
Mojaloop Versioning
PI 10 - April 2010

1

Lewis Daly, Matt de Haast, Samuel Kummary

Agenda
1. Goal and Background

2. Versioning Proposal

3. Versioning Support + Implementation Proposal

4. Next Steps

2

Goal
Propose a standard for a new 'Mojaloop Version', which
embodies:

1. API Versions
1.1. FSPIOP API
1.2. Hub Operations / Admin API
1.3. Settlement API

2. Helm: Individual Service Versions, Monitoring Component Versions
3. Internal Schema Versions: Database Schema & Internal Messaging

Data Model

3

Motivation

Need for versioning

1. Settlement v2

2. Cross currency / network

3. PISP related changes

4. Other Updates, features, enhancements

5. Newer releases of the APIs – FSPIOP, Settlement, Operations / Admin

4

“Mojaloop Version”
- Format: x.y.z: MAJOR.MINOR.HOTFIX

(HOTFIX: for internal use only, not broadcasted publicly)

Read the full proposal here.

Proposal

Mojaloop x.y

Owner Maintainer Format Meaning

APIs

- FSPIOP CCB x.y Major.Minor

- Settlement CCB x.y Major.Minor

- Admin/Operations CCB x.y Major.Minor

Helm Design Authority x.y.z PI.Sprint.Iteration

Internal Schemas

- DB Schema Design Authority x.y Major.Minor

- Internal Messaging Design Authority x.y Major.Minor

5

https://github.com/mojaloop/documentation/pull/182

Example: Mojaloop v1.0
Mojaloop 1.0

Owner/Maintainer Version

APIs

- FSPIOP CCB 1.0

- Settlement CCB 1.1

- Admin/Operations CCB 1.0

Helm Design Authority 9.2.0

Internal Schemas

- DB Schema Design Authority 1.0

- Internal Messaging Design Authority 1.0

6

Advantages

1. Simplicity
a. A given version say - Mojaloop v1.0 refers to three APIs, along with the Helm version that is

a bundle of the individual services which are compatible with each other and can be
deployed together.

b. Schema versions for the DB and Internal messaging to communicate whether any changes
have been made to these or not since the previously released version.

2. One size fits all:
a. It caters for everyone who may be interested in differing levels of details, whether high

level or detailed.
b. Because of the nature of the major and minor versions, it should be easy for users and

adopters and developers to understand compatibility issues

7

Compatibility
As described in section 3.3 of the API Definition v1.0, whether or not a version is backwards
compatible is indicated by the Major version. All versions with the same major version must be
compatible while those having different major versions, will most likely not be compatible.

Given 3 Participants:

8

Participant Supported Versions
DFSP A 1.0, 1.1

DFSP B 1.1, 2.0

DFSP C 2.0

https://github.com/mojaloop/mojaloop-specification/blob/master/documents/API%20Definition%20v1.0.md#33-api-versioning

Compatibility

9

Participant Supported Versions
DFSP A 1.0
DFSP B 1.1, 2.0
DFSP C 2.0

A@v1.0 <---> B@v1.1: OK - MINOR versions are compatible
B@v2.0 <---> C@v2.0: OK - MAJOR versions match

A@v1.0 <---> B@v2.0: NOT OK - MAJOR versions are incompatible
A@v1.0 <---> C@v2.0: NOT OK - MAJOR versions are incompatible
B@v1.1 <---> C@v2.0: NOT OK - MAJOR versions are incompatible

API Versioning* [ML FSPIOP API]

1. Major minor versions – Minor version change guideline

a. Optional input parameters such as query strings added in a request

b. Optional parameters added in a request or a callback

c. Error codes added

2. Major version change guideline

a. Mandatory parameters removed or added to a request or callback

b. Optional parameters changed to mandatory in a request or callback

c. Parameters renamed

d. Data types changed

e. Business logic of API resource or connected services changed

f. API resource/service URIs changed

10

Client Side Negotiation [ref: api spec section 3.3.4]

1. Client specifies in the `Accept` Header:
POST /service HTTP/1.1
Accept: application/vnd.interoperability.{resource}+json;version=1,
application/vnd.interoperability.{resource}+json

{
 ...
}

2. Server responds with an acceptable version
Content-Type: application/vnd.interoperability.{resource}+json;version=1.0
{
 ...
}

Or an error callback
{
 "errorInformation":{

"errorCode": "3001",
"errorDescription": "The Client requested an unsupported version, see extension list for supported version(s).",
"extensionList": [{ "key": "1", "value": "0" }, { "key": "2", "value": "1" }, { "key": "4", "value": "2" }
]

 }
 }

11

https://github.com/mojaloop/mojaloop-specification/blob/master/documents/API%20Definition%20v1.0.md#listing-3

Implementation - Considerations
1. Standardize branching, tagging mechanism on GitHub

2. Version negotiation - to be added

3. Handling major, minor versions in the implementation – Guidelines for schemes

4. Supported versions in implementation - latest versions

a. Scheme Choices

b. Guidance for Schemes

5. Timelines for support

12

A Breaking Change
Let's take an arbitrary breaking change to the Mojaloop Specification, and list through a number
of strategies we can use to deal with such a change.

For example, a current proposal is to include the quoteId in the POST /transfers request from
DFSPA to the Switch:

13

POST /transfers HTTP/1.1
Accept: application/vnd.interoperability.transfers+json;version=2
Date: Tue, 15 Nov 2020 08:12:31 GMT
... other headers...
Body:
{
 "transferId": "1234",
 "quoteId": "9876", <--- This is a new required field
 "payeeFsp": "dfspb",
 "payerFsp": "dfspa",
 "amount": "100.00",
 "ilpPacket": "XXXXX",
 "condition": "XXXXX",
 "expiration": "2020-05-24T08:38:08.699-04:00"
}

Implementation - Approaches
1. “Stop the World”

2. “Worry About it in the Infrastructure”
(Run multiple versions of the same service internally)

3. “Worry About it in the Code”
(The latest version of each service is always backwards compatible)

Let’s work through all the examples first, then we can have an open discussion.

14

15

Simplified POST /transfers

1. Stop the World
Simply take down the entire deployment, run any schema migrations, and start it up again

This is what we have (by default) today.

Steps:
1. At the API Gateway level, stop any incoming quote requests, and wait until the pending transfers are complete or

timed out. This is essentially draining the messages inside of the kafka streams

2. Once again at the API Gateway, kill all traffic to the switch

3. Assuming database persistence, run helm upgrade to update the helm charts from v11.0.0 to v12.0.0

4. Behind the scenes, when the new helm containers start up, the database migrations will be run

5. Once all services are healthy, re-enable all traffic and we are good to go.

○ Note that since we did nothing around supporting multiple FSPIOP API versions, by default the upgraded switch
will only support POST /transfers requests at version 2.

16

17

1. Use kubernetes and helm to help us manage and run multiple 'internal' versions of our
microservices simultaneously.

2. Partition kafka based on message versions to ensure the right services pick up the right
messages.

Given the following

● central-ledger:v11.0.0, which can understand POST /transfer requests of v1.1, without
the additional quoteId field.

● central-ledger:v12.0.0, which can understand POST /transfer requests of v2.0, with the
additional quoteId field.

Inside of a single helm deployment, we can run both 2 versions of central-ledger, v11.0.0 and
v12.0.0 at the same time.

Assuming some routing magic that can send the right version of requests to the right service, this
gives us the ability to understand POST /transfer requests of both versions. 18

2. Worry about it in the Infrastructure

19

20

Steps:

1. Author a new Helm version v12.0.0, which:
○ spins up a new database alongside the existing database, instead of replacing it [or multiple database views?]
○ adds new services (e.g. central-ledger:v12.0.0), instead of replacing them

2. While still not allowing v2 requests at the API Gateway, helm upgrade to spin up new infrastructure alongside the
existing infrastructure

3. Execute database schema migration and views/table sync etc.
4. Once all services are healthy, open up traffic to v2.0, and we are good to go

Other Thoughts:

● This method supports multiple API versions at the same time, but
○ Requires a lot of infrastructure heavy lifting for such a small change. (What about the next change? Do we need

to run another copy of almost all the services?)
○ Does not allow DFSPs at different MAJOR versions to interoperate (which it may not need to).
○ It could impact Kafka performance by partitioning topics per message version

21

2. Worry about it in the Infrastructure

- In this approach (as the title implies), worry about such changes in the code.
- Don't rely upon helm and kubernetes to run multiple versions of a given service at the same time
- Our services always talk the latest API, and in order to talk the older versions of the API, we adapt messages forwards

and backwards.

The advantage with this approach is that we can always run and maintain the latest version of our services, and
minimize the need to touch legacy code.

Once again, let's take a look at our simplified transfer request flow:

22

3. Worry about it in the Code

23

24

For this approach, we define a new service called compat-adapter, which is responsible for upgrading incoming
messages and downgrading outgoing messages to the correct API versions.

By default, once we deploy helm v12.0.0, the mojaloop switch talks transfers v2.0. In order to understand and
responds to transfers v1.1 messages, the compat-adapter does the work in upgrading the incoming messages, and
downgrading the outgoing messages to the relevant API versions.

25

3. Worry about it in the Code

For this approach, we define a new service called compat-adapter, which is responsible for upgrading incoming
messages and downgrading outgoing messages to the correct API versions.

By default, once we deploy helm v12.0.0, the mojaloop switch talks transfers v2.0. In order to understand and
responds to transfers v1.1 messages, the compat-adapter does the work in upgrading the incoming messages, and
downgrading the outgoing messages to the relevant API versions.

26

3. Worry about it in the Code

27

28

Steps

1. Author a new Helm v11.1.0, which:
○ Applies any necessary database and message schema changes for upcoming version v12.0.0

2. Deploy Helm v11.1.0 with helm upgrade. Database migrations will be applied live
3. Update internal services to be able to handle the new transfer.quoteId, as an optional field, and implement

business logic for handling cases without it
4. Bundle these internal service changes in Helm v11.2.0
5. Deploy Helm v11.2.0 with helm upgrade. Internal services will now be able to handle the transfer.quoteId field, but

since all messages are still v1.1, nothing has changed.
6. Build/update compat-adapter service to handle upgrading and downgrading requests and responses to and from

v1.1 and v2.0
7. Bundle the compat-adapter in with Helm v12.0.0
8. Deploy helm v12.0.0, which will start the compat-adapter service
9. Once all services are healthy, open up traffic to v2.0 requests at the API Gateway, and we are good to go

29

3. Worry about it in the Code

Caveats

1. There are no longer any guarantees about the internal messaging and schema for the `transfers.quoteId` field.
○ This means our internal services need to more heavy lifting to handle this, and we need to make some decisions

about what to do to handle null values for `quoteId`

30

3. Worry about it in the Code

Next Steps
- Further discussion about upgrade strategies

- Workshop? Extended discussion with interested OSS Members?

- Proof of concept for zero-downtime-deployments
- Choose one of the approaches, and implement a narrowly scoped POC
- End-to-end tests to prove:

- zero-downtime
- support of multi-dfsps at different versions

- Feedback any process changes that need to become a core part of the Mojaloop dev cycle

31

