Skip to content

monkeylearn/monkeylearn-java

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
src
 
 
 
 
 
 
 
 
 
 
 
 

monkeylearn-java

Official Java client for the MonkeyLearn API. Build and consume machine learning models for language processing from your Java apps.

Install

Using maven:

<dependency>
  <groupId>com.monkeylearn</groupId>
  <artifactId>monkeylearn-java</artifactId>
  <version>0.1.5</version>
  <scope>compile</scope>
</dependency>

Or if you want to compile it yourself:

$ git clone git@github.com:monkeylearn/monkeylearn-java
$ cd monkeylearn-java
$ mvn install       # Requires maven, download from http://maven.apache.org/download.html

You can also download the compiled jar from here.

Usage examples

Here are some examples of how to use the library in order to create and use classifiers:

import com.monkeylearn.MonkeyLearn;
import com.monkeylearn.MonkeyLearnResponse;
import com.monkeylearn.MonkeyLearnException;
import com.monkeylearn.Tuple;

import org.json.simple.JSONObject;
import org.json.simple.JSONArray;

import java.util.ArrayList;

public class App {
    public static void main( String[] args ) throws MonkeyLearnException {

        // Use the API key from your account
        MonkeyLearn ml = new MonkeyLearn("<YOUR API KEY HERE>");

        // Create a new classifier
        MonkeyLearnResponse res = ml.classifiers.create("Test Classifier", "Some description");

        // Get the id of the new module
        String moduleId = (String) ((JSONObject)res.jsonResult.get("classifier")).get("hashed_id");

        // Get the id of the root node
        res = ml.classifiers.detail(moduleId);
        Integer rootId = ((Long) ((JSONObject)((JSONArray)res.jsonResult.get("sandbox_categories")).get(0)).get("id")).intValue();

        // Create two new categories on the root node
        res = ml.classifiers.categories.create(moduleId, "Negative", rootId);
        Integer negativeId = ((Long) ((JSONObject)res.jsonResult.get("category")).get("id")).intValue();
        res = ml.classifiers.categories.create(moduleId, "Positive", rootId);
        Integer positiveId = ((Long) ((JSONObject)res.jsonResult.get("category")).get("id")).intValue();

        // Now let's upload some samples
        ArrayList samples = new ArrayList();
        samples.add(new Tuple<String, Integer>("The movie was terrible, I hated it.", negativeId));
        samples.add(new Tuple<String, Integer>("I love this movie, I want to watch it again!", positiveId));
        res = ml.classifiers.uploadSamples(moduleId, samples);

        // Now let's train the module!
        res = ml.classifiers.train(moduleId);

        // Classify some texts
        String[] textList = {"I love the movie", "I hate the movie"};
        res = ml.classifiers.classify(moduleId, textList, true);

        System.out.println( res.arrayResult );
    }
}

You can also use the sdk with extractors:

import com.monkeylearn.MonkeyLearn;
import com.monkeylearn.MonkeyLearnResponse;
import com.monkeylearn.MonkeyLearnException;
import com.monkeylearn.Tuple;
import com.monkeylearn.ExtraParam;

import org.json.simple.JSONObject;
import org.json.simple.JSONArray;

import java.util.ArrayList;

public class App {
    public static void main( String[] args ) throws MonkeyLearnException {

        // Use the API key from your account
        MonkeyLearn ml = new MonkeyLearn("<YOUR API KEY HERE>");

        // Use the keyword extractor
        String[] textList = {"I love the movie", "I hate the movie"};
        ExtraParam[] extraParams = {new ExtraParam("max_keywords", "30")};
        MonkeyLearnResponse res = ml.extractors.extract("ex_y7BPYzNG", textList, extraParams);
        System.out.println( res.arrayResult );


    }
}

About

Official Java client for the MonkeyLearn API. Build and consume machine learning models for language processing from your Java apps.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published