
DRAFT

1

TECHNICAL NOTE MRL-00xx2

Evaluating and developing Monero security in a post-quantum world3

Adam Corbo, Mitchell Krawiec-Thayer (@isthmus)∗, Brandon G Goodell†4

Insight, Monero Research Lab5

Aug 20206

Abstract7

This technical note renders a thorough analysis of Monero’s extant weaknesses before a theoretical quantum8

adversary. Extrapolating from its survey of weaknesses, the discussion herein extends into technical descriptions of9

plausible solutions, with a focus on their respective practical and theoretical trade-offs. Revisit this when nearing10

completion11

1 Introduction12

1.1 Prerequisites and preliminaries13

We denote concatenation of strings with ||. For a finite unordered set X with |X| = n, note that we can arbitrarily14

label entries in X and presume X = [n] = {1, 2, . . . , n} without losing any generality.15

A classical bit is a binary digit that takes on one of two values to indicate a logical value. By convention, these16

are 0 and 1. Qubits, on the other hand, represent a spectrum of logical values that reduces to a classical bit whenever17

the qubit interacts with the environment. Indeed, to measure the state of a qubit is equivalent to collapsing it into18

a classical state. Before measurement, a qubit remains in a superposition of the values 0 and 1. States of qubits are19

elements of C2; we denote orthonormal basis vectors |1〉 and |0〉. The superposition |ψ〉 of a qubit is represented as20

a linear combination of these basis vectors |ψ〉 = a0 |0〉+ a1 |1〉 where a0 ∈ C is the complex scalar amplitude of the21

state along the direction of |0〉 in C2, and a1 is the amplitude along |1〉 in C2.22

Amplitudes may be thought of as “quantum probabilities:” the amplitude along an orthonormal basis vector is23

related to the probability that the collapsed state corresponds to that vector. That is to say, the amplitude along24

|0〉 is related to the probability that the collapsed state is 0, and the amplitude along |1〉 is related to the probability25

that the collapsed state is 1. We must take care, however. Amplitudes are represented by complex numbers, while26

traditional probabilities are described by real numbers. Just as the probabilities of a classical system must integrate27

to 1 under some probability measure µ in order to form a distribution function, the squared magnitudes of state28

amplitudes in a quantum system must satisfy
∫
|a0|2 + |a1|2 dµ = 1.29

Whereas a classical adversary, which we abbreviate with CA, uses computers that operate only with bits, a30

theoretical quantum adversary (abbreviated QA) has a computer that operates with qubits. The CA adversary can31

only be expected to complete algorithms using probabilistic Turing machines in polynomial time (PPT algorithms)32

whereas the QA adversary can solve bounded error, quantum, polynomial (BQP) time algorithms. The algorithms33

from Sections 1.2.1, 1.3, and 1.4 are BQP algorithms and require qubits to execute efficiently, these algorithms when34

run with qubits solve certain problems exponentially faster than any CA.35

We say two transactions are unlinkable if it is difficult for a non-recipient to discern whether the two transactions36

have the same recipient or not. We say transactions are signer-ambiguous if it is difficult for a non-sender to discern37

the sender of the transaction. We say transactions are confidential if it is difficult for a non-sender, non-recipient to38

discern the transaction amounts.39

∗Isthmus@getmonero.org
†surae@getmonero.org

1

DRAFT

1.2 The Quantum Adversary’s Capabilities40

1.2.1 Violate Discrete Logarithm Hardness with Shor’s Algorithm41

For a finite abelian group G, a subgroup H ⊆ G, a finite set X, and a function f : G → X, we say f hides H if,42

for any g1, g2 ∈ G, f(g1) = f(g2) if and only if g1H = g2H ∈ G/H. For example, setting X as the quotient group43

X = G/H, we see that the canonical group epimorphism f : G → G/H hides H. We can always answer oracle44

queries made to f with O(log |G|+ log |X|) bits. Before Shor’s algorithm, it was thought that the following hardness45

assumption was valid.46

Assumption 1.1 (Hidden Subgroup Problem). There does not exist an algorithm A with oracle access to f that47

can output a generating set for H in polynomial time.48

Shor’s algorithm for discrete logarithms is a BQP algorithm capable of solving the hidden subgroup problem,49

violating Assumption 1.1. It is still thought that Assumption 1.1 is valid when restricted to PPT algorithms, such50

that there does not exist a PPT algorithm that violates Assumption 1.1.51

Indeed, if G′ = 〈g〉 is any group of order p, we can compute the discrete logarithm of an ostensibly random X = gx52

using G = Z2
p−1, H = 〈(X, g−1)〉, and the function f : G→ Z∗p defined by mapping (a, b) 7→ gaXb. This f is a group53

homomorphism whose kernel is H; finding H is equivalent to computing the discrete logarithm for the generator54

X = gx. A more in-depth technical outline for running Shor’s algorithm for breaking the discrete logarithm hardness55

assumption is outlined in Section A.1. For more details, see [10] and [6].56

1.3 Utilize Grover’s Algorithm to Find Pre-Images of Hash Functions and Unstruc-57

tured Search Capabilities58

1.3.1 Grover’s Algorithm59

Grover’s algorithm can be applied to compute hash digest pre-images: this algorithm finds unordered database entries60

that satisfy search criteria in O(
√
n) time, where n is the database size. See [4] for details, since we do not specify the61

algorithm here. It is shown in [1] that Grover’s algorithm is asymptotically optimal even for quantum adversaries.62

Let f : [n] → {0, 1} be a function which describes whether an index matches the search criteria and to which63

Grover’s algorithm has oracle access. For any non-negative function f : [n] → Z+ such that
∑
x∈[n] f(x) > 0, note64

that non-negativity implies there must exist some w ∈ [n] such that f(w) > 0. Moreover, the codomain of f is {0, 1}65

so f(w) = 1.66

Grover’s algorithm makes approximately O(
√
n) queries to f via oracle access and outputs a solution w such that67

f(w) = 1. Given a hash function H, we can define f(x) to be 1 when H(x) = y and 0 otherwise and use Grover’s68

algorithm to find hash digest pre-images that fit the necessary parameters.69

In many cases, the universe of possible pre-images is stored on the blockchain in public, and so applying Grover’s70

algorithm in these cases in O(
√
N) time can be quite fast. Grover’s can still be applied to find arbitrary pre-images71

that have not yet necessarily been posted publicly, but the search space is significantly larger. In these cases, O(
√
N)72

is often still a prohibitive hurdle.73

For a technical description of Grover’s algorithm, see Section A.2.74

1.3.2 Difficulty of Finding the Pre-Image of Hash Digests75

Some aspects of security rely on the fact that finding the pre-image of a hash digest is difficult. For a QA, as stated76

in the last subsection, employing Grover’s algorithm, it is possible to find a marked value in an un-ordered set of77

data in approximately the square root of the number of possible entries to look through. One possible mitigation for78

this is to double the key lengths used in the hash function, which makes this more difficult to accomplish.79

To brute force a 256 bit collision resistant hash digest, essentially trying every possible input pre-image to a hash80

function until the known hash digest gets spit out, on a classical computer would take on average 2255 operations.81

2

DRAFT

This kind of attack, with the state space of about 2256 is highly impractical to attempt and as such is considered one82

way.83

Using Grover’s algorithm, one could attempt this same attack by setting up the Oracle circuit used in Grover’s84

algorithm with the same hash function in order to mark when the appropriate pre-image would spit out the known85

hash digest. If you take into account the state space of all possible inputs for a 256 bit collision resistant hash function,86

this would still take approximately 2128 operations of Grover’s algorithm to generate an output that corresponded87

with the appropriate pre-image for the known hash digest. While still significantly better at attempting this attack88

than a classical computer, for standard clock speeds this would still require a time period greater than the age of the89

universe to attempt.90

If the state space is lowered, for instance if we know one or more of the factors used to generate the hash digest,91

or can narrow down the possible pre-images in some way, then this attack becomes more feasible for a quantum92

computer to attempt. Depending on how effective this is at reducing the search space, it will still in most cases take93

longer than it takes Shor’s to break ECC, RSA, etc.94

Grover’s algorithm can also be used in conjunction with other methods, such as QDC (Quantum Differential95

Cryptanalysis), to find the pre-image of hash digests. (See 1.4.2).96

1.4 Simon’s Algorithm, Quantum Differential Cryptanalysis, and Further Capabili-97

ties.98

1.4.1 Simon’s Algorithm99

Simon’s algorithm, from [13], can be applied to extract XOR masks from functions under which they are invariant.100

Since many hash functions are based on iterated XOR masks, this allows for differential cryptanalysis.101

Let f : {0, 1}n → {0, 1}n be any function that is invariant under some mask a. That is to say, there exists some102

a ∈ {0, 1}n such that, for every x, y ∈ {0, 1}n, f(x) = f(y) if and only if x ⊕ y ∈ {0, a}. Given oracle access to103

f , Simon’s algorithm makes O(n) queries to the oracle and produces as output the mask a. It is shown in [5] that104

Simon’s algorithm is asymptotically optimal.105

Simon’s algorithm can be used to set up a system of linear equations that can be used to find the outputs and find106

the XOR mask of certain functions, which has numerous applications in cryptography. For a technical description107

of Simon’s algorithm, see Section A.3.108

1.4.2 Quantum Differential Cryptanalysis109

Besides brute force attacks, there are some other methods a QA could leverage to reverse or reveal hidden information110

about the pre-image of a hash digest. Using Simon’s algorithm, it’s possible to create a system of linear equations111

that can be used to perform differential cryptanalysis to decrypt an XOR mask, or attack symmetric key primitives112

[12]. For block ciphers relying on a Feistel scheme, which if they are used in the construction of a hash function,113

would be vulnerable to this advantage a QA could leverage.114

Attacks of this nature, namely using an efficient quantum algorithm (Such as the Bernstein-Vazirani algorithm115

[14], which is beyond the scope of this technical note) to set up a system of linear equations, and then solving these116

classically and use them to perform differential cryptanalysis, are a bit more difficult to describe than the brute force117

Grover’s algorithm attack. Attacks of this nature require a deep case by case look into the internal architecture118

of each specific hash function used, (Keccak, chacha20 in the case of Monero) Besides Simon’s algorithm and the119

Bernstein-Vazirani algorithm, other algorithms exist that could be used to perform differential cryptanalysis on the120

block ciphers used in the construction of each hash function.[?]121

As far as this technical audit could surmise, Keccak (the hash function used in Monero) is secure against currently122

known methods employing Simon’s or the Bernstein-Vazirani algorithm to perform differential cryptanalysis and123

find information about or reverse the pre-image of the Keccak hash function. That being said, there could be other124

3

DRAFT

methods using these algorithms that were not covered during this audit, with or without using Grover’s algorithm125

in tandem.126

For that matter, there are other algorithms as well that can be used to perform quantum differential cryptanalysis127

other than B-V or Simon’s, it is unknown if others exist that aren’t as well known as of this writing.128

Finding or designing a hash function whose internal architecture is provably resistant to all possible methods129

of Quantum Differential Cryptanalysis (henceforth QDC), is outside the scope of this technical audit. It could be130

possible Keccak is already secure against all possible forms of QDC, but until such a proof is found, we will assume131

for the purposes of this audit that it might be possible for a future QA to utilize such an advantage in an extreme132

case, maybe in combination with Grover’s algorithm, to find the pre-image of a known hash digest.133

To summarize, pure brute force attacks on Keccak using Grover’s is intractable for a QA. However, by decreasing134

the state space this attack can become possible to implement for a QA if not a CA, though possibly still difficult.135

There are a few methods to do this, which could include QDC. Since it is unknown whether or not keccak specifically136

is susceptible to QDC, it might still be possible for a QA to find the pre-image of a known hash digest even without137

decreasing the possible state space.138

1.4.3 Further Capabilities139

The capabilities of a QA as outlined in this article primarily center around the advantages that can be leveraged140

by independently utilizing Shor’s, Grover’s, Simon’s or some combination of these algorithms to attack the security141

features present in Monero. The further methods of QDC are not extensively explored, such as using Simon’s or the142

B-V algorithm, but also should not be considered a complete list of algorithms one could attempt QDC with. A QA143

also inherently has the added capability of being able to generate true randomness rather than relying on a PRNG,144

which potentially could be useful as well.145

2 Technical Overview of Vulnerabilities146

For the purposes of probing potential vulnerabilities, we assume a theoretical QA capable of efficiently leveraging147

the above-detailed quantum-empowered algorithms (as well as, prospectively, other algorithms not yet discovered).148

If such an adversary were to exist, a number of Monero’s core mechanisms would be vulnerable to the plausible149

implementation of such algorithms. Below, we describe how these mechanisms are impacted by various known150

algorithms. The following should not be considered a comprehensive list.151

2.1 Deriving Wallet Seeds152

In this section, we explain how an efficient QA can derive wallet seeds from public information like addresses, sub-153

addresses, and data intended to be posted publicly on the blockchain like pairs of one-time keys with the same154

recipient.155

First, we recall a bit about the key generation process in Monero. For a group G of order p with generator g,156

a Monero-style wallet generation involves two keypairs, one for spending and one for viewing. However, the private157

spend key ks is used to deterministically compute all other keys in the Monero Core wallet.158

The private spend key ks ∈ Zp−1 is a random integer sampled from a pseudorandom number generator. The159

public spend key Ks is a group element obtained by computing Ks = gks . The 25-word mnemonic “seed phrase”160

used to backup a wallet is simply ks (with a checksum) encoded into a base-1626 dictionary for convenience.161

A private view key kv is generated and the corresponding public key Kv = gkv is computed. In the Monero162

Core wallet, the private view key is derived from the private spend key by computing kv = H(ks). Further details163

are unnecessary for our analysis, and it should be noted that ks and kv could be independently generated with a164

pseudorandom number generator to prevent a QA from exploiting this link.165

4

DRAFT

The wallet’s primary public address A is the base-58 encoded concatenation of a network prefix N , both public166

keys Kv and Ks, and a checksum C. Specifically, A = N ||Ks||Kv||C.167

2.1.1 Key Extraction From Addresses168

The public spend key Ks and the public view key Kv can be parsed directly from the address A, enabling a QA that169

learns of any Monero address to apply Shor’s algorithm to extract the corresponding private spend key ks. From170

this, a CA can compute kv (if kv is deterministically derived from ks as in the Core implementation). Even if a user171

is not using a view key kv deterministically derived from ks, a user who is using two independent pseudorandom172

numbers for ks and kv is still vulnerable to the QA, who can compute kv by inverting the map kv 7→ gkv = Kv using173

Shor’s algorithm a second time.174

The adversary then essentially owns the wallet: they can derive the remaining keys, view the entire history of175

the wallet, spend any funds within, and so on. In this way, even publishing a public key (i.e. posting your address)176

could be dangerous.177

2.1.2 Key Extraction From Sub-Addresses178

Monero enables the creation of many sub-addresses from a single wallet, such that outputs to all addresses can be179

decrypted by the wallet’s main private view key ks, but the subaddresses cannot be linked by a CA. Using Shor’s180

algorithm, keys can be extracted from sub-addresses as well.181

The ith sub-address Ai contains the ith public spend key Ks,i := Ks ·gH(kv,i) and ith public view key Kv,i := Kkv
s,i.182

Thus if an adversary learns of a subaddress, a QA can apply Shor’s algorithm toKv,i to compute the discrete logarithm183

with respect to Ks,i, obtaining kv. Using kv the QA can classically compute H(kv, i) for each allowable i in the core184

implementation. The adversary can then brute force compute Ks,i · g−H(kv,i) through some small set of possible185

indexes i and obtain possible group elements, one of which is certain to be the Ks,i (in the core implementation).186

From this, a CA can compute kv (if kv is deterministically chosen using ks as in the core implementation) or a187

QA can compute kv by inverting the map kv 7→ gkv = Kv.188

2.1.3 Key Extraction From A Single One-Time Address189

A single one-time address P is not sufficient to compute the private spend key ks.190

Key extraction from a single one-time key is not possible since one-time keys are perfectly hiding. Indeed, the191

one-time keys in Monero are of the form (R,P) for some transaction key R = gr and for P = Ks · gH((Kv)
r,i). The192

discrete logarithm, then, is ks +H((Kv)
r, i). Given any P , given any ks, and given any kv, there exists an r such193

that P = gks+H((Kv)
r,i).194

In this way, P information-theoretically hides ks. This means that, if only one output has ever been sent to195

(Ks,Kv), then at most 1 one-time key gks+H((Kv)
r,i) appears on the blockchain. Even the QA, who can compute196

the discrete logarithm ks +H((Kv)
r, i), cannot determine ks without additional information.197

2.1.4 Key Extraction From A Pair of One-Time Addresses198

In the previous section, we explained why a single one-time address is insufficient for key extraction. In this section,199

we describe how 2 one-time keys can be used to extract the spend key.200

One of Monero’s classical security features is that addresses can be safely re-used, due to Monero’s one-time201

‘stealth’ addresses, which prevent a CA from linking transactions to the same recipient or identifying the real202

address behind the stealth address.203

However, in this sense, Monero is not secure against a QA: re-use of keys today allows a future hypothetical204

QA to extract the private spend key. If any address or subaddress (say with keypair (Ks,Kv)) has received more205

than one transaction in the history of the blockchain, then the methods in this section can be applied by a QA with206

strictly public data to extract the keypair (kv, ks).207

5

DRAFT

Since creating a transaction is permissionless, this allows anybody with knowledge of your address to send multiple208

outputs to your public keys, in the process making your private keys extractable to any QA at any time in the future.209

Monero transactions are published with transaction keys R = gr and one-time (so-called “stealth”) keys P =210

Ks ·gH(Kr
v ,i). Say that (R,P) and (R∗, P ∗) are two pairs of keys for a Monero transaction made to the same address,211

i.e. P = Ks · gH((Kv)
r,i) and P ∗ = Ks · gH((Kv)

r∗ ,i∗) for some i, i∗. A classical computer can compute P ′ = P · (P ∗)−1212

easily. The QA can apply Shor’s algorithm to P , P ∗, and P ′ obtaining the discrete logarithms p = ks+H((Kv)
r, i),213

p∗ = ks +H((Kv)
r∗ , i∗), and p′ = H((Kv)

r, i) −H((Kv)
r∗ , i∗), respectively. The QA can then classically compute214

p′ + p2 = p′ − p1 = ks.215

From this, a CA can compute kv (if kv is deterministically chosen using ks as in the core implementation) or a216

QA can compute kv by inverting the map kv 7→ gkv = Kv.217

2.2 Violate Signer Ambiguity218

To prevent double-spends, Monero transactions require the publication of all images of the true signing keys used219

in all ring signatures for the transaction under a one-way function. In this section, we show how the QA can use220

a ring of public one-time keys and a key image known to be computed by one of the ring members to extract the221

corresponding private one-time key.222

For each transaction input, the signer includes a public key image J and a ring containing output one-time keys,223

say {P1, . . . , Pn}, where n is the ring size. At the time of this writing, it is necessary that all rings have exactly224

n = 11 ring members to be considered valid. The message signer knows the private key pπ corresponding to some225

public key Pπ for one of the ring members, and learned the public keys for the other n− 1 decoy keys by sampling226

them from the blockchain.227

Monero uses key images J := (H(P))p. Under the discrete logarithm assumption, the CA cannot ascertain which228

ring index π corresponds with the key Pπ used by the signer to compute the key image J . The QA, on the other229

hand, can compute H(Pi) for each i and compute the discrete logarithm p̂i of J with respect to each H(Pi). For230

some index π, J = (H(gp̂π))p̂π . The QA concludes that the true signing key was Pπ and has, in the course of drawing231

this conclusion, learned pπ.232

2.3 Violate Transaction Confidentiality233

Since Pedersen commitments are perfectly hiding, and each transaction ostensibly uses fresh randomness, it should234

seem that even the QA cannot look at an arbitrary Pedersen commitment to a transaction amount and compute the235

transaction amount. However, the situation is not so nice.236

2.3.1 Attack237

The transaction amount is restricted to a small set
[
2N
]
for some N ∈ N. Recall that we commit to an amount238

b with a mask y by computing C(y, b) = gy1g
b
2, we see that there are at most 2N choices of b. This is selected to239

be small enough so that users can brute-force search for the transaction amount when they see a new transaction240

such that they can compute the blinder y (i.e. the transactions addressed to them). The QA can then apply Shor’s241

algorithm 2N times to g−b
∗

2 C(y, b) for each b∗ ∈
[
2N
]
to obtain 2N possible choices of the blinder y. This allows the242

QA to compute a Monero transaction amount with O(2N) applications of Shor’s algorithm.243

2.3.2 Mitigation244

Since it is thought that the timeline for Shor’s algorithm to reliably compute the discrete logarithm for 32 byte keys245

is even longer than the timeline for the arrival of the QA, one reasonable short-term mitigation for this violation246

of privacy is to increase N substantially and to use some quantum-secure method of transmitting the transaction247

amount, perhaps via secure sidechannel.248

6

DRAFT

2.4 Violate Transaction Balancing249

Monero ring confidential transactions in the style of [7] are inspired by Bitcoin-style confidential transactions from250

[9], swapping usual digital signatures for ring signatures. These transactions are proven to be balanced using range251

proofs of transaction amounts. In this section, we show how the QA can violate transaction balancing and we mention252

a mitigation.253

2.4.1 Attack254

Each Monero transaction is defined by some input anonymity sets (called rings) of possible input keys, some output255

keys, a non-negative plaintext fee, a range proof of the transaction amount including the fee, and a ring multisig-256

nature on the input rings. Monero amounts are encoded in perfectly hiding and computationally binding Pedersen257

commitments from [8], which are included as part of the input keys. A Monero transaction is considered valid if the258

anonymity sets are subsets of old output keys on the blockchain, the ring multisignature is valid (to authenticate259

whoever broadcast the transaction), and the range proof is valid (to ensure that transaction balances).260

The Pedersen commitment scheme uses two basepoints, g1 and g2, whose discrete logarithms are unknown with261

respect to each other. In the core Monero implementation, g1 = g (the same as the public key basepoint) and262

g2 = H(g) for some hash function H : {0, 1}n → G. To commit to an amount b with a mask y, we compute263

C(y, b) = gy1g
b
2.264

Note that this map is many-to-one: for any (y, b), there are many choices of (y′, b′) 6= (y, b) such that C(y′, b′) =265

C(y, b). To open some C = C(y, b) to some (y′, b′) 6= (y, b), a CA has few choices but to brute force search for any266

(y′, b′) that will do the trick. For a CA operating in PPT, this is considered intractable. In this sense, the Pedersen267

commitment scheme is computationally binding.268

However, a QA can violate computational binding. The QA can apply Shor’s algorithm to compute the discrete269

logarithm of g2 with respect to g1 or vice versa, say g2 = gγ1 = gγ . To open C(y, b) to a different value b′ 6= b, the270

QA can merely compute y′ = y + γ(b− b′) classically. Then C = C(y, b) = C(y′, b′) yet b 6= b′.271

This resolves itself as the following attack. The QA receives a Monero output with amount b. The QA constructs272

(i) a range proof for use in a new transaction using amount b and the usual blinder as if they wish to spend all of b,273

but (ii) also uses the above approach to select a different blinder y′ and a different amount b′ < b for the recipient to274

open.275

2.4.2 Mitigation276

We identify two mitigations for the above attack.277

First, if blinders are deterministically computed using random oracles from public data from the blockchain, then278

the QA the is restricted from selecting y′ freely. Depending on specific implementation recommendations, however,279

the computation for blinders in commitments may still be vulnerable to the QA, so we omit details.280

Second, the idea of switch commitments are introduced in [11]. These commitments are homomorphic, so they281

can be used (similarly to Pedersen commitments) to the degree necessary for usage in a currency protocol. They282

already contain usual Pedersen commitments, and so they can be considered an extension of the commitment scheme283

Monero already uses.284

These commitments have the following properties. An opener can convince a verifier that some C commits to a285

certain value with either a partial opening or a full opening. If the opener partially opens a commitment, then the286

scheme is computationally binding and perfectly hiding. If the opener fully opens a commitment, then the scheme287

is statistically binding and computationally hiding.288

Switch commitments in Monero would require (i) a single additional group element in transactions, (ii) a slight289

modification to range proofs resulting in no significant change to transaction size or verification time, and (iii) the290

computation of an additional scalar by the recipient to open commitments.291

7

DRAFT

Note that when the QA violates the binding property of commitments, they can violate the supply of Monero,292

which is intended to be a money with a known, fixed supply secure against malicious tampering. On the other293

hand, when the QA violates the hiding property, they can violate the amount privacy afforded by the confidential294

transactions of Monero.295

A protocol that does not balance transactions cannot function as a currency, whether transactions are confidential296

or not. A currency without confidential transactions can still function as a currency, however. In this way, we could297

regard the monetary supply as hierarchically more important to secure than user privacy.298

2.5 Violate Unlinkability299

The integration of one-time addresses into Monero’s functionality has provided transactions with an extra layer of300

protection. In their essence, one-time stealth addresses work by masking the public keys used in each transaction.301

These one-time stealth addresses can be formed either from subaddreses or the primary address. Using a combination302

of Shor’s and Grover’s algorithm, a quantum computer could reveal the genuine public keys behind each of the stealth303

addresses being used in a transaction.304

Since this mechanism relies on a QA using Grover’s algorithm to find the pre-image of a hash digest used to305

generate the stealth address from spend and view keys, it is somewhat more robust against a QA compared to the306

other vulnerabilities mentioned, so the trick is to narrow down possible pre-image values to decrease the state space307

needed to run iterations of Grover’s algorithm. For a 256 bit hash digest, even for a quantum computer to find the308

pre-image using a pure brute force attack this would require approximately 2128 iterations of Grover’s algorithm to309

output a corresponding amplitude, which at standard clock speeds would require a runtime much greater than the310

lifetime of the universe.311

If Grover’s algorithm was instead used to go through all known public view/spend key pairs until it found a312

match that output the stealth address with a known r (from Shor’s) or perhaps used to go through a smaller state313

space somehow (methods shall be described below) then this functionality is vulnerable to a QA.314

If all transactions made by a public key are generated off a new subaddress that is different each time, this could315

provide an extra layer of security that might make it much more difficult316

If Alice wants to send a transaction to Bob, a one time stealth address is formed as such: First, generating a317

random integer r to be used only once in this transaction, K0 = Hn(rKv)G+Ks Where K0 is the one-time stealth318

address Alice submits this and gr (the transaction public key) to the network. Once submitted to the network, Bob319

can see it is meant for him by multiplying the transaction public key using his private view key kv, since rkvG = rKv.320

From this, K ′s = K0 − Hn(rKv)G = Ks. This is considered secure classically, however a quantum adversary could321

break this feature as such: Find r, by factoring gr using Shor’s. Using Grover’s, find a K spend and view public key322

pair amongst existing public keys such that K0 = Hn(rKv)G+Ks for a given r. From this, extracting private keyss323

is simple, using Shor’s to invert k 7→ gk = K as described in section 2.1.1.324

If a subaddress was used to generate the stealth address instead of a public key address, then this would add an325

extra layer of security. However, since these are also secured by DLP, it would be possible to find the associated326

public key address used to generate the relevant subaddress attached to the relevant stealth address from this in327

much the same manner as shown.328

2.6 Decrypt payment identifiers329

Monero transactions optionally come with payment identification that consist of the XOR between a bitstring message330

and a mask. The mask is generated from the hash of Kr
v , where the transaction key is R = gr. Thus, in any of the331

previous sections where the QA can compute kv using Shor’s algorithm, the QA can apply Shor’s algorithm a second332

time to R to compute r and compute the mask X directly.333

8

DRAFT

2.7 Immutability334

2.7.1 Block immutability335

M question - can Grover’s algorithm be used to forge a block with target hash and desired arbitrary payload?336

Can you circumvent the pq-PoW hardness of RandomX by brute forcing other parts of the block (for example337

tx_extra in the miner coinbase)338

I have a bit more clarity now about how this might work.339

(here, we answer the question: if in the future RandomX is the pq-bottleneck and you can Grover’s effectively,340

what are your options?)341

The attacker actually do a proof of work! Investing the full amount of time/energy with with a classical computer342

So if you a bunch of block information B and you boil it down to a digest b to hash with RandomX, so we try a343

bunch of nonces:344

RandomX(b, n1)→ fail to pass difficulty345

RandomX(b, n2)→ fail to pass difficulty346

RandomX(b, n3)→ fail to pass difficulty347

RandomX(b, n4)→ fail to pass difficulty348

RandomX(b, n5)→ fail passes difficulty ... winning block349

Now, I don’t broadcast anything. I just stick (b, n5) in my back pocket as winning inputs to RandomX. Then,350

whenever I feel like it, I use Grover’s algorithm to find a B preimage for the b that I previously solved.351

You don’t have to use QA tricks on RandomX if you can pull off QA tricks on its inputs.352

Actually, heh, I don’t think you have to do any proof of work at all! You could just pick random previously solved353

blocks, take their (n, b) pair, and make your own B → b mapping with Grovers. (of course that would be sloppy,354

and Noncesense would eventually notice the RandomX nonce collision and start poking around.)355

Does this make any sense?356

2.7.2 Transaction immutability357

M - will finish this up later notes - Txns have no PoW358

Grover’s to find primage of alternate txn that produces the same txid359

Fluffy blocks are a risk if QAs are forging transactions. More broadly, the fact that the block PoW input only360

ingests transaction IDs instead of transaction data makes this an attack surface361

9

DRAFT

3 Alternatives to Elliptic Curve Based Cryptography362

3.1 Lattice-based363

3.1.1 From a geometric point of view364

3.1.2 Differences between lattice-based cryptography, RSA, and ECC365

3.1.3 Migration366

3.2 Multivariate-based367

3.3 Hash-based368

3.4 Supersingular Elliptic Curve Isogeny-Based Cryptography369

4 Alternative protocols370

4.1 ZK-STARKS371

4.1.1 Possible usage372

4.2 MatRiCT373

4.3 L2RS374

4.4 RingRainbow375

5 Key Size/Verification Time Table376

6 Conclusion377

A Technical Implementation of Quantum Algorithms378

The introduction to this technical note outlines some of the capabilities a theoretical quantum adversary could379

leverage in order to introduce vulnerabilities into the current Monero security infrastructure. This appendix serves380

as a more in depth technical look into the algorithms that can be run efficiently on quantum hardware in order381

to provide these capabilities. The three algorithms provided in this appendix include Shor’s, Grover’s and Simon’s382

algorithm. While these three do provide some of the largest security risks to Monero as outlined, the capabilities of383

a quantum computer are not limited to them. The main security concern not included in this group might be from384

algorithms that can be used in QDC (Quantum Differential Cryptanalysis) such as the Bernstein-Vazirani algorithm385

and others. The main threat factor from QDC would be in reversing or revealing hidden information about the386

pre-image of a hash digest.387

1. A.1 Shor’s Algorithm Technical Implementation388

Shor’s algorithm violates the RSA hardness assumption [3] and the elliptic curve discrete logarithm hardness389

assumption [10], both with polynomial time complexity.390

Given that some of the largest security assumptions of which Monero is based off of can be solved efficiently391

using a specialized elliptic curve implementation of Shor’s algorithm, the specific implementation will be shown392

as such:393

10

DRAFT

Elliptic curves over finite fields form abelian groups. For discrete logarithms over elliptic curves, We consider394

an elliptic curve, E, over GF (p), where p is a large prime. The base of the logarithm is a point P on the395

elliptic curve E, whose order is another (large) prime q, such that qP = 0. We want to compute the discrete396

logarithm, d, that lies on another point Q on the elliptic curve such that Q = dP .397

We apply the following transformation to a set of qubits, such that the quantum state can be described as:398

|ψ〉 = 1

2n

2n−1∑
x=0

2n−1∑
y=0

|x, y, xP + yQ〉 (1)

Thus we need a method of computing (large) integer multiples of group elements. This can be done by the399

standard “double and add technique”. This is the same technique used for the modular exponentiation in the400

factoring algorithm, although there the group is written multiplicatively so it’s called the square and multiply401

technique. To compute xP + yQ, first we repeatedly double the group elements P and Q, thus getting the402

multiples Pi = 2iP and Qi = 2iQ. We then add together the Pi and Qi for which the corresponding bits of x403

and y are 1, xP + yQ can then be written as404

xP + yQ =
∑
i

xipi +
∑
i

yiQi (2)

The multiples as such of Pi and Qi can be computed classically beforehand, creating conditions that can be405

used describe the state shown in equation (2) for |x, y〉 using just a single qubit, which drastically cuts down406

the qubit requirements. This is done by using the semiclassical quantum Fourier transform [2] and is analogous407

to the factoring algorithm used in breaking RSA. Thus, we can represent |x, y, xP + yQ〉 = |x, y,O〉 with O408

simply being the "accumulator" register, with |x, y〉 being replaced by the single qubit as mentioned before.409

We are left being required to carry out a number of steps whereby we add a fixed (classically known) point410

Pi (or Qi) to a superposition of points. We are working in the cyclic group generated by P , thus the effect of411

a fixed addition is to “shift” the discrete logarithm of each element in the superposition by the same amount.412

Thus we need unitary transformations UPi and UQi which acts on any basis state |Si〉 representing a point on413

the elliptic curve, as UPi : |S〉 → |S + Pi〉 and UQi : |S〉 → |S +Qi〉.414

Applying these steps n times to P and n times to Q where n is approximately n = log2q. This sequence of steps415

decomposes the discrete logarithm quantum algorithm into a sequence of group shifts by constant classically416

known elements. After these are done, the resultant measured output will correspond to a distribution with417

peaks around points equal to Nk/q and Ndk/q where N = 2n. To obtain the relevant values, k and dk which418

are ultimately what will be used to solve the DLP, we multiply the observed output values by q/N .419

This version of Shor’s algorithm for solving the DLP for elliptic curves for 256 bit security can be done efficiently420

at standard clock speeds in under a minute, which for a classical computer using the most efficient currently421

known algorithm would take over ten-thousand years to find the same result. As such, it should be obvious422

why this is a considerable advantage a QA (Quantum Adversary) would have over a CA (Classical Adversary).423

2. A.2 Grover’s Algorithm Technical Implementation424

Given a set of data, a targeted implementation of Grover’s Algorithm can procure from this data a specific425

labeled instance x0 which can be for example, the confidential pre-image of a hash digest. These are the steps426

one would take to do so:427

(a) Initialize the qubits428

|ψ〉 = |0〉⊗n

11

DRAFT

(b) Put the qubits in an equal state of superposition.429

|s〉 = H⊗n|0〉n

(c) Apply an oracle reflection |Uf 〉 to the marked instance x0 of the qubits.430

(d) Apply an additional reflection,431

Us = 2|s〉〈s| − 1

Such that this maps the state to UsUf |s〉 Repeat steps 3-4 approximately
√
N = t times, where N is the432

number of entries in the data set.433

(e) Once the state of the system can be described as |ψt〉 = (UsUf)
t|s〉. you measure the qubits, the corre-434

sponding amplitude will correspond to the equivalent classical bits of the target entry.435

3. A.3 Simon’s Algorithm Technical Implementation436

Simon’s problem is, given a function f : {0, 1}n → {0, 1}n that is known to be invariant under some n-bit XOR437

mask a, determine a. In other words, given f(x) = f(y) if and only if x⊕ y ∈ {0, a}, compute a.438

This can be used to set up a system of linear equations that can be used to find the outputs and find the XOR439

mask of certain functions, which has numerous applications in cryptography.440

1. first you initialize two n-qubit registers to 0441

|ψ1〉 = |0〉⊗n |0〉⊗n (3)

2. Apply a Hadamard transform to the first register442

|ψ2〉 =
1√
2n

∑
x∈{0,1}n

|x〉|0〉⊗n (4)

3. Apply a query function Qf443

|ψ3〉 =
1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉 (5)

4. Measure second register, causing the first register to become444

|ψ4〉 =
1√
2
(|x〉+ |y〉) (6)

5. Apply Hadamard transform to the first register445

|ψ5〉 =
1√
2n+1

∑
z∈{0,1}n

[(−1)x·z + (−1)y·z] |z〉 (7)

6. Measure the first register, which gives an output if446

(−1)x·z = (−1)y·z (8)

The output will correspond to a string z, this string will correspond to b · z = 0 (mod 2) which from Gaussian447

elimination can be used to find the XOR mask to the function f(x). This can be run exponentially faster than448

any equivalent classical algorithm.449

12

DRAFT

References450

[1] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of quantum451

computing. SIAM journal on Computing, 26(5):1510–1523, 1997.452

[2] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited. Proceed-453

ings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):339–454

354, 1998.455

[3] Edward Gerjuoy. Shor’s factoring algorithm and modern cryptography. an illustration of the capabilities inherent456

in quantum computers. American journal of physics, 73(6):521–540, 2005.457

[4] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth458

annual ACM symposium on Theory of computing, pages 212–219, 1996.459

[5] Pascal Koiran, Vincent Nesme, and Natacha Portier. A quantum lower bound for the query complexity of460

simon’s problem. In International Colloquium on Automata, Languages, and Programming, pages 1287–1298.461

Springer, 2005.462

[6] Michele Mosca. Quantum algorithms. arXiv preprint arXiv:0808.0369, 2008.463

[7] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.464

[8] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Annual465

international cryptology conference, pages 129–140. Springer, 1991.466

[9] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter Wuille. Confidential assets. In467

International Conference on Financial Cryptography and Data Security, pages 43–63. Springer, 2018.468

[10] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves. arXiv preprint469

quant-ph/0301141, 2003.470

[11] Tim Ruffing and Giulio Malavolta. Switch commitments: A safety switch for confidential transactions. In471

International Conference on Financial Cryptography and Data Security, pages 170–181. Springer, 2017.472

[12] Thomas Santoli and Christian Schaffner. Using simon’s algorithm to attack symmetric-key cryptographic prim-473

itives. arXiv preprint arXiv:1603.07856, 2016.474

[13] Daniel R Simon. On the power of quantum computation. SIAM journal on computing, 26(5):1474–1483, 1997.475

[14] Huiqin Xie and Li Yang. Using bernstein–vazirani algorithm to attack block ciphers. Designs, Codes and476

Cryptography, 87(5):1161–1182, 2019.477

13

	Introduction
	Prerequisites and preliminaries
	The Quantum Adversary's Capabilities
	Violate Discrete Logarithm Hardness with Shor's Algorithm

	Utilize Grover's Algorithm to Find Pre-Images of Hash Functions and Unstructured Search Capabilities
	Grover's Algorithm
	Difficulty of Finding the Pre-Image of Hash Digests

	Simon's Algorithm, Quantum Differential Cryptanalysis, and Further Capabilities.
	Simon's Algorithm
	Quantum Differential Cryptanalysis
	Further Capabilities

	Technical Overview of Vulnerabilities
	Deriving Wallet Seeds
	Key Extraction From Addresses
	Key Extraction From Sub-Addresses
	Key Extraction From A Single One-Time Address
	Key Extraction From A Pair of One-Time Addresses

	Violate Signer Ambiguity
	Violate Transaction Confidentiality
	Attack
	Mitigation

	Violate Transaction Balancing
	Attack
	Mitigation

	Violate Unlinkability
	Decrypt payment identifiers
	Immutability
	Block immutability
	Transaction immutability

	Alternatives to Elliptic Curve Based Cryptography
	Lattice-based
	From a geometric point of view
	Differences between lattice-based cryptography, RSA, and ECC
	Migration

	Multivariate-based
	Hash-based
	Supersingular Elliptic Curve Isogeny-Based Cryptography

	Alternative protocols
	ZK-STARKS
	Possible usage

	MatRiCT
	L2RS
	RingRainbow

	Key Size/Verification Time Table
	Conclusion
	Technical Implementation of Quantum Algorithms
	Shor's Algorithm Technical Implementation
	Grover's Algorithm Technical Implementation
	Simon's Algorithm Technical Implementation

