenever a folder is accessed, EncFS extracts the file keys
of all entities the user has access to. For this, it tries to decrypt

all items of the folder key list with the everyone key, the uid
key and all known gid keys one after another, and uses the
decrypted file keys to decrypt their corresponding items from
the metadata list. All entities whose file keys and metadata
have been successfully decrypted are displayed to the user;
remaining entities are assumed to be non-accessible due to
lack of access rights and therefore hidden. This corresponds
to the default behaviour of EncFS, which hides entities whose
names could not be decrypted using the global volume key.

E. Consistency Considerations

To achieve strong availability guarantees when backing up
data to external storage using our extension, the admin has to
consider a few details that do not apply to plain EncFS.

1) Permission changes that cause users to lose rights
might result in renewal of many file keys. While file keys
should be accessible using the user-specific keys at any time,
storage of key lists required to access file keys is spread
over different files. Without further preparations, interruption
of a file-wise synchronization of an encrypted EncFS folder
to external storage could thus leave a corrupted backup.
If a cloud provider supports snapshots, we recommend to
create a snapshot before any synchronization to ensure that a
consistent state is available. Otherwise, susceptibility to errors
can be reduced by synchronizing new files before changes and
deletions. Since an updated file key of an entity implies a new
name for its encrypted representation, this strategy ensures
that all entities have already been backed up when key lists
are overwritten.

2) In contrast to plain EncFS, encrypted representations of
our extension’s volumes contain uids, gids and permissions of
all files and folders. This allows users to recover their own data
using their user-specific keys. The additionally stored data,
however, might not be sufficient for a successful recovery
of the shared folder when performed by the admin after
data loss. As only uids/gids but no user/group names are
included, the administrator might need to also back up the
server’s mapping between uids/gids and user/group names,
respectively. This could be achieved easily by including the
files /etc/passwd and /etc/group in the encrypted
backup.

V. IMPLEMENTATION

We prototypically implemented the concept into the re-
verse mode of EncFS. We based it upon its dev branch [14] as
it already contains incompatible changes to its stable version.
Further, we consider the security issues uncovered in [11]
more likely to be fixed in upcoming non-compatible releases
than in the stable version.

Figure 5 gives an overview of the EncFS architecture: The
left side shows the original architecture; the right side shows
the components that have been introduced or changed as part
of our extension.

The most important components we introduced are the
KeyManager and MetadataIO. The former manages (i.e.,
generates and changes) the newly introduced file-specific keys
and distributes it to authorized users; the latter manages
metadata of entities in an encrypted and authenticated manner.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

libfuse

callback layer

DirNode

FileNode

NameIO

EncFS

BlockCipher

Standard Extension

encfsctl Listener

inotify Listener

KeyManager MetadataIO
StreamCipher

FileIO

BlockCipher StreamCipher

Fig. 5. Extended EncFS, based on EncFS’s architecture as illustrated in [15]

MetadataIO replaces EncFS’s concept of passing access rights
through to the respective entities in a volume’s encrypted
representation. Instead, entities in the encrypted representation
are created with minimum rights and owner/group set to
root. This hides information about access rights from curious
cloud storage providers and prevents other members from
tampering with access rights as described in Section I-A.

The administrative tool encfsctl has been extended so that
users can generate user-specific keys for a mounted EncFS
volume, allowing decryption only of files they have access to.

In order to react to implicit access right changes caused by
changed users or group memberships, our extension evaluates
/etc/group and /etc/passwd on each start of EncFS
and updates user- and group-specific keys accordingly if
needed. If users lose access to specific files due to such
changes, the corresponding file-specific keys are renewed as
soon as they are accessed for the first time. To also detect
such changes while EncFS is running, we made EncFS listen
to and react to updates of these files using inotify [16].

Usage of our EncFS extension is only little different from
that of standard EncFS: When initializing a new volume,
the user can specify the --multi argument to enable the
extension. A flag is written to the generated configuration file
to ensure that the extension is used during each subsequent
mount of the volume irrespective of whether the argument is
explicitly provided. On initialization, the extension initializes
a folder key list for the root folder and a key list file for
the admin user as described in Section IV-A. Together with a
third file used for detection of metadata changes, both files are
stored as hidden files accessible only to root in the (cleartext)
source folder. After initialization, the files contain only the
data that are necessary to access the root folder. Folder key
lists of subfolders and further uid/gid keys necessary for key
distribution are created lazily as soon as the respective folders
in the mountpoint are actually accessed (e.g., when the folder
hierarchy is traversed by a backup tool). At this point, the
only benefit of our extension lies in its ability to encrypt and
authenticate metadata, but there is no difference to standard
EncFS from a usage perspective: Using the same commands
as in standard EncFS, the administrator can unmount/mount
the EncFS volume at will using her password and her config-
uration file and recover any files from a backup created using
reverse mode by mounting it in normal mode.

To benefit from the introduced multi-user capabilities,
users have to generate individual configuration files. For this,
they have to log in once on a terminal and run the command
encfsctl multisetuserpw while the EncFS volume is
mounted, i.e., the EncFS process is running. This triggers
creation of a random user volume key for the user invoking
the command within the context of the EncFS process, and
forces creation of a user-specific configuration file containing
that key (protected by a password specified by the user) as de-
scribed in Section IV-A. The user-specific key list containing
the user’s uid/gid keys and everyone key—encrypted with the
user volume key—is further created in the (cleartext) source
folder of the EncFS volume and made available in the en-
crypted representation. By providing the --multidecode
<uid> flag, the user can later force usage of that key list
when mounting the encrypted EncFS volume using her user-
specific configuration file, yielding exactly those files she is
authorized to access.

VI. SECURITY ANALYSIS

Depending on its choice of parameters and its usage
scenario, EncFS itself suffers from some security deficiencies
as shown in an audit [11]. These issues surely affect the
security of our extension, but they are not specific to it and
can be resolved in isolation. For this security analysis, we
assume that our extension is based on an EncFS version in
which these deficiencies have already been fixed (as described
in Section III).

The analysis is structured as follows: First we show that
key distribution is consistent to the semantics of traditional
Linux file system access rights, i.e., that users receive an
entity’s file key iff they are allowed to access the entity
according to the file system’s access rights. Then we show
that file contents and names are only accessible by users
in possession of the corresponding file key. Afterwards, we
show that changed rights are handled correctly: We prove
that neither implicit nor explicit changes result in situations
in which a user who lost rights is still able to determine an
entity’s file key, and we show that even active attackers trying
to tamper with rights will fail to determine file keys they are
not authorized for.

1) Linux Access Rights and Key Distribution: Assume a
user is able to determine a file key of an entity she is not
authorized to access given her access to the full encrypted
EncFS volume (e.g., a backup stored at the remote storage).
File keys have length ≥ 128 bits and are chosen at random by
the (benign) server, so trivial attacks (brute force, malicious
system) are ruled out. As the only place a file key is stored
is in the folder key list of its entity’s parent folder, the user
must have decrypted the corresponding item to determine it.
For this, she must have known one of the keys used for the
file key’s encryption as in Table II and also the file key of
the entity’s parent folder as the folder key list is encrypted
using that key. Recursively, she must have known a key used
for file key encryption (Table II) for each path element of the
respective entity. As shown in Section IV-B, this is the case
iff she is allowed to access every path element (and, thus,
the entity itself) according to the file system’s access rights
model, which contradicts the assumption that the user is not
authorized to access the entity.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

2) Confidentiality of File Contents and Names: File con-
tents and names are exclusively stored encrypted with the
respective entity’s file key. Given security of the encryption
scheme, confidentiality follows directly from file keys being
only known to users authorized to read their respective enti-
ties.

3) Handling of Access Right Changes: Given correctness
of key distribution as proven above, a user cannot determine
any file key corresponding to an entity she is not authorized
to read if having access only to a specific state of the EncFS
volume’s encrypted representation. If rights change and a user
has access to different states (i.e., from before and after the
change), however, she might be able to still read entities she
lost access to if key renewal was handled incorrectly. Assume
this is the case, i.e., that any change results in a situation in
which a user does not have a read right to an entity anymore
but is still able to decrypt it. This can only be the case if
either the file key of the entity itself or a set of keys that
allow its decryption remained unchanged across the access
right change.

This is prevented as described in Section IV-B: Whenever
a right changes explicitly (entity permission change) or im-
plicitly (changed users/groups), we determine the effective set
of read-authorized users of all entities that could be affected
and renew their file keys accordingly. The same applies
to uid/gid/everyone keys. Renewal of all file keys whose
decryption depends on a specific key whenever the respective
key (i.e., a parent folder’s file key or a uid/gid/everyone key)
is changed ensures that the set of users gaining knowledge of
a specific file key can only grow with changes. This excludes
prior states from being usable for access right escalation.

4) Authenticity of Access Rights: Access rights of entities
are stored in metadata list files; each item is symmetrically
authenticated using the respective entity’s file key. This does
not prevent read-authorized users from changing rights in the
encrypted representation of a volume, but it prevents users
without read permission from gaining access to entities: Since
those users do not know the entities’ file keys and the used
authentication scheme is assumed to have unforgeable MACs
(see Section III), they can only compute a correct MAC if they
also change the respective file key. Changing that key would
clearly prevent access to the entity’s name and content. Since
every entity gets its own, random file key, they cannot copy
metadata items from other files, either. They could only replay
old metadata items of the same file that are authenticated using
the same file key. This attack, however, could not broaden
access rights: If the set of users having access to an entity
was larger in a prior state, the file key would have changed
with the access right change as described before.

VII. RELATED WORK

In 2014, results of a security audit of EncFS 1.7.4 have
been published by Taylor Hornby. [11] It uncovered weak-
nesses that render it insecure especially in situations in which
an attacker has access to several states of a volume—as
it is the case in the scenario considered in the paper at
hand (see Section I-A). These weaknesses, however, can be
fixed relatively easily if compatibility to prior versions is not
required. While these fixes are out of scope of our work,
we see no obstacles in distributing the extension along with

the fixes in the future, given that either of them introduces
incompatible modifications anyway. Besides the audit, there is
no academic literature dealing with security aspects of EncFS
in particular to the best of our knowledge. Work on other
cryptographic file systems, however, deals with questions
similar to ours: SiRiUS [17] is an overlay file system that
encrypts files with individual file encryption keys (FEKs)
like we do. Keys are distributed to authorized users using
metadata files containing FEKs encrypted with user-specific
keys, which is similar to our folder key list concept. SiRiUS
uses asymmetric encryption for key distribution and stores one
copy of each file key for each authorized user. Our solution,
in contrast, depends only on symmetric schemes and collects
users into larger groups as to decrease key distribution efforts.
Plutus [18] also aims at low key distribution costs in presence
of file-specific keys. Instead of collecting users into groups
with shared keys, the authors collect files with similar rights
into filegroups sharing a key. Using a filegroup’s key, users
can decrypt a lockbox that stores the actual file-specific keys.
The authors also introduce key rotation, i.e., they compute
successor keys after right changes in a way that prior keys
remain computable, which allows to postpone re-encryption
of files after file key changes, e.g., to the next change of
their contents. Security issues of key rotation have later been
fixed by key regression. [19] Tahoe-LAFS [20], a secure
multi-user file system, depends on file-specific keys, too, but
has a completely different key distribution concept: Keys are
wrapped into capabilities that are shared directly with users to
grant the respective rights. To ease key distribution for many
files, their capabilities are included in folder representations,
resulting in semantics different from our system: In Tahoe-
LAFS, read access to a folder implies read access to all
children.

The concept of encrypting (file) keys using other keys
that are made accessible to a group of users as to delegate
access rights, which is shared by most of the works mentioned
above, is used even more extensively by Grolimund et al. [21]:
The authors formalize encryption of a key b using a as a
cryptographic link a → b and present a tree-based key dis-
tribution data structure, Cryptree. As to minimize the number
of keys that need to be distributed when granting specific
combinations of access rights, they introduce a number of
different keys for entities with corresponding links across
them. Again, access right semantics are different from ours:
Read permission for a file, e.g., implies access to all parent
folders in their system.

Our solution makes extensive use of cryptographic links,
though: Folder key lists essentially build an alternative cryp-
tographic tree tailored to Linux’s file system access rights
model. Links are thereby realized using EncFS’s filename
encryption function, which is deterministic but considered
insecure as worked out in [11]. Secure alternatives for this
so-called key-wrap problem are presented by Rogaway and
Shrimpton [12].

Key assignment schemes in general are discussed by
Crampton et al. [22]: The authors present a framework for
key assignment in hierarchical access control that embraces
a wide range of schemes commonly used in other literature
and discuss the respective schemes’ security aspects. Note that
there is a plethora of more recent work on key distribution in

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

encrypted file systems and cloud storage in particular which
is based on more sophisticated cryptographic primitives like
attribute-based encryption (ABE) [23]. While some of those
schemes might be applicable to our setting in principle, we
opted for a solution based only on symmetric schemes as they
are sufficient to achieve our goals and more easy to integrate
into EncFS’s architecture. Furthermore, there are lots of works
that deal with more specific aspects of cloud storage security
like, e.g., data deduplication, which are orthogonal to the work
at hand. For a more comprehensive overview of such related
work, we refer to [24].

All in all, our presented extension borrows techniques
from different well-known cryptographic file systems, but
arranges them uniquely. We are not aware of any other system
that builds key hierarchies almost consistent to a given file
system’s access rights, nor are we aware of systems allowing
on-the-fly creation of encrypted backups that allow partial
recovery by authorized users as realized by our extension.

VIII. CONCLUSION AND OUTLOOK

We have presented an extension for the encrypted file
system EncFS that adds multi-user support. For this, the
extension does not use the global volume key to encrypt data,
but it introduces randomly generated, file-specific keys and
implements an automatic key management and distribution to
authorized users. As in plain EncFS, the administrator of an
EncFS volume is the only user in possession of a volume
key that allows access to all encrypted data. In addition,
however, user-specific keys for local users can be generated.
Based on the owner/group/others access rights used by Linux
file systems, the extension ensures that users can decrypt
exactly those files using their user-specific keys that they are
allowed to read according to these access rights. Both explicit
(changed file permissions) and implicit right changes (changed
users/groups) are considered by the presented concept and its
security has been proven. We implemented it in an EncFS
developer version and verified functionality in reverse mode.

For future work, we plan to extend the concept to ACL-
based rights. The mapping of traditional rights to keys could
also be refined: Currently, users authorized for reading files
who lack read rights for their parent folders are not able to
decrypt them. A more complex key management could solve
this issue. Orthogonal efforts are required considering the
security options of EncFS. Our extension would immediately
take advantage from any fixed security issues of EncFS.

REFERENCES

[1] https://github.com/vgough/encfs.
[2] https://www.boxcryptor.com.
[3] https://veracrypt.codeplex.com/.
[4] https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt.
[5] http://duplicity.nongnu.org/.
[6] A. Tridgell and P. Mackerras, “The rsync algorithm,” Department of

Computer Science, Australian National University, Tech. Rep. TR-CS-
96-05, Jun. 1996.

[7] https://github.com/libfuse/libfuse.
[8] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification

Version 2.0,” RFC 2898 (Informational), Internet Engineering Task
Force, Sep. 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2898.
txt

[9] V. Gough, encfs(1) – Linux man page, July 2014.
[10] ——, “encfs/DESIGN.md,” https://github.com/vgough/encfs/blob/

6909139e703d9208623e840c097ba4f98a743bde/DESIGN.md, Feb
2015.

[11] T. Hornby, “EncFS Security Audit,” https://defuse.ca/audits/encfs.htm,
Tech. Rep., 2014.

[12] P. Rogaway and T. Shrimpton, “A provable-security treatment of the
key-wrap problem,” in Proc. EUROCRYPT ’06, 2006, pp. 373–390.

[13] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” RFC 2104 (Informational), IETF, 1997.

[14] https://github.com/vgough/encfs/tree/dev.
[15] V. Gough, “Encfs presentation,” Libre Software Meeting, France, Jul.

2005, https://sites.google.com/a/arg0.net/www/encfs-presentation.pdf.
[16] “inotify – monitoring filesystem events,” http://man7.org/linux/man-

pages/man7/inotify.7.html.
[17] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS:

Securing remote untrusted storage,” in Proc. NDSS, 2003.
[18] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,

“Plutus: Scalable secure file sharing on untrusted storage,” in Proc.
USENIX FAST, 2003, pp. 29–42.

[19] K. Fu, S. Kamara, and T. Kohno, “Key regression: Enabling efficient
key distribution for secure distributed storage,” in Proc. NDSS, 2006.

[20] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority filesys-
tem,” in Proc. StorageSS ’08. ACM, 2008, pp. 21–26.

[21] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer, “Cryptree:
A folder tree structure for cryptographic file systems,” in 25th IEEE
Symposium on Reliable Distributed Systems (SRDS), 2006, pp. 189–
198.

[22] J. Crampton, K. Martin, and P. Wild, “On key assignment for hierar-
chical access control,” in 19th IEEE Computer Security Foundations
Workshop (CSFW’06), 2006, pp. 98–111.

[23] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE Symposium on Security and Privacy
(SP ’07), May 2007, pp. 321–334.

[24] D. Leibenger and C. Sorge, “sec-cs: Getting the most out of
untrusted cloud storage,” 2016, arXiv preprint. [Online]. Available:
https://arxiv.org/pdf/1606.03368

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on August 04,2023 at 07:03:37 UTC from IEEE Xplore. Restrictions apply.

