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Overview. Our approach consists of four steps: (i) processing of
ground and Geoscience Laser Altimeter System (GLAS) Lidar
observations to sample forest structure and biomass over tropical
regions, (ii) developing relations between Lidar-derived Lorey’s
height and AGB and between AGB and BGB, (iii) mapping
forest biomass carbon (AGB + BGB) at 1-km spatial resolution
using satellite imagery to stratify tropical forest types and struc-
ture and modeling the spatial distribution using the maximum
entropy (MaxEnt) approach, and (iv) assessing the uncertainty in
modeling the spatial distribution by validating the results and prop-
agating the errors through the methodology to estimate the total
carbon stock and its uncertainty at project and national scales.
(i) Processing of in situ and GLAS data. In situ forest inventory data.
We assembled 4,079 plots that spanned a variety of forest types on
each continent, including old growth moist and wet tropical
forest, woodland savanna, dry forest, peat swamp forest, and
forests recovering from past disturbance or clearing. These
ground data used to train the biomass prediction model were
derived from various sources including published literature and
national forest inventories collected by the authors and their
colleagues (Table S1). Although these measurements do not
follow a uniform systematic inventory protocol (they vary in plot
size, sampling scheme, allometric equations, and number of
structural components), they have produced the largest known
dataset on forest aboveground biomass density throughout the
tropics. The plots included in this study met the following cri-
teria: (i) All biomass measurements were made after 1995 and
before 2005 so that the resulting biomass map would be repre-
sentative of forest biomass circa the year 2000. (ii) Plots had
a minimum size of 0.1 ha and the biomass densities represented
all trees >10 cm in diameter. For pixels that included multiple
plots, we used the average biomass value of all plots weighted by
the plot size. We used a minimum area of 1 ha from one plot or
a combination of smaller plots to sample the biomass density of
1-km pixels and eliminated all pixels with less plot area from
the analysis. A total of 1,877 1-km pixels from inventory plots
were used in the analysis (Fig. S1). The sampling errors were
included in the uncertainty analysis (described below) of the
forest biomass map.

ICESat GLAS Lidar data. To compensate for the lack of sys-
tematic spatial sampling of aboveground biomass from ground
measurements, we included a method for estimating biomass
from satellite Lidar measurement of forest vertical structure.
Data from the GLAS, onboard the Ice, Cloud, and land Elevation
Satellite (ICESat), acquired in 2003 and 2004 over tropical forests
were used in this study. GLAS is a waveform sampling Lidar
sensor; it emits short duration (5 ns) laser pulses toward the land
surface and records the echo of those pulses as they reflect off the
ground surface (1). When the surface is vegetated, the return
echoes, or waveforms, are a function of the vertical distribution
of vegetation and ground surfaces within the area illuminated by
the laser (the footprint). For forests on level ground, stand
height can be calculated as the difference between the elevation
of the first returned energy minus the mean elevation of the
ground return (waveform extent) (2). The vertical extent of each
waveform increases as a function of terrain slope and footprint
size (the area on the ground that is illuminated by the laser), as
modified by the spatial pattern of ground surfaces visible to the
laser. Over sloped terrain, information on the vertical extent of
the waveform is insufficient to make estimates of tree height.
Therefore, algorithms capable of retrieving information about

terrain slope, stand uniformity, and the vertical distribution of
visible ground surfaces from the waveform itself were used for
terrain slope corrections (3, 4).
To estimate forest height fromLidar waveform indexes, amodel

developed from several study areas in broadleaf stands in tem-
perate and tropical forests was used (5). The model was calibrated
with three study areas with ground estimates of height in the
Amazon basin, located in the municipalities of Santarem, Para
State; Manaus, Amazonas State; and Canarana, Mato Grosso
State, all in Brazil. These sites represented areas with a range of
dry season duration (months with <100 mm of rain). Dry season
duration was selected as an environmental variable that was likely
to summarize structural trends across the Amazon (6).
The index of height derived from field measurements and used

in the processing of the global GLAS dataset is Lorey’s height, the
basal area weighted height of all trees >10 cm in diameter,

Hlorey ¼ ∑N
i¼1BAihi

∑N
i¼1BAi

; [S1]

where BAi and hi are the basal and canopy heights of individual
trees in a plot. Basal area weighting of tree heights increases the
importance of the largest trees in a stand and represents the
height of stands with tallest trees. Indexes of total waveform
extent and the height of the 10th and 90th percentiles of wave-
form height were used with least-squares regression to estimate
Lorey’s height (5). An equation to estimate Lorey’s height for
broadleaf stands explained 83% of variance with an RMSE of 3.3
m or 17.3% of relative error (5).
We processed ∼3 million Lidar Lorey’s heights derived from

GLAS shots distributed over tropical forests (523,985 in Africa,
1,583,557 in Latin America, and 974,392 in Asia). All GLAS
heights derived for terrains with slopes >20% were deleted from
the dataset because of potential errors in Lorey’s height esti-
mates (4). The terrain slope was calculated from shuttle radar
topography mission (SRTM) data at 90 m spatial resolution
coincident with Lidar footprints.

Estimation of AGB from Lidar data. Lorey’s heights derived from
GLAS data were converted to AGB using 493 calibration plots.
The calibration plots were located under the GLAS footprints or
within the same forest stand and represented the forest structure
sampled by GLAS Lidar. Each plot had an area of at least 0.25 ha
that was equal to or larger than the effective footprint area of
GLAS (<0.5 ha) Lidar samples (5) and included tree height,
basal area, and genera-specific wood density for all trees >10 cm
in diameter at breast height (dbh). The plots covered a wide
range of forest types. In Latin America, 298 plots were distrib-
uted in terra firme forests of the Central Amazon in Manaus
(Amazonia), Santarem (Para), and Camarana (Mato Grosso);
seasonal transitional forests of Rondonia (Ji Parana); and forests
of the western Amazonia in Peru including terra firme, bamboo,
and seasonally flooded forests (Manu, Tampopata). In Africa, 75
plots covered the forest–savanna transitions of Mbam-Djerrem
(Cameroon); old growth forests in Budongo (Uganda), Cavalla
and Grebo (Liberia), Ekobakoba, Oveng, and Dousalla (Gabon);
and old growth and successional forests in Lope National Park
(Gabon). In Asia, 120 plots covered old growth, secondary, and
logged forests in Sabah (Malaysia) (Table S2).
We estimated the aboveground biomass for all individual trees

in calibration plots using pan-tropical generalized allometric
equations developed by Chave et al. (7). For woodland savanna
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plots, the dry forest equation, AGB = 0.112(ρD2h)0.916, and for
all other plots, the moist forest equation, AGB = 0.0509(ρD2h),
were used to estimate AGB (ρ is the wood density, D is dbh, and
h is the tree height). In these equations, tree heights were ac-
counted for by direct measurements with clinometers and laser
range finders for almost all trees (DBH > 10 cm), and diameter-
based estimation was used for a small fraction where no direct
height measurements were available (8).
The tree height measurements from the calibration plots were

used to develop a relationship between Lorey’s height and the
estimated AGB at the plot level. The new allometric equations
were derived separately for each continent and for the combined
dataset (Fig. 1). After evaluating the equations by cross-vali-
dating with data from each continent, we concluded that conti-
nent-based equations provided the best model to convert Lorey’s
height to forest biomass. The equations were then used to con-
vert GLAS Lidar height data to AGB for all available GLAS
footprints over tropical forests and woodlands.
Differences in equations can be attributed to several factors: (i)

The number of plots used in each continent and the sampling
strategy to capture the forest types and structure are different. In
Asia, the plots were equally distributed in old growth, secondary
forests, logged forests, and plantations. In South America plots
were mainly from old growth forests, with a small portion in
secondary and swamp forests. Plots in Africa were almost equally
divided between dense old growth forests and woodland sa-
vanna. (ii) Wood density is used in estimating the biomass of
trees for each plot. Differences in wood density of large trees in
each continent can bias the equation converting Lorey’s height
to biomass. Potentially, by including wood density, differences in
continental equations could be reduced.
Next, we used the average of at least five AGB values of Lidar

footprints in 1-km pixels to create 160,918 pixels (80,579 pixels in
Africa, 37,931 pixels in America, and 42,408 pixels in Asia). The 1-
km pixel data were subsequently divided into training data (93,188
pixels) and test data (67,730 pixels) for AGBmodeling, validation,
and uncertainty analysis. The geographical distribution of 1-km
pixels with average Lorey’s height along with available ground
data is shown in Fig. S1.

BGB estimation from AGB. We encountered virtually no con-
sistent measurements of belowground biomass in our data com-
pilation efforts. This result was not surprising, as measurement
methods for collecting belowground biomass data are laborious,
time-consuming, and technically challenging to perform correctly.
Instead, belowground biomass is usually estimated from above-
ground biomass using regression equations developed from field
data collected across multiple biomes (9). A synthesis of data
from available literature, along with elimination of data collected
using unclear or incorrect methods, provided a universal equation
for estimating forest belowground biomass. We used this equa-
tion to estimate belowground biomass from aboveground biomass
estimated for each 1-km forested pixel in our analysis,

BGB ¼ 0:489AGB0:89; [S2]

where BGB is the belowground and AGB is the aboveground
biomass in units of megagrams per hectare of dry weight. To
develop an uncertainty in the above relationship, we acquired
the data from Mokany et al. (9) and examined the variations in
the ratio of below:aboveground biomass or root:shoot biomass
ratios with respect to vegetation types used in the study. By ex-
cluding sites in forest plantations and grasslands and tundra, the
RMSE in predicting the belowground biomass was 9.46 Mg ha−1

with relative error of ∼23.2% (Fig. S2). Once belowground
biomass was calculated from aboveground biomass, we calcu-
lated the total as the sum of above- and belowground estimates
and converted the results to live tree carbon content by using
a conversion factor of 0.5. In our analysis, we have ignored all

other components of the Intergovernmental Panel on Climate
Change carbon pools such as dead wood and litter due to lack of
data and models to estimate from aboveground biomass.
(ii) Spatial modeling of AGB.There are multiple ways of extrapolating
the samples of forest biomass data to a gridded map. These in-
clude parametric approaches such as the use of regression models
with spatial environmental data and nonparametric approaches
such as interpolation, cokriging, classification or coloring by
numbers, decision rule techniques as in random forest, MaxEnt,
and several machine learning approaches (10–12). Parametric
models are not suitable for extrapolating the biomass data be-
cause there is no reasonable relationship that exists between
current satellite observations (passive optical and microwave)
and tropical forest biomass. In addition, parametric models often
violate conditions of independence and multivariate normality
when complex ecological systems and environmental variables
derived from different remote sensing measurements are in-
volved. Nonparametric models are found to be more suitable in
geospatial and geostatistic analysis because they are not affected
by these violations, can integrate variables with different statis-
tical distributions, and provide more stable and relevant in-
formation. Furthermore, forest structure and biomass often
exhibit complex, nonlinear variations, autocorrelation, and var-
iable interaction across temporal and spatial scales. In these
cases, nonparametric approaches often greatly outperform the
parametric methods (11).
Among nonparametric models, we selected MaxEnt after

comparing its performance against two other methods (random
forest and maximum-likelihood classification), using a set of
training and test datasets. In all cases, MaxEnt outperformed the
other methods in modeling the spatial distribution of biomass and
in providing significantly better accuracy compared with an in-
dependent dataset.
MaxEnt is a general-purpose algorithm that generates pre-

dictions or inferences from an incomplete set of information. The
MaxEnt approach is based on a probabilistic framework. It relies
on the assumption that an incomplete empirical probability
distribution, which is based on individual occurrences of a vari-
able’s point locality in geographical space (here, biomass sample
points from ground and GLAS Lidar), can be approximated with
a probability distribution that has maximum entropy (the Max-
Ent distribution) subject to certain environmental constraints
and that this distribution approximates potential geographic
distribution (12, 13). For our purposes, we assume the unknown
probability distribution P is defined over a finite set X (in-
terpreted as the set of pixels within the study area), with the
probability value of P(x) for each point x. These probabilities
sum to 1 over the space defined by X. The MaxEnt algorithm
uses a Bayesian approach to approximate P with a probability
distribution bP by maximizing the entropy of bP as

Entropy ¼ ∑
x∈X

bPðxÞlnhbPðxÞi; [S3]

where ln is the natural logarithm. Entropy is a nonnegative
number with the maximum value equal to the natural log of the
number of pixels in X and is a measure of constraints or choices
of a probability distribution. The distribution bP with highest
entropy (i.e., the least additional information is introduced
through model assumptions), while still subject to the constraints
of incomplete information, is considered the best distribution for
inference. By using features that are continuous real-valued
functions of X, such as remote sensing variables, and a set of
sample points (training data) of X provided by the field data and
GLAS Lidar points, the MaxEnt algorithm employs likelihood
estimation procedures to find a probability distribution for all of
the points in X that have similar statistics to the sample points.
MaxEnt assumes a priori a uniform distribution and performs
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a number of iterations in which the weights (of different fea-
tures) are adjusted to maximize the average probability of the
point localities (also known as the average sample likelihood),
expressed as the training gain (13). These weights are then used
to compute the MaxEnt distribution over the entire geographic
space. In the context of the present study, MaxEnt can be ap-
plied to geographic locations of forest plots and remote sensing
data to produce distributions expressing the suitability (proba-
bility) of each pixel as a function of the environmental variables
of that pixel. A high value of the probability function for a par-
ticular pixel indicates that the pixel is predicted to be suitable for
having similar characteristics to the training pixels (12). MaxEnt
has a number of properties that make it useful for modeling
forest biomass over landscapes (12, 13). These properties include
a deterministic framework (and hence stability), high perfor-
mance with relatively few sample points, good computing effi-
ciency (which enables the use of large-scale, high-resolution data
layers), continuous output (i.e., from least to most suitable
conditions), and the ability to model complex responses to en-
vironmental or remote sensing variables. The MaxEnt model has
a built-in jackknife option, which allows estimation of the sig-
nificance of individual data layers in the computation of the final
distributions.
The spatial modeling with MaxEnt included three steps: (i)

compiling the spatially gridded remote sensing data, (ii) im-
plementation of MaxEnt and the production of the AGB map,
and (iii) estimation of prediction uncertainty.

Compiling remote sensing data. We compiled a set of remote
sensing data and products from different earth observing sensors
to derive metrics sensitive to vegetation cover, density, season-
ality, moisture, roughness, and surface topography. The dataset
included both optical and microwave satellite sensors. All optical
data used in this study are from the moderate resolution imaging
spectroradiometer (MODIS) aboard the Terra satellite. We in-
cluded normalized difference vegetation index (NDVI) and leaf
area index (LAI) products. MODIS products were downloaded
from the Earth Resources Observation and Science Data Center
(ftp://e4ftl01.cr.usgs.gov/MOTA/) from the latest iteration of
MODIS product development (collection 5, MOD13A35) and
processed for cloud cover and pixel quality.
We used LAI to develop landscape-scale data layers related to

vegetation canopy structure and seasonality as an important
feature to stratify the forest and the NDVI data as a measure of
vegetation greenness that generally correlates well with ground
measurements of gross photosynthesis (14).
Both NDVI and LAI data were processed to develop cloud-free

monthly images for the years 2000–2001. For pixels that did not
have any values because of MODIS quality flags and cloud con-
tamination, we used the best data from the same months over the
next few years (2001–2003) to fill gaps. The monthly data were
then used to generate three LAI metrics, annual maximum, mean,
and range (difference of maximum and minimum); and five NDVI
metrics, maximum NDVI, mean NDVI, green NDVI (average of
greenest or highest NDVI quarter), brown NDVI (average of
brownest or lowest NDVI quarter), and NDVI green–brown
(difference between highest and lowest NDVI quarters) (15).
As part of the microwave remote sensing measurements, we

included global quick scatterometer (QSCAT) data available in 3-
d composites at 2.25-km resolution (16). The 3-d time series data
in the year 2000 were used to create average monthly composites
at a 1-km resolution and were then further processed to produce
four metrics that included annual mean and SD of radar back-
scatter at both HH and VV polarizations (H, horizontal send/
receive; V, vertical send/receive). QSCAT radar measurements
are at KU band (12 GHz) and are sensitive to surface or canopy
roughness, moisture, and other seasonal attributes, such as phe-
nological changes, although the relationship between QSCAT
and specific forest variables is yet to be explored. For areas with

low vegetation biomass, such as woodlands and savanna, meas-
urements at different polarizations correlate positively with the
aboveground biomass. For areas with dense forest, backscatter
measurements are sensitive to canopy roughness and moisture
and contribute to measuring differences in forest types and
canopy structure. In this study, we used the long-term mean and
SD of QSCAT HH backscatter data and excluded the VV back-
scatter data because of its high correlation with the HH back-
scatter over tropical forests (16). In addition two seasonality
metrics of average HH backscatter from dry and wet quarters
were added to the list of input variables.
We added the SRTM digital elevation data, aggregated from

∼90-m resolution to 1 km, in the pool of spatial data layers. In
addition to the mean elevation, the SD of surface elevation was
calculated during pixel aggregation from 90-m to 1-km resolu-
tion and was also included as a metric to represent landforms or
geological features with different ruggedness or topographical
variability (17, 18). We used the SRTM layers along with the rest
of the remote sensing data to model the distribution of forest
ecological variables. We also included the MODIS-derived
vegetation continuous field (VCF) product as a measure of the
percentage of tree canopy cover within each 1-km pixel resolu-
tion (19). The VCF product was not used in spatial modeling of
AGB, but used later to estimate total carbon stock for forests
above 10%, 25%, and 30% tree cover.

MaxEnt implementation. We ran the MaxEnt model using the
locations of inventory plots andGLAS Lidar points over forests of
all three tropical regions, using 14 remote sensing image layers (5
NDVI, 3 LAI, 4 QSCAT, and 2 SRTMmetrics). The total number
of biomass pixels from inventory plots was 1,877 and that from
GLAS Lidar points was 160,918. Although, the number of in-
ventory plots was much smaller than that of GLAS Lidar points, it
provided biomass samples with less uncertainty and in regions
where there were no GLAS Lidar tracks. From the combined
dataset, we randomly selected 93,188 points to train the model
and used the rest as an independent dataset to examine the
accuracy of the resulting map. Aboveground biomass density from
the training data were divided into 11 biomass classes in 25 Mg
ha−1 intervals for biomass ranging from 0 to 100 Mg ha−1 and 50
Mg ha−1 intervals for biomass >100 Mg ha−1. Biomass classes
were used partially to capture the errors associated with the
GLAS-derived biomass values and partially because MaxEnt
does not run with continuous data (13). However, biomass
ranges for each class can be easily modified as long as there are
enough samples (>100 locations) within each class bin. We ran
MaxEnt for different biomass ranges to examine the impact on
the final AGB map and we found the selected biomass ranges
suitable for creating the optimum map. For each interval (bio-
mass class), we performed a MaxEnt model run and generated
11 continuous probability distribution maps ranging from 0 to
100, with 0 as the least suitable pixel for the biomass class and
100 as the most suitable. The continuous probability maps were
then combined and converted into a single biomass map by
choosing the biomass value associated with the maximum
probability weighted mean for each pixel, using the relationship

bB ¼ ∑N
i¼1 pni Bi

∑N
i¼1 P

n
i

; [S4]

where Pi is the MaxEnt probability estimated for each biomass
range class Bi (median value of the range), and bB is the predicted
value of AGB for each pixel. The power of the probability n is
chosen to weight the predicted value toward the maximum
probability that is close to the true value when other class
probabilities are small. After several iterations and cross-validation
with the test data, we found that for n = 3 the distribution of
AGB and the cross-validation converged to its optimum value.
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This process also preserved the skewness in distributions for each
pixel, which by definition is the third standard moment (n= 3) of
the random variable (biomass) defined by the probability dis-
tributions at each pixel. Values >n = 3 did not change the es-
timated biomass at the pixel scale (<0.001% of pixels changed
values in each continent). The estimator in Eq. S4 performed
superior to other options such as the use of maximum probability
class or the average (n = 1). In both cases, errors associated with
the estimated biomass were large. In the case of average value
(n = 1), areas of low and high biomass values were forced to the
mean biomass of the distribution over the region. On the other
hand, the choice of maximum probability class ignored the
probability of other classes for the same pixel. We could not use
any other simple and efficient estimator such as the maximum
likelihood because at any pixel the estimated probabilities of the
biomass did not have a normal distribution. For example, for
a pixel with a biomass class range of 200–250 Mg ha−1, MaxEnt
predicts high probability for the correct biomass range, suggest-
ing a skewed and nonnormal distribution of probabilities. In
general, AGB of a cluster of pixels at the landscape scale may
have normal distribution. However, the predicting probability of
biomass at each pixel from the MaxEnt model will not be normal.
To include upper and lower bounds to the biomass estimation,

we also created biomass maps using the maximum and minimum
values of each biomass class range instead of the median value.
These maps are used to estimate the upper and lower bounds for
national- and regional-level carbon stocks assessments.

Estimation of prediction uncertainty. The use of nonparametric
models to develop AGB distributions is often subject to pre-
diction errors. Unlike parametric models such as regression
techniques where uncertainty can be readily quantified from the
sensitivity of the measurement variables to predicting parameters,
in nonparametric models, the prediction errors are potentially
large and have complex spatial distributions.
We examined the MaxEnt model performance using two

indicators: (i) the fraction of predicted area and extrinsic omission
rate at a selected threshold and (ii) the area under the receiver
operator curve (AUC) as a measure of model performance across
all thresholds (12, 13). For all model runs, AUC values ranged
between 0.86 and 0.98, suggesting that the predictions were sig-
nificantly better than random (AUC = 0.5), with high statistical
significance (one-tailed P < 0.001). This result was obtained by
bootstrapping 25% of the training data (93,188 points) ∼1,000
times, suggesting a robust performance of the MaxEnt algorithm
to capture the variations in environmental variables to predict the
probability distributions of biomass range classes.
To examine the presence of other potential errors such as the

effect of the number of training pixels on MaxEnt performance,
we developed several simulation runs by varying the number of
training pixels. MaxEnt performance was optimal when a mini-
mum of 100 training pixels were used for each biomass range run.
This requirement was readily met when hundreds to several
thousands of pixels were used in each biomass range.

Significance of remote sensing variables.The contribution of 14
remote sensing variables in modeling the distribution of AGBwas
evaluated by the jackknife test on all input variables and they were
grouped and reported separately by geographic region in four
AGB ranges (Fig. S3). We selected these biomass ranges on the
basis of the sensitivity of the remote sensing data to detecting the
spatial variations of AGB (13). The jackknife test was performed
for all model runs and the significance of layers was reported in
terms of percentage of explaining the total variability of each
AGB range. We grouped 14 remote sensing variables in four
types of observations or features that related to vegetation
greenness and seasonality (5 NDVI metrics), leaf area index (3
LAI metrics), canopy roughness and water content and its sea-
sonality (4 QSCAT metrics), and surface elevation and slope
variations (2 SRTM metrics).

SRTM data contributed less than other variables in modeling
AGB, with the highest contribution in Asia due to extensive
topographic features in southeast islands of Indonesia and Papua
New Guinea and in highlands of Nepal, Bhutan, and eastern
China. Among other variables, the NDVI metrics had the largest
contribution in low biomass density forests (<100 Mg ha−1), the
LAI metrics were important in midrange biomass density (100–
200 and 200–300 Mg ha−1), and the QSCAT metrics were im-
portant in all biomass ranges >100 Mg ha−1 with the largest
contribution in modeling the high-density biomass forests. These
contributions cannot be explained in terms of physical relation-
ships between the remote sensing variables and the aboveground
biomass density, yet they represent the relative significance of
the remote sensing variables and their spatial and temporal
characteristics to stratify the tropical landscapes in features that
allow extrapolating the forest biomass density.
(iii) Uncertainty analysis.We calculated the overall uncertainty in the
final benchmark map by quantifying the errors associated with the
distribution of AGB and the estimation of BGB from AGB at the
pixel and national or regional scales. We assumed no errors
associated with converting the total biomass to carbon using
a 50% conversion factor or with the original allometric equations
that converted the ground forest structure to biomass. The total
uncertainty of AGB at the pixel level is divided into four in-
dependent terms and all terms are reported in terms of per-
centage of relative uncertainty:

Measurement error (εmeasurement) is associated with the estima-
tion of Lorey’s height from GLAS Lidar data. For broadleaf
forests, the RMSE has been estimated to be 3.3 m with the
relative error of ∼13.7% over the entire height range (20).
Allometric error (εallometric) refers to errors in estimating AGB
from Lorey’s height and was estimated from the relations de-
veloped from calibration plots. Regional allometric equations
(Fig. 1) provided uncertainty in AGB estimation of 15.8% in
Latin America, 21.7% in Africa, and 25.1% in Asia. The allo-
metric errors are estimated for small areas representing the
effective footprint of GLAS Lidar samples (0.25–0.5 ha).
Sampling error (εsampling) has two components: (i) the error
associated with the representativeness of ground sampling
plots and GLAS Lidar shots of the true distribution of the
AGB in each region and (ii) the error associated with the
AGB of a 1-km pixel due to the spatial variability of forest
structure and biomass in a 1-km grid cell. The first component
has been accounted for while quantifying the prediction error
associated with the MaxEnt modeling of AGB. To quantify the
second error, we require forest structure and biomass data
over 1-km2 (100 ha) plot sizes. In the absence of reliable data
to quantify the sampling errors, we approximated the errors
using published data for 50 ha of forest on Barro Colorado
Island, Panama as a representative example of undisturbed
tropical forest (21). Using a sampling unit of 0.25 ha (i.e.,
the area of one GLAS Lidar footprint), the AGB is approxi-
mately normally distributed around its mean (6). The variation
of AGB within the 50-ha plot is high and has the mean SD of
128 Mg ha−1 and a 95% confidence interval of 20.1 Mg ha−1.
Using the sampling size equation for 95% confidence interval,
Chave et al. (6) found the number of 0.25-ha or 0.5-ha plots
required to estimate the biomass of a 50-ha plot with ±10%
uncertainty varies between 16 (at 0.5 ha) and 26 (at 0.25 ha).
By assuming the biomass of a 1-km pixel (100-ha) plot has the
same variations as that of the 50-ha plot, and by using a min-
imum of five samples (GLAS Lidar shots), the uncertainty of
AGB estimation with 95% confidence will increase and
be bounded between 17.8% ð10× ffiffiffiffiffiffiffiffiffiffi

16=5
p Þ and 22.8%

ð10× ffiffiffiffiffiffiffiffiffiffi
26=5

p Þ: By examining the spatial variability of AGB in
smaller plots (5–10 ha) available in Rondonia Brazil, Peru,
Lope National Park in Gabon, and Sabah in Indonesia, we
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were able to verify that variability did not exceed ±20%. A
similar study by Chave et al. (22) in French Guiana using data
from an 80-ha plot concluded that estimating the biomass of
the entire plot with only a 1-ha plot will yield a typical error of
±20% due to spatial variability and sampling errors for cap-
turing large trees.
Prediction error (εprediction) was calculated from prediction
probabilities of the MaxEnt model. We used two approaches
to quantify the prediction uncertainty. To estimate the average
error or uncertainty, we used the 67,730 pixels with AGB
values representing the mean AGB of a 1-km pixel. These
estimates provided an average relative error in percentage of
the mean AGB for pixels not used in training the spatial
model (Fig. S4). To estimate the spatial uncertainty that re-
sulted from the MaxEnt model, we used the predicted proba-
bility for each biomass range to calculate the root mean
squared error,

σbB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1

�
Bi − bB�2Pi

∑N
i¼1Pi

vuut ;
[S5]

with the relative uncertainty for each pixel given by:
εprediction ¼ σbB   =  bB× 100: This relation is used for the entire
AGB map, using the values of MaxEnt probabilities Pi for
each biomass range class Bi and the predicted biomass valuebB: The prediction uncertainty includes both the sampling
error associated with the representativeness of the training
data of the actual spatial distribution of AGB and the model
predictions.

Finally, we propagated the errors through the entire process by
assuming all errors were independent and random and quantified
the uncertainty in estimating AGB ðεAGBÞ using

εAGB ¼
�
ε2measurement þ ε2allometry þ ε2sampling þ ε2prediction

�1=2
; [S6]

where all errors terms are the relative errors associated with the
AGB at a pixel (23). The error propagation equation assumes
that the errors are uncorrelated and on the average the covariant
terms are neglected. To demonstrate the propagation of errors
in modeling AGB of a 1-km pixel in Latin America, we use the
measurement error of Lorey’s height at 13.7% and calculate the
relative error in AGB by multiplying the height relative error by
1.9701 using the equation given in Fig. 1B to arrive at 26.9%,
allometric error of 15.7% to convert the Lorey’s height to AGB,
a maximum sampling error of 22.8%, and assuming a maximum
prediction error of 21% at the pixel level, to arrive at the max-
imum relative error of AGB of 43.9%.
The uncertainty in total biomass carbon is calculated by

combining the errors in AGB and BGB. The error in BGB
is estimated from both the error in the prediction of BGB from
AGB through the allometric Eq. S2 (23.2%) (9) and the error in
AGB,

εBGB ¼
h
ð23:2Þ2þð0:89εAGBÞ2

i1=2
; [S7]

where εBGB is the relative uncertainty in BGB. The coefficient,
0.89 is the power of AGB in the allometric relationship used in
Eq. S2 (9, 23). To estimate the uncertainty in total carbon at the
pixel level, we use a similar equation to Eq. S6 to propagate the
errors in estimating εBC, the relative uncertainty associated with
the total biomass carbon (BC) defined by BC(Mg C ha−1) =
(AGB + BGB)/2.

Uncertainty at the national scale. Uncertainty at the national
or regional scale is estimated by increasing the sample area
and propagating the errors from pixel scale to the national
or regional scale. We calculate the national- or regional-
level SE (Mg C ha−1) by summing the errors from all pixels
using

σnational ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
ðBCiεBCiÞ2

s
; [S8]

where N is the number of pixels within the national boundary,
and BCi and εBCi are the total carbon and its relative uncertainty
associated with pixel i, respectively. Although the SE is large at
the national scale, the relative error declines rapidly as N in-
creases according to

εnational ¼ σnational
∑N

i¼1BCi
: [S9]

The national-scale uncertainty analysis was also performed for
variable size (N × N) windows over the carbon map to examine
the reduction of relative uncertainty as sampling size increases.
We found the relative uncertainty stayed bounded below ±5%
for n = 10 (10,000 ha) and below ±1% for n = 100 (1,000,000
ha) over the entire carbon map.

Uncertainty from forest spatial and temporal dynamics. The
benchmark map represents the state of the carbon stock in forests
for the year circa 2000. The coarse spatial resolution and the
temporal changes in forest cover at the subpixel level due to
deforestation dynamics may introduce uncertainty in carbon
estimates. As the spatial unit of the map is 1 km, the spatial model
underestimates the carbon density of the remaining forest for
a pixel with subpixel forest cover.
In addition, satellite image data used to develop the spatial

distribution of forest biomass are primarily from the period of
2000–2001 with >83% of pixels from the year 2000, ∼16% from
the year 2001, and a small fraction of pixels (<1%) extracted
from subsequent years (2002–2003), which are largely over areas
where forest cover has not changed for the period (25). How-
ever, the use of multitemporal imagery for modeling carbon
distribution will introduce an uncertainty in carbon stocks of
pixels that changed between 2000 and 2001. Both uncertainties
from coarse spatial resolution and temporal imagery have almost
no impact on evaluating the carbon stock at national or regional
scales. However, they may introduce errors when estimating
emissions from small-scale (<1 km) deforestation or degrada-
tion. These errors can be corrected by developing an area-cor-
rection factor for carbon density of pixels with subpixel forest
cover change.

Comparison with published results. The comparison of the
benchmarkmap with an earlier result over theAmazon Basin (ref.
14) was performed at three steps: (i) The earlier map was pro-
duced in biomass class range. The map was converted to con-
tinuous biomass numbers by choosing the median value of each
biomass class at the pixel level and assigning zero values for bare
and grass savanna classes. (ii) The difference between the two
maps over the Amazon basin was calculated and values outside
the uncertainty range of the benchmark map were colored for
negative and positive differences. (iii) The maps were visually
compared with the vegetation map of the Rio Negro basin
of central Amazonia (25) where significant differences were
observed over areas of swamp and white sand vegetation
(Fig. S5). Lorey’s height inferred from GLAS data over these
forests is significantly lower than that over other terra firme
forests in Amazonia because of their low stature and biomass
density (26).
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Fig. S1. Distribution of the location and magnitude of aboveground biomass values collected from in situ measurements and derived from GLAS Lidar data
over tropical forests across three continents. (A) Geographical distribution of training and test data used in AGB spatial modeling with red dots representing
the 1-km pixels associated with 4,079 in situ field plots and gray dots showing 160,918 pixels with AGB values derived from Lidar data across orbital tracks. (B)
Distribution of AGB values from in situ data representing an uneven and unsystematic sampling of forest biomass across three continents. (C) Distribution of
AGB values from GLAS Lidar data showing a widespread and representative sampling of AGB of forest types across three continents.
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Fig. S2. Predicted versus measured BGB using an allometric equation and data from 189 field plots from Mokany et al. (9). The solid line shows the 1:1
relationship and the RMSE and the relative errors are calculated at 95% confidence interval from bootstrapping cross-validation. The data were obtained from
Mokany et al. (9).

Fig. S3. Relative contribution of remote sensing variables in modeling the spatial variability of AGB. The contributions are calculated using jackknife analysis
and shown for four categories of remote sensing observations and derived variables for (A) Latin America, (B) Africa, and (C) Asia. The remote sensing variables
included in the analysis are five MODIS NDVI, three MODIS LAI, four QSCAT, and two SRTM derived metrics.
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Fig. S4. (A–C) Assessment of the uncertainty of the spatial distribution of AGB from an independent validation data set of 67,730 points from a mixture of
ground and GLAS Lidar estimated AGB. The uncertainty of the benchmark biomass map varied across AGB range and geographical regions, resulting an
average uncertainty of ∼30% across three continents (27.3% in Latin America, 31.8% in Africa, and 33.4% in Asia).

Fig. S5. Comparison of the benchmark map with the Amazon Basin biomass map (ref. 14: main text). (A) difference in AGB (Mg ha−1) of benchmark and the
earlier Amazon basin outside the uncertainty levels. (B) AGB difference in higher resolution selected over the Rio Negro Basin in central Amazonia. (C) Rio
Negro vegetation types selected from the classification map of the Brazilian Amazon (25).

Table S1. List of ground biomass plot data used in this study with their general location, number of plots, plot size, vegetation types, and
references or plot ownerships

Table S1 (DOC)

Table S2. List of calibration plots and their general locations used in developing height biomass allometry

Table S2 (DOCX)

The national-level estimates for each tree cover threshold are provided for low, mean, and high values by integrating the potential systematic errors
associated with pixel (1-km)-level biomass carbon estimates. Estimates for 75 developing countries in tropical regions across three continents are shown. For
Caribbean islands, we report total biomass carbon estimates.

Table S3. National level forest area and biomass carbon estimates at three tree cover thresholds of (a) 10%, (b) 25%, and (c) 30%

Table S3 (DOC)

The national level estimates for each tree cover threshold are provided for low, mean, and high values by integrating the potential systematic errors
associated with pixel (1-km) level biomass carbon estimates. The table includes estimates for 75 developing countries in tropical regions across three continents.
For Caribbean islands, we report total biomass carbon estimates.
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