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Abstract—Adaptive bitrate (ABR) schemes enable streaming
clients to adapt to time-varying network/device conditions to
achieve a stall-free viewing experience. Most ABR schemes use
manually tuned heuristics or learning-based methods. Heuristics
are easy to implement but do not always perform well, whereas
learning-based methods generally perform well but are difficult
to deploy on low-resource devices. To make the most out of both
worlds, we develop Ahaggar, a learning-based scheme running
on the server side that provides quality-aware bitrate guidance to
streaming clients running their own heuristics. Ahaggar’s nov-
elty is the meta reinforcement learning approach taking network
conditions, clients’ statuses and device resolutions, and streamed
content as input features to perform bitrate guidance. Ahaggar
uses the new Common Media Client/Server Data (CMCD/SD)
protocols to exchange the necessary metadata between the servers
and clients. Experiments on an open-source system show that
Ahaggar adapts to unseen conditions fast and outperforms its
competitors in several viewer experience metrics.

I. INTRODUCTION

With the prevalence of HTTP adaptive streaming (HAS),
the design of adaptive bitrate (ABR) logic—the algorithm
deciding which segments to download and when (primarily
based on the advertised encoding bitrate)—has received sig-
nificant research attention. Existing ABR schemes [14] can
be broadly classified as heuristic or learning-based. ABR
schemes driven by heuristics make decisions based on client-
side observations such as throughput estimation [29], playback
buffer level [45] or a combination of the two [51]. Although
these schemes are easy to implement, they heavily depend
on some configuration parameters and a poor setting may
significantly hinder their efficacy [25]. Hence, learning-based
schemes have become an alternative, benefiting from the latest
breakthroughs in machine learning (ML) such as deep rein-
forcement learning (DRL), supervised and imitation learning
techniques [7]. Learning-based schemes attain good strategies
without requiring any presumptions about the environment.

Nonetheless, learning-based schemes are exposed to two
major limitations. First, their performance heavily depends on
the training data. Network environments can be quite diverse
and their dynamics change over time. Therefore, future states
are not easy to predict accurately. Most schemes use classical
approaches to train an agent by giving it feedback for decisions
while interacting with an environment. Such interaction can be
efficiently performed in a controlled trace-driven simulator.
Still, a mismatch may occur when the trained model is
deployed in a live system and encounters an environment that
was not previously seen [53]. As a result, the scheme may fail
to perform proper rate adaptation. Second, deploying learning-
based schemes on devices with scarce resources is impractical
due to high storage and computational cost. Prior work [53]
showed that a learning model trained on past network scenarios

could hardly provide a comparable performance under new
conditions, and hence, effective and continual model retrain-
ing/update was required. Last but not least, many studies [28],
[20] claim that perceptual video quality and device resolution
must be considered in the ABR logic to improve the quality
of experience (QoE). Incorporating these parameters into a
learning model and then continually retraining the model is
also infeasible for clients running on low-resource devices.

A. Problem and Motivation

To confirm these claims, we performed some experiments.
The test setup consisted of a DASH client [19] with five
ABR schemes: (i) heuristic-based: BOLA (buffer-based) [45],
Dynamic (buffer + throughput) [19] and RobustMPC [51];
(ii) learning-based: Pensieve [33] and Fugu [50] (trained
on the network traces provided in their original papers).
To emulate real-world network conditions, we used three
4G LTE network traces, selected randomly from [34], [49]
with different bandwidth fluctuation patterns ⟨average, stan-
dard deviation⟩, and user mobility types, namely: Metro
⟨1.5,0.5⟩ Mbps, Bus ⟨5.6,2.3⟩ Mbps, and Car ⟨4.3,2.5⟩ Mbps.
For the video content, we used Akamai’s EnvivioDash3 [5],
which is 180 seconds long, consisting of 90 two-second
segments encoded with H.264 using the following ABR
ladder: {0.3Mbps@180p, 0.75Mbps@360p, 1.2Mbps@480p,
1.8Mbps@576p, 2.8Mbps@720p, 4.3Mbps@1080p}. We kept
the dash.js default max buffer size of 20 seconds and used
VMAF [40] to measure the quality. The streaming client
ran on a Samsung Galaxy S9 mobile phone with 64 GB of
internal storage, Android v.10 OS, 4x2.8 GHz Kryo 385 CPU,
Qualcomm Adreno 630 GPU and 3000 mAh (3.8V) battery.

Table I summarizes the average QoE results from over
ten runs (bitrate, quality and total rebuffering duration) and
resource usage metrics (CPU, memory and energy consump-
tion). We measured resource usage metrics using device tools,
including the Simple System Monitor, Android Profiler and
Battery Manager. The energy consumption includes video
rendering, communication with the server and ABR decisions
(i.e., mathematical rule or model inference). We used the
TensorFlow Lite and Converter toolkits [23] to deploy the
Fugu and Pensieve models on mobile devices. In conclusion,
heuristic-based schemes always use the least resources but
deliver the best QoE metrics only for 4G LTE (Metro). This
confirms that heuristic-based schemes are practical but fail
to perform equally over diverse network conditions. Also,
learning-based schemes achieve better performance in environ-
ments seen during the training and can be partially generalized
for other conditions, as shown in the results of 4G LTE (Bus)
and (Car), but they consume more resources and energy.
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TABLE I: Average QoE results and resource usage metrics
for different ABR schemes using three 4G LTE network
conditions (↑: higher is better (green), ↓: lower is better
(green), lowest performance (red), ±: std).

ABR Bitrate & Quality
(Mbps & VMAF)

Rebuffering
Duration (s)

CPU
Usage (%)

Memory
(MB)

Energy
(kJ)

4G LTE (Metro)

BOLA 1.20 & 64.8 ↑ 1.77 ↓ 09.11±0.22 66.10±0.56 3.80
Dynamic 1.08 & 61.6 1.90 08.75±0.15 ↓ 60.04±0.10 ↓ 3.40 ↓
RobustMPC 1.00 & 60.7 1.82 12.80±0.96 75.11±0.77 3.90
Pensieve 0.95 & 59.2 2.10 19.60±1.22 98.98±0.85 6.10
Fugu 1.06 & 61.3 2.00 17.22±1.05 97.93±0.73 6.03

4G LTE (Bus)

BOLA 1.94 & 71.22 1.99 10.22±0.32 ↓ 68.19±0.45 ↓ 3.83 ↓
Dynamic 2.11 & 74.43 2.13 10.78±0.37 68.44±0.47 3.85
RobustMPC 2.38 & 76.33 1.94 14.22±1.01 81.15±0.66 5.22
Pensieve 2.94 & 82.79 1.23 20.55±1.66 101.2±1.11 8.77
Fugu 3.10 & 83.15 ↑ 1.12 ↓ 22.43±1.89 105.3±0.94 8.91

4G LTE (Car)

BOLA 1.60 & 67.42 6.66 09.25±0.20 66.88±0.60 3.82
Dynamic 1.17 & 63.18 3.34 08.81±0.18 ↓ 61.19±0.11 ↓ 3.50 ↓
RobustMPC 1.66 & 67.80 4.10 13.41±1.05 77.12±0.84 4.24
Pensieve 2.33 & 75.88 ↑ 1.42 ↓ 20.36±1.74 100.1±1.44 7.36
Fugu 2.30 & 74.22 1.54 20.07±1.33 99.97±0.99 7.30

We argue that heuristic and learning-based schemes can
complement each other and leveraging the advantages of both
solutions while avoiding their shortcomings is the key. This
brings up the following three questions, which we seek to
answer: 1 Can we run a lightweight heuristic-based scheme
on the client side and a learning-based bitrate guidance on the
server side (which is not as constrained as the clients) such
that they can cooperate harmoniously to deliver s better QoE?
2 How to implement bitrate guidance with perceptual quality

and device resolution awareness? 3 How to achieve continual
learning for the server-side bitrate guidance?

B. Ahaggar: A Meta-RL Approach for ABR

We answer the questions above in the context of Ahaggar1,
a meta reinforcement learning (meta-RL)-based solution.
Ahaggar has a server-side learning model that takes network
conditions, clients’ statuses, device resolutions and streamed
content as input features, and then provides quality and
resolution-aware bitrate guidance to the streaming clients.
Leveraging the server’s vast computational power, storage
capacity and memory, Ahaggar enables model inference
for performing bitrate guidance tasks and helps resource-
constrained streaming clients run their lightweight heuristic-
based ABR schemes. Ahaggar models bitrate guidance tasks
for multiple clients as a partially observable Markov decision
process (POMDP) and leverages the latest developments in
DRL to dynamically adapt to the varying network conditions.
Specifically, it uses advantage Actor-Critic networks (A2C)
for model training and Distributed Proximal Policy Optimiza-
tion (DPPO) [24] with clip and Adam optimizer for policy
updates at each time interval. Considering the changes in
the environment, we adopt a Model Agnostic Meta-Learning
(MAML) [21] on-policy gradient-based meta-RL approach
that embeds policy gradient steps into the meta optimization.
This allows Ahaggar to update the model parameters to
achieve good generalization performance on unseen environ-

1A highland region in the central Sahara in southern Algeria.

ments during the inference. Therefore, our model can converge
quickly to the best performance and adapt to new unseen
environments with only a small number of (e.g., 40) shots.
To our knowledge, this paper is the first study using meta-RL
to improve QoE for adaptive streaming clients while cleanly
separating the responsibilities for the servers and clients and
respecting the client-driven nature of HAS.

The Ahaggar solution comprises two phases: (i) (offline)
meta-training where each RL agent trains the Ahaggar
meta-model on heterogeneous network environments, and
(ii) (online) meta-testing (also called inference) where each
agent continually learns the system dynamics and rapidly
optimizes the meta-policy, adjusting the parameter weights
that determine the agent behavior according to the trajectories
collected from both the meta-training and meta-testing. We
take inputs from the network, clients and streamed content
into the Ahaggar neural network (NN) for bitrate guidance.
The objective of Ahaggar is to select the minimum bitrate
(among the available options) above which the next higher
bitrate improves the perceptual quality only insignificantly at
the specific device resolution. In this study, we use an objective
full-reference perceptual video quality metric known as Video
Multi-method Assessment Fusion (VMAF) [40].

To ensure healthy cooperation without incurring additional
complexities between the clients and servers, Ahaggar adopts
the emerging Common Media Client/Server Data standards:
CMCD [17], [10], [13] and CMSD [18], [31]. CMCD defines
a set of information collected by a media client and sent along
with the HTTP requests to the server running Ahaggar in the
form of query arguments or header extensions. CMSD allows
the server to convey Ahaggar bitrate guidance decisions to
media clients through the HTTP response headers.

We evaluate the performance of Ahaggar against several
ABR solutions by running real-world trace-driven experi-
ments. These experiments cover multiple clients with hetero-
geneous network conditions and device resolutions. Experi-
mental results show that Ahaggar delivers consistent quality,
improves viewer QoE by up to 87.0%, reduces rebuffering du-
ration by up to 84.4% and reduces bandwidth consumption by
up to 62.6%. In addition, Ahaggar quickly converges to the
best solution during the training process with an improvement
of 5.6× in terms of the number of epochs required and 6×
speedup on the training time compared to the recent RL-based
solutions such as [33], [50].

The contributions of this paper are three-fold:
1) Ahaggar is a learning-based, quality and resolution-aware

bitrate guidance solution for HAS systems. It runs on the
server and uses CMCD/SD to simplify the communication
with the streaming clients.

2) Ahaggar models bitrate guidance tasks for multiple
clients as a POMDP and uses an A2C (NN) architecture
with clipped DPPO and Adam optimizer for policy updates,
and meta-RL (MAML) for rapid and continual learning. As
a result, Ahaggar learns new policies and adapts quickly.

3) A full system including the modified dash.js refer-
ence client [19] and Node.js with an HTTP server and
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Node JavaScript module (NJS application) implementing
Ahaggar is publicly available at [3].

The rest of the paper is organized as follows. Section II
shows the existing solutions for QoE optimization. Section III
describes the Ahaggar solution, followed by the performance
evaluation in Section IV. Section V concludes the paper.

II. RELATED WORK

Client-Driven Heuristic-Based ABR: These schemes use
heuristics based on estimated throughput (e.g., PANDA [29]),
buffer level (e.g., BOLA [45]), segment size (e.g., SARA [9]),
or a combination (e.g., MPCDASH [51]).

Client-Driven Learning-Based ABR: These schemes learn
from the streaming environment by training an NN using
DRL techniques [8], [16]. Mao et al. [33] proposed Pensieve,
the first learning ABR that used DRL to generate a strategy
toward maximizing the viewer QoE. Bentaleb et al. [11]
designed AMP that implemented a set of learning-based band-
width predictors and model auto-selection for HAS. Similarly,
Fugu [50] was proposed to leverage the hidden Markov model
for accurate throughput prediction. Huang et al. [25] used
imitation learning to propose Comyco as ABR for on-demand
videos.

Server-Driven Solutions: These solutions implement a rate
control on the server to control a client’s ABR decisions
implicitly or explicitly. In the implicit control, the server
does not require cooperation from the client. To that end,
some solutions leveraged traffic shaping [6], [55] or super-
resolution [27]. In the explicit control, the server receives
information from the clients for intelligent QoE optimization
decisions (e.g., [13]).

Network-Driven Solutions: These solutions can be fur-
ther categorized into: (1) In-network solutions where some
works [12] use software-defined networking to assist clients
in their ABR decisions, rate allocation [36] or multi-path
delivery [15]; (2) Server and network assistance solutions
where some papers [47], [38] leverage the SAND standard [2]
that enables data collection from various network entities
involved in media delivery. These data are then stored on a
centralized server for intelligent decisions, e.g., rate allocation;
(3) Data-driven solutions that combine SAND with AI capa-
bilities for improved decision making. These solutions collect
QoE metrics from many streaming sessions at a logically
centralized controller that maintains a global view of the real-
time network conditions, based on which the controller makes
decisions regarding the individual sessions (e.g., [26], [22]).

III. AHAGGAR BITRATE GUIDANCE

Ahaggar serves multiple clients (agents in RL) with a
shared environment, distinct rewards and policies, as depicted
in Fig. 1. It performs bitrate guidance tasks at every time
window and decides the best bitrate for each client. Therefore,
we consider a fully cooperative multi-agent RL (MARL) [54]
framework with independent learners setting that involves a
set of agents sharing the same environment. In particular,
we use a centralized training with decentralized execution
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Fig. 1: MARL of Ahaggar.

(CTDE) paradigm [54] to train the MARL agents. CTDE
allows these agents to train decentralized policies with global
information during training and to make decisions based on
the individually learned policies during inference. We also
use MAML [21], the meta-RL algorithm, to adapt to various
network environments through parameter learning. The overall
workflow of Ahaggar is shown in Fig. 2, where the steps are
numbered as 1 – 8 .

A. Formulation of the Problem

At each segment download time epoch t, Ahaggar per-
forms the bitrate guidance tasks (denoted by Z) by selecting
the best bitrate (denoted by lct ) with respect to the current state
(denoted by sct ) of each client c. Mathematically, the bitrate
guidance problem for multiple clients can be formulated as:

find lc,⋆t (π), ∀c ∈ [1, . . . , N ], ∀t ∈ [1, . . . , k]

argmax
π

QoEc
t (π)

s.t. lc,⋆t (π) ≤ mtpct C.1
N∑

c=1

lc,⋆t (π) ≤ BWtotal C.2

(1)

where lc,⋆t is the best bitrate, which is the minimum among
the available options above which the next higher bitrate
improves the perceptual quality only insignificantly for the
specific content at the specific device resolution. Here, we use
1-JND (Just Noticeable Difference) as the threshold for being
significant [35]. Further in this formulation, π is an RL policy
that decides the bitrate for each client, N is the total number
of clients, BWtotal is the total server capacity and mtpc is
the measured throughput by client c.

The formulation in (1) is a multi-agent decision problem
and aims to find the best bitrate lc,⋆t that maximizes the viewer
QoEc

t for each client c with respect to C.1–C.2. Here, each
client has access only to its local observations, and fully
capturing the state of the global environment experienced by
all clients is not feasible. Therefore, we cast the problem (1)
as a partially observable Markov decision process (POMDP),
which is characterized by its observation and historical infor-
mation capabilities. The POMDP model consists of 11-tuples
POMDP = (S, A, O, R, P , U , Z , C, N , α, γ), where:
• S = {S1, . . . , SN} is the set of the finite and discrete agent states

of N agents. For each agent c, we define the set of agent states as
Sc = {sc1, . . . , sck}, where k = |Zc| is the total number of bitrate
guidance tasks.
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Fig. 2: The overall bitrate guidance system of Ahaggar.

• A = {A1, . . . , AN} is the finite and discrete set of actions of N
agents. For each agent c, we define the set of agent actions as
Ac = {ac

1, . . . , a
c
k}, where each action is the selected bitrate lc

during a bitrate guidance task.
• O = {O1, . . . , ON} is the finite set of observation states that

are captured by the set of agents. For each client c, the set of
observations is Oc = {oc1, . . . , ock}.

• R = {R1, . . . , RN} is the set of expected immediate rewards,
which depends on states and actions taken by N agents. For each
client c, the set of rewards is Rc = {rc1, . . . , rck}.

• P = S×S×A → [0, 1] is the state transition probability function
P(s′|s, a) from the state s to s′ ∈ S when action a ∈ A is taken.

• U = O × S × A → [0, 1] is the observation probability function
O(o′|s′, a) of observing o′ ∈ O after transitioning to s′ due to a.

• Z = {Z1, . . . , ZN} represents the bitrate guidance problem
max

π
QoEc

t (π) for every agent c. The set of bitrate guidance tasks
for agent c is thus defined as Zc = {zc1, . . . , zck}.

• C = {1, . . . , N} is the set of N agents, where N is the total
number of agents and c ∈ [1, . . . , N ] is an agent.

• α and γ ∈ [0, 1] are the learning rate and discount factor,
respectively.

At each time t = [1, . . . , k], each agent c does not track
the exact state sct , but rather it uses the observations oct for
any given task zct . Therefore, it has to rely on the history
of actions and observations, denoted by hc

t , to perform the
best actions that result in higher rewards. We define the
set of histories of client c as Hc = {hc

1, . . . , h
c
k} where

hc
t = {(act , oct); . . . ; (ac1, oc1)} and the set of histories of N

agents as H = {H1, . . . ,HN}. Yet, hc
t might exponentially

grow with every action taken and every state observed. In
this case, the agent rather selects to use the belief states,
denoted by Bc, which are single-valued and represent the
observation probability U c over all possible histories Hc in a
given bitrate guidance task. For each bct ∈ Bc, the observation
probability distribution is denoted by uc

t = O(oct |hc
t , a

c
t),

such that O(oct |hc
t , a

c
t) =

∑
sct+1

∑
sct

P (sct |hc
t) P (sct+1|sct , act)

O(oct+1|sct+1, a
c
t), where P (sct |hc

t) is the belief state bct about
the state sct , Bc = {bc1, . . . , bck} and B = {B1, . . . , BN} are
the set of belief states of agent c and the set of the finite and
discrete belief states of N agents, respectively. These belief
states are a sufficient measure of histories and given a belief
state bct , an agent c strives to find the effective optimal policy
πc,⋆ to solve (1) by finding the best bitrate for each client
that maximizes the accumulated discounted reward (denoted
by Gc

t and defined in Section III-B).
The Ahaggar learning model solves the POMDP problem

(1) using a multi-agent A2C [8] NN with clipped DPPO [24]

and Adam optimizer for policy (π) updates at every time
interval. For continual learning and quickly adapting to unseen
environments, it uses MAML—the meta-RL policy gradient
approach—allowing Ahaggar to learn hyper-parameter ini-
tialization and speed up the optimization of the learned model
during inference.

B. Ahaggar Meta-Training (Offline)

To train the Ahaggar meta-model, we use Park [32]—a
Python-based segment-level simulator that is based on Ope-
nAI and state-of-the-art ABR simulators [44] for RL-based
model training. This simulator faithfully emulates a streaming
session in which the learning agent explores the streaming
environment utilizing a large corpus of real-world network and
content traces.
▷ Network Traces. We used the Belgium 4G/LTE [49],
Norway 4G/LTE [41], NYU LTE [34] and Lumous 4G/5G [37]
datasets. Each trace entry consists of a throughput value
(Mbps), round-trip time (RTT; ms) and packet loss (%).
▷ Content Traces. We used the Comyco [25] and Waterloo
SQoE-IV [20] datasets. To cover a wide range of device
resolutions, each source video was encoded at {0.24, 0.37,
0.57, 0.75, 1.0, 1.76, 2.36, 3.0, 4.3, 5.7, 8.0, 11, 16.6}Mbps
at a resolution of {180, 216, 288, 288, 360, 540, 720, 720,
1080, 1080, 1440, 2160, 2160}p, respectively. Each trace
is comprised of video segments with their corresponding
encoded bitrates (Mbps), sizes (byte) and VMAF scores for
three device resolutions (phone, HDTV and UHDTV).

We performed customized modifications on the Park simu-
lator to fully comply with the Ahaggar design. Specifically,
we revised (i) the problem space using POMDP instead of
MDP, (ii) input state, action and reward spaces, (iii) NN
architecture with policy update and meta-RL approaches, (iv)
headless video client by introducing three device resolutions,
and (v) MARL with CTDE and shared environment support.
During the session, the simulator used the traces and each
client interaction with the environment as input features to
feed into the NN, from which the RL agent in turn decided
the segment bitrates at every time step.

The Ahaggar uses an A2C NN. Without loss of generality
and since the agents are independent, we simplify the formu-
lation in the context of a single agent. At every time epoch t,
the segment-level statistics for each agent are collected and ag-
gregated as the environment input state. Different from MDP,
in POMDP, the agent cannot directly observe the complete

Authorized licensed use limited to: Ozyegin Universitesi. Downloaded on September 08,2023 at 09:42:57 UTC from IEEE Xplore.  Restrictions apply. 



system state, but the agent makes observations that depend on
the state. The agent uses these observations to form a belief
about what state the system is currently in. This is called a
belief state and is expressed as a probability distribution over
all possible states. The solution of the POMDP is a policy
prescribing which action to take in each belief state. Formally,
RL agents interact with the environment that defines state
space S, observation space O and belief state space B. At
each time epoch t, each RL agent c observes a state oct ∈ O
and then receives a belief state bct ∈ B from the environment.
Later, it takes an action act ∈ A (aka lc,⋆t ) while it receives a
reward rct ∈ R. Here, each agent c aims to find the optimal
policy πc,⋆ : S → O → B → A that maps states-to-actions
and maximizes the reward.
▷ Input State. At each time epoch t, each agent c takes a
belief state with inputs defined as bct = {mtpct , qtct , blct , lsct , dtct ,
rsct ,

−−→
LSc

t ,
−−→
QT c

t }, comprised of network, content and playback
features of the last downloaded segment. These inputs are:
measured throughput mtpct (Kbps), VMAF quality qtct (0–
100), current playback buffer length blct (second), segment
size lsct (KB), download time dtct (second), percentage of the
remaining segments in the video rsct (%), vector of m available
sizes for the next segment

−−→
LSc

t (KB) and vector of m available
VMAF qualities for the next segment

−−→
QT c

t (0–100). Instead
of feeding the A2C NN the exact values of the input state, we
normalize them to enable the agent to generalize the strategy
better in an unseen network environment [4].
▷ Action Space. The action space A is defined as the available
bitrate levels (i.e., n-dimensional vector) for a given video. In
each time epoch t, the Ahaggar policy πc,⋆ of agent c maps
bct to compact discrete action space A and select ac,⋆t ∈ A.
▷ Observation Space. We expose a subset of Ahaggar states
as the observations, where the agent c observes oct = {mtpct ,
qtct , blct , lsct , dtct , rsct ,

−−→
LSc

t ,
−−→
QT c

t } for each time epoch t.
▷ Output. The Ahaggar actor model returns 1×n-
dimensional vector representing bitrate levels with their associ-
ated probabilities. πc,⋆ : bct → ac,⋆t maps the state bct to the best
action ac,⋆t based on the state-action probabilities, where ac,⋆t

with the highest probability is selected under the current state.
The Ahaggar critic model outputs a single scalar indicating
the value function V c,π(bct) for the current state.
▷ NN Architecture. The Ahaggar A2C NN architecture
consists of two networks: actor and critic. Each network uses
two 1DConv layers and six linear fully-connected (FC) layers
to extract the set of features. Each 1DConv layer consists of
3x3 convolution with feature number (=64) and kernel size
(=1) to feed the features

−−→
LSc

t and
−−→
QT c

t . Other inputs are fed
into FC layers with feature number (=64) and a Rectified
Linear Unit (ReLU()) activation function. Then, all input
layers are concatenated and finally fed into an FC layer with
64 neurons and a slope of 0.5 to down-sample the concatenated
features. The actor and critic use the same structure, but with
different outputs. For both networks, we use the Softmax
activation function (Softmax()) with L2-norm of networks as
the last FC layer, resulting in an output range from 0 to 1.

▷ Reward Function. At each time epoch t, the reward rct of an
agent c is calculated after each action act is taken to ensure that
Ahaggar can learn from past experience. To do so, we adopt
a well-know state-of-the-art reward function [48], [12], [51],
[33], [25] that linearly combines five metrics (2): perceptual
quality (qct (l

c
t )), rebuffering duration (rdct ) and count (rcct ),

quality oscillations (qoct ) and switches (qsct ).
rct = ω1×qct (l

c
t )−ω2×rdct −ω3×rcct −ω4×qoct −ω5×qsct , (2)

where qct (l
c
t ) maps the selected bitrate to the quality perceived

(VMAF) [51], [12], qoct = |qct (lct )−qct−1(l
c
t−1)|, qsct = qoct/20,

and ωi are the coefficients of the reward function. Herein,
following prior works [48], [25], we set qsct as the difference
of 20 in VMAF values of two consecutive segments. This QoE
model is developed based on linear regression on two datasets:
Comyco [25] and Waterloo SQoE-IV [20], where 70% of the
data is used for training and 30% for testing. We followed
the same setup to tune the coefficients and our results show
that ω1 = 0.077, ω2 = 1.249, ω3 = 2.877, ω4 = 0.049, and
ω5 = 1.436 achieve the best trade-off between the five QoE
metrics. These results are similar to [48].
▷ Policy Gradient and Training Algorithm. The essential
objective of Ahaggar is to improve the policy via boosting
the probabilities of high-reward samples from the collected
trajectories and declining the possibilities of failure samples
from the bad trajectories. For every time epoch t, each RL
agent c of Ahaggar selects the action act that corresponds
to the bitrate for the next segment using the improved policy
π : πc,⋆

θ (bct , a
c
t) → [0, 1] at state bct , which results in the best

accumulated discounted reward that is expressed as:

Gc
t =

Tπc
θ∑

t̄=t

γ t̄−t × rct , ac
t = argmax

a
E
[
Gc

t(b
c
t , a)

]
, (3)

where Gc
t is computed from time t to the end of training, Tπc

θ

denotes the batch size for updating the gradient policy πc
θ,

γ ∈ [0, 1] is the discount factor, θ is the policy parameter, and
πc,⋆
θ (bct , a

c
t) is the probability that action act is taken in state

bct . DPPO allows Ahaggar to run multi-agents (or workers),
where each agent has its own A2C network and data collection.
Thus, the gradient calculations are distributed over workers,
as shown in Fig. 1. For each episode, an agent c updates its
gradient policy such that Gc

t is maximized with respect to the
policy parameters θ, as follows:

▽Ḡc
t =

1

Θ

Θ∑
θ=1

Tπc
θ∑

t=1

A
πc
θ

t (bct , a
c
t)▽ log πc

θ(a
c
t , s

c
t), (4)

where Θ is the total number of episodes, Aπc
θ (bct , a

c
t) is

the advantage function that represents the difference in the
expected cumulative reward after deterministically selecting
the action act in state bct , compared with the expected reward
for action drawn from policy πc

θ. In PPO, the advantage
function is calculated as function of Gc

t and baseline basect
that has an impact on the convergence of Gc

t . Prior work [52]
found that Aπc

θ did not generalize well. Hence, in DPPO, we
revise the advantage function by using a truncated backprop-
agation through time with a window of length κ such that
Aπc

θ (bct , a
c
t) = Qπc

θ (bct , a
c
t) − V πc

θ (bct). Qπc
θ is calculated by
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the actor network, which uses the κ-step Temporal Difference
(TD) approach given by: Qπc

θ (bct , a
c
t) =

∑κ=Θ−1
κ=0 γκrct+κ +

γΘV (bct+Θ). For each episode, the agent c of the actor network
aims to maximize Gc

t through maximizing Aπc
θ , where it sam-

ples a trajectory of bitrate decisions and uses the empirically
computed advantage as an unbiased estimate of Aπc

θ (bct , a
c
t).

To alleviate overfitting issues, Ahaggar uses dropouts with
probability (p = 0.5) to add a regularization term to the update
of the actor network. This regularization represents the entropy
E = H(πc

θ(.|bct)) of the probabilities over the bitrate decisions.
Therefore, the parameter θπc of the actor is updated via a
stochastic gradient ascent using (5).

θπc ← θπc + α

Tθ∑
t=1

A
πc
θ

t (bct , a
c
t)▽θ log π

c
θ(a

c
t , b

c
t) + β E , (5)

where Tθ is the update interval, α is the learning rate and
β is the entropy parameter that is set to a large value at
the beginning of the training to encourage exploration and
decreases over time to emphasize improving rewards.

To calculate the advantage A(bct , a
c
t) for a given experience,

we have to estimate the value function V πc
θ (b). This estimation

is performed by the critic network that makes an objective
assessment for all the states ∀bct ∈ B of an agent c during the
training. To do so, the critic network uses the standard TD
method to compute the loss function and minimizes its value.
The parameter θvc of the critic network is updated through a
stochastic gradient descent (SGD) algorithm using (6).

θvc←θvc − ᾱ

Tθ∑
t=1

▽θ(r
c
t +γV πc

θ (bct+1; θvc)−V πc
θ (bct ; θvc))2, (6)

where ᾱ is the learning rate for the critic, V πc
θ (bct ; θvc) and

V πc
θ (bct+1, θvc) are the objective assessments for bct and bct+1,

respectively, from the critic network.
Finally, we update the policy πθ periodically every κ-

steps using PPO with constrained clipped objective (CCO)
and the Adam optimizer. The constraint represents how much
the policy is allowed to change, expressed in terms of the
Kullback-Leibler (KL) divergence (KL[πc

θold
|πc

θ]). Hence, the
CCO is expressed as: θκ+1 = argmaxθ LKLPEN

θκ
(θ), where

LKLPEN
θκ (θ) = E

[ Tθ∑
t=1

ratiot(θ)A
πc
θκ

t − β̄KL[πc
θold |π

c
θ]
]
, and (7)

E is the empirical expectation over time steps, ratiot(θ) (=
πc
θ(b

c
t , a

c
t)/ π

c
θold

(bct , a
c
t)) is the ratio of the probabilities under

the new and old policies, ε is the clip hyperparameter (usually
fixed to 0.1) and β̄ is the KL penalty hyperparameter.
▷ Multi-agent Training with DPPO. In the training,
Ahaggar spawns MARL agents in parallel (Fig. 1). Each
agent is configured to run independently with a shared envi-
ronment such that it experiences a different set of input states
from the environment. Here, the N agents continually send
their parameters θ to a central agent (termed the chief), which
aggregates them to generate a single Ahaggar model. For
each sequence of parameters θ that it receives, the chief uses
the A2C algorithm to compute a gradient based on (5) and (6).
Then, the chief updates the A2C networks and pushes out the
new model to the agent that sent the parameters. Such update
process can happen synchronously or asynchronously among

all agents, but we found that averaging gradients and applying
them synchronously leads to better results in the meta-testing
phase. Our algorithms for the agents and chief are given in [1].
▷ Meta-Learned Policies for Training Algorithm. We adopt
the MAML approach, which allows learning model parameters
θ via meta-RL, i.e., finding the model parameters sensitive to
changes in the environment, allowing the Ahaggar model
to achieve fast adaptation to unseen environments during the
inference phase. The training algorithm consists of two loops:
(1) Inner Loop. For each episode, each agent c first picks
randomly a specific network and content trace as the envi-
ronment, and sample X ∈ D trajectories (also referred to
as shots) where D = {(bc1, ac1); . . . ; (bck, ack)} denotes the set
of sampled trajectories for inner loop in that environment
according to the current policy πc

θ. The Ahaggar meta-model
then is optimized by the collected trajectories with the DPPO
and Adam optimizer. In particular, we want to learn θ after a
small number κ of policy gradient updates on the data from
an environment Evti ∼ p(Evts) to obtain θiκ. Here, i denotes
the index of a particular environment in batch of environments
Evts. This set of κ updates is called inner-loop update. The
updated θiκ after κ-step on data from Evti is given in (8).

θiκ = θ − α▽θ LDPPO
Evti (fθ,D), (8)

where fθ is the Ahaggar meta-model and LDPPO
Evti

(fθ) is the
loss on the environment Evti after κ-step of updates.
(2) Outer Loop. For each episode, each agent c continually
samples many trajectories (∈ Di

κ; the set of sampled tra-
jectories for outer loop) from the randomized environments
via meta-policy πc

θi
κ

of meta-model fθi
κ

and calculates gradi-
ents for θ with the trajectory. After that, these agents send
the calculated gradients to the chief, which in turn merges
them via agents’ loss functions and the outer loop’s learning
rate β. Formally, we define a meta-objective (Lmeta(θ)) as∑Tπc

θ
t=1 LSGD

Evti
(fθi

κ
). The optimization of L is called the outer-

loop update. The resulting update for θ is given by (9).

θ = θ − β ▽θ

Tπc
θ∑

t=1

LSGD
Evti (fθiκ ,D

i
κ), (9)

where the update is performed using SGD, β is a learning rate
and LSGD

Evti
denotes the loss on the environment Evti.

C. Ahaggar Meta-Testing (Online)

The objective of Ahaggar is to learn how to adapt to
heterogeneous network environments during the online phase
through continual learning enabled by MAML. During the
meta-testing phase, we use our HAS-based streaming system
(Fig. 2), which consists of CMCD/SD-aware DASH clients
running in Docker instances and a CMCD/SD-aware Node.js
server with an HTTP server and an NJS application. NJS is
written in JavaScript and extends the Node.js configuration
syntax to implement Ahaggar’s bitrate guidance functions
and the communication with the dash.js clients. At runtime, for
each client, the Ahaggar meta-model uses a JSON file that
stores the model meta-parameters (θ and θiκ) and trajectories
(D and Di

κ) learned and captured every 40 shots during the
offline phase.
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IV. PERFORMANCE EVALUATION

A. Ahaggar Implementation

1) Choice of Ahaggar Parameters: To train the Ahaggar
model, we used a total of 2000 traces (1500 network and 500
content) from different datasets as described in Section III-B.
We randomized them and then used 80% for training and 20%
for testing. With an 80–20 train-test split, we performed a 5-
fold walk-forward cross-validation on each dataset. Training
parameters can impact the performance of Ahaggar, so we
empirically set the parameters as summarized in Table II.

2) Offline Training: To train the Ahaggar meta-model, we
used a customized trace-based segment-level Gym simulator
that is based on Park [32]. This simulator was implemented in
Python 3.6 to simulate a typical HAS system based on real-
world network and content traces. We used TFLearn 1.5.0 [46],
RLlib of Ray 1.12.0 [30] and TensorFlow 2.4.0 to implement
Ahaggar’s NN architecture and build the training workflow.

3) Online Testing: To test Ahaggar, we implemented a
CMCD/SD-enabled streaming system [3] with Ahaggar’s
bitrate guidance functions. We (i) added new CMCD parame-
ters (qt, dt, rs, ls,

−→
QT,

−→
LS) to support Ahaggar design, and

(ii) used the mb = l (maximum suggested bitrate) CMSD-
Dynamic parameter to convey Ahaggar’s bitrate guidance
to each corresponding client. On the server side, we used
TensorFlow.js converter [43] to convert and load a pre-trained
meta-model into a JavaScript Web-based application and run
inference through TensorFlow.js. On the client side, we im-
plemented a simple heuristic as our ABR scheme, which used
Ahaggar bitrate guidance decisions to perform rate adapta-
tion. To simplify input state data collection, we appended the
manifest files by adding four tags: size, phone, hdtv and uhdtv.
These tags represent the segment sizes and VMAF scores for
phone, HDTV and UHDTV, respectively. The VMAF scores
were computed using different VMAF models depending on
the device resolution. We provide a sample manifest file in [3].

TABLE II: Ahaggar training/testing parameters.
Parameter Symbol Value

A
2C

Discount factor γ 0.99
Advantage estimator λ 1.0
Actor & Critic learning rates α, ᾱ 10−4, 10−3

D
PP

O

Clip parameter & Clip learning rate ϵ, lrclip 0.2, 0.01
KL penalty kltarget 0.01
PPO policy update interval & steps Tθ , κ-step k, 20
Number of workers N 1000
Adam learning rate & Adam β lr, Adam β 3×10−5, 0.999

M
A

M
L Inner-loop learning rate α 10−4

Outer-loop learning rate β 10−3

Trajectories sample (shots) X 40

N
N

Time step t Segment duration
Batch total time steps in a video k Video duration
Batch size Tπc

θ
k per episode

Number of episodes & iterations Θ & itr 3000 & 2000 per episode

B. Methodology and Evaluation Setup

1) Video Sample and Parameters: The HTTP server hosted
the 4K DASH dataset [39] that was not used in training. We
encoded the 636 seconds long Big Buck Bunny (BBB) into
four-second segments in FFmpeg using the H.264 codec at
30 fps and in 13 bitrates/resolutions. Further characteristics of
BBB are given in [1].

2) Network Traces: We used network traces with different
user mobility (bus, walking, car, train, bicycle, tram, ferry
and driving) to throttle the bandwidth between the server and
clients. These traces were extracted from the 20% of network
datasets for testing (Belgium 4G/LTE [49], NYU LTE [34],
Lumous 4G/5G [37]). From each dataset, we randomly ex-
tracted six network traces where the inter-variation duration
between the bandwidth values was fixed to five seconds. The
traces are further characterized in [1].

3) ABR Schemes: We compared Ahaggar against heuris-
tics such as throughput-based (TH), buffer-based (BOLA) and
Dynamic (TH+BOLA) from dash.js [19] and RobustMPC [51]
and one learning-based scheme: Pensieve [33]. The heuristic-
based schemes were tuned and Pensieve was retrained with
our datasets and QoE metrics to fit each experiment.

4) Performance Metrics: We tested the ABR schemes using
two main QoE models: Linear QoE [48] and ITU P.1203
QoE (Mode 0) [42]. For every session, we computed the
accumulated QoElin using a linear function as follows:

ω1

k∑
t=1

qct (l
c
t )−ω2

k∑
t=1

rdct−ω3rc
c
t−ω4

k∑
t=2

qoct−ω5

k∑
t=2

qsct , (10)

where
∑k

t=1 q
c
t (l

c
t ) is the accumulative perceived perceptual

quality,
∑k

t=1 rd
c
t is the total rebuffering duration (RD), rcct

is the total rebuffering count (RC),
∑k

t=2 qo
c
t is the cumulative

quality oscillations,
∑k

t=2 qs
c
t is the total number of quality

switches, and k is the total number of segments. The coeffi-
cients of ω1,2,3,4,5 are given in (2). To simplify the presentation
of the QoE, we used a normalized QoElin (N-QoElin) with
values between 0 and 1. To achieve that, we used the best
achievable QoE (QoE⋆) in each session such that N-QoElin =
QoElin / QoE⋆. The ITU P.1203 QoE model in Mode 0 (O.46)
takes as input four metrics: bitrate, rebuffering duration, frame
rate and content resolution. How to compute the QoEitu is
described in [42]. This model outputs QoE values in the range
of one to five (MOS) and we normalized them (N-QoEitu ) to
[0,1]. In addition, we computed (i) the total downloaded (TD)
size (in MB) metric to measure how much bandwidth was
consumed during the session, (ii) percentage of the HD (pHD)
segments rendered at 720p or higher, and (iii) percentage of
the UHD (pUHD) segments rendered at 2160p.

5) Evaluation Setup and Scenarios: Our setup consisted
of one physical machine running Ubuntu 18.04.6 LTS, AMD
Ryzen 7 3700X 8-Core CPU and 32 GB memory. We ran
a Docker container for each client, in which we ran a
CMCD/SD-aware dash.js (v4.2.1) client on a Google Chrome
browser (v103) with headless mode enabled using Puppeteer
(https://pptr.dev/). The maximum playback buffer level was
kept at the default value of 20 seconds. For network emulation,
we used tc NetEm (https://man7.org/linux/man-pages/man8/
tc-netem.8.html) on the server to throttle the total bandwidth
available to the clients according to the network traces de-
scribed in Section IV-B2; we used a specific client-trace map
where for each session, a specific network trace was called.
We evaluated Ahaggar in the multi-client scenario with six
clients (more details are given in [1]).
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C. Results for Multiple Identical Clients

For each ABR scheme, we ran multiple UHDTV clients.
Table III shows the total QoE and detailed breakdown of
each QoE metric for each ABR scheme for various network
traces. We provide the average and standard deviation values
for six clients and over five runs in the format of average±std.
In general, Ahaggar gained the best possible performance
in terms of RC, RD and TD without sacrificing the VMAF
score compared to other baselines in all network traces.
Looking at the averages across all the network traces, we
see that Ahaggar reduced average RD by 62.81% (84.36%),
average RC by 53.52% (71.18%) and average TD by 53.27%
(59.34%) compared to the heuristic-based (learning-based)
ABR schemes. In addition, Ahaggar significantly reduced the
number of times an UHD segment was picked when there was
no noticeable VMAF score difference compared to the other
best performing schemes (RobustMPC and Dynamic) across
all network traces. Such reduction obviously translates to big
bandwidth savings (see the Avg. TD column in Table III).

We anticipated these results because Ahaggar makes bi-
trate guidance decisions based on not only the throughput,
buffer level and segment sizes, but also segment quality and
device resolution. It also uses MAML for continual learning
and fast adaptation to unseen environments. In contrast, other
ABR schemes use one or more heuristics or an NN combining
these heuristics and they do not necessarily perform well in
unseen environments. Fig. 3 and Table III confirm this. For
instance, Pensieve achieved the highest average selected bitrate
and average pUHD, but it performed poorly in most other
metrics. In the same context, BOLA failed to deliver a good
video quality with inferior VMAF scores and RobustMPC
suffered from frequent and long rebuffering events.
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01234
              Rebuffering Duration Ratio (%)

1

2

3

4

5

Q
oE
it
u

Better

Ahaggar
TH
Dynamic

BOLA
RobustMPC
Pensieve

(d) Lumous 5G.
Fig. 3: Avg. QoEitu and avg. rebuffering duration ratio in
various network traces. The bottom (left) edge, mark and
top (right) edge indicate the mean+std, mean and mean−std,
respectively, with a 95% confidence interval (CI).

Similarly, Ahaggar achieved the highest average QoEitu

and lowest average rebuffering duration (see Fig. 3). In

detail, Ahaggar achieved the highest average QoE with
an improvement of [Lumous 4G 3a: 22.28% (44.73%),
Belgium 4G/LTE 3b: 49.49% (37.06%), NYU LTE 3c:
55.04% (85.08%), Lumous 5G 3d: 8.01% (31.10%)] and
lowest average rebuffering duration with a reduction of
62.81% (84.36%) across all network traces, compared to
heuristic-based (learning-based) ABR schemes. Compared to
Ahaggar, Dynamic achieved the second best average results
in terms of the QoE and rebuffering duration. This is because
of the Dynamic design that combines the benefits of BOLA
and TH by switching between both of them in runtime based
on the stability of the current buffer level. However, Pensieve
followed by RobustMPC suffered from low QoE and long RD
due to wrong ABR decisions. It is worth mentioning that all
schemes faced few rebuffering events in Lumous 5G because
sometimes the bandwidth dropped significantly and suddenly
caused by the handoffs to 4G. This is a behaviour known in
5G networks operating in higher frequencies [37].

To understand how QoEitu (Mode 0) is computed for each
session, Table III (the eighth and ninth columns) highlights
the scores of its essential metrics (O.23: Rebuffing Duration
Score and O.46: Overall Score) for different ABR schemes.
The score of each metric is given in the MOS range of one to
five. Here, we deduce three important thrusts. First, Ahaggar
outperformed the baselines achieving the best O.23 and
O.46 scores for all network traces with an average improve-
ment of 67.55% (heuristic-based: 60.75%, learning-based:
94.75%) and 36.86% (heuristic-based: 33.70%, learning-
based: 49.49%) across all network traces, respectively. It also
achieved higher O.35 (Visual Quality Score, not shown) scores
with values ranging between 4.60 and 4.94. These results
confirm how well Ahaggar performs to balance the QoEitu

metrics. Second, the Belgium 4G/LTE dataset has the lowest
bandwidth values in its network traces. Therefore, all ABR
schemes achieved the lowest scores in terms of O.23, O.35
and O.46. Nonetheless, since Ahaggar has been designed
to adapt quickly to challenging network conditions (thanks
to MAML), it was able to obtain the best O.23 (2.37) and
O.46 (2.70) scores. Although other baselines achieved a com-
parable O.35 score (not shown), they faced frequent and long
rebuffering events due to their greedy bitrate selection strategy.
Third, Dynamic was the runner-up, receiving the second best
results in terms of O.23 and O.46. Unexpectedly, Pensieve
failed to produce good ABR decisions, leading to multiple
rebuffering events that contributed to the lowest O.23 score,
which impacted O.46 negatively in most network traces.

We also conducted a comparison between QoEitu and
QoElin. We first normalized both values (Section IV-B4) and
the comparison between different ABR schemes for various
network traces is listed in last column of Table III. In each
network trace, Ahaggar achieved the highest and consistent
performance in terms of N-QoEitu and N-QoElin (only in
NYU LTE, TH and Dynamic were slightly better) compared
to other ABR schemes. We can see that the N-QoEitu and
N-QoElin are almost identical for each dataset, and thus, can
be used interchangeably in practice.
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TABLE III: Average results of the QoE and its metrics for different network traces. ↑: higher is better (green), ↓: lower is
better (green), lowest performance (red), format: average±std.

Avg. Selected
Bitrate (Mbps)

Avg. Perceptual
Quality (VMAF)

Average
RD (s)

Average
RC (#)

Average
TD (MB)

Average
pHD (%)

Average
pUHD (%)

Avg. QoEitu

(O.23)
Avg. QoEitu

(O.46)
N-QoEitu

(N-QoElin)

L
um

ou
s

4G

Ahaggar 08.17±0.85 88.94±0.74 01.25±0.86 ↓ 03.30±1.24 ↓ 762.18±72.24 ↓ 49.74±7.59 ↑ 46.65±7.62 3.82±0.36 ↑ 3.98±0.27 ↑ 1.00 ↑ (1.00 ↑)
TH 28.81±3.20 97.67±0.67 10.90±8.43 07.30±3.74 2426.03±220.56 2.59±3.66 95.07±4.01 2.94±0.66 3.33±0.49 0.84 (0.92)
BOLA 29.96±2.52 97.71±0.76 17.56±15.93 08.70±4.55 2448.60±172.58 0.79±1.47 95.62±2.91 2.73±0.78 3.13±0.59 0.79 (0.89)
Dynamic 29.18±3.19 97.73±0.59 09.78±9.01 06.33±4.06 2417.28±191.59 2.19±3.15 95.28±3.71 3.16±0.68 3.49±0.51 0.88 (0.91)
RobustMPC 31.96±0.007 ↑ 98.23±0.00 ↑ 40.02±47.27 12.40±11.83 2536.18±00.00 0.00±0.00 98.41±0.29 2.67±1.14 3.10±0.86 0.78 (0.84)
Pensieve 31.95±0.004 98.08±0.07 42.45±50.52 16.47±12.14 2503.77±01.11 0.02±0.04 98.43±0.36 ↑ 2.19±0.85 2.75±0.65 0.69 (0.81)

B
el

gi
.4

G
/L

T
E Ahaggar 2.63±0.29 74.67±5.48 46.15±22.09 ↓ 10.90±4.38 ↓ 242.46±20.51 ↓ 87.31±8.27 0.93±0.57 2.37±0.62 ↑ 2.70±0.47 ↑ 1.00 ↑ (1.00 ↑)

TH 3.28±0.16 78.39±2.27 127.24±50.00 25.67±6.94 304.19±14.99 88.42±4.72 0.92±0.14 1.33±0.30 2.01±0.21 0.74 (0.94)
BOLA 1.74±0.45 38.38±4.78 126.48±37.15 53.53±13.91 310.22±26.46 34.32±6.56 0.33±0.15 1.03±0.04 1.46±0.10 0.54 (0.44)
Dynamic 3.31±0.14 78.90±2.51 ↑ 116.83±56.14 22.27±7.85 300.45±14.59 89.22±5.41 ↑ 0.94±0.15 1.49±0.42 2.14±0.31 0.79 (0.96)
RobustMPC 2.65±0.28 66.50±3.66 118.30±50.00 37.80±10.36 317.81±28.91 65.15±6.68 3.05±1.34 1.12±0.10 1.77±0.07 0.65 (0.87)
Pensieve 4.08±0.36 ↑ 70.30±8.09 268.14±112.47 19.40±7.53 344.13±25.45 72.06±11.47 4.06±0.86 ↑ 1.57±0.40 1.97±0.34 0.73 (0.57)

N
Y

U
LT

E

Ahaggar 4.13±0.90 83.61±2.52 18.98±16.57 ↓ 7.00±3.74 ↓ 406.58±92.05 ↓ 81.81±8.15 ↑ 14.41±8.39 3.03±0.72 ↑ 3.35±0.54 ↑ 1.00 ↑ (0.94)
TH 8.98±2.90 89.93±3.22 35.77±25.34 12.87±5.87 867.87±274.48 44.24±15.61 51.23±17.35 2.15±0.52 2.73±0.41 0.81 (1.00 ↑)
BOLA 11.81±2.91 75.95±11.49 113.37±61.35 41.50±19.97 1080.36±258.57 21.33±9.40 53.50±18.61 1.26±0.40 1.79±0.26 0.53 (0.78)
Dynamic 9.56±2.98 90.30±3.14 ↑ 34.43±21.70 10.90±5.56 895.51±272.35 40.69±14.54 54.62±16.35 2.40±0.59 2.90±0.46 0.87 (1.00 ↑)
RobustMPC 16.06±2.60 84.07±8.48 408.16±62.34 98.40±20.58 1404.23±196.54 20.18±14.91 60.37±16.87 ↑ 1.00±0.00 1.72±0.12 0.51 (0.28)
Pensieve 18.09±5.35 ↑ 88.27±6.98 753.57±288.70 85.07±25.53 1696.57±394.50 36.80±14.78 53.58±16.61 1.00±0.00 1.81±0.06 0.54 (0.02)

L
um

ou
s

5G

Ahaggar 11.62±1.16 94.36±2.12 5.49±7.39 ↓ 3.60±1.93 ↓ 952.02±68.60 ↓ 7.14±14.94 ↑ 89.19±15.07 3.75±0.51 ↑ 3.92±0.38 ↑ 1.00 ↑ (1.00 ↑)
TH 31.86±0.18 98.17±0.13 8.76±8.21 6.70±1.88 2535.57±10.17 0.25±0.57 97.97±0.86 3.03±0.35 3.40±0.26 0.87 (0.98)
BOLA 31.84±0.11 97.47±1.02 7.94±8.72 4.77±1.92 2556.61±19.55 0.79±1.03 95.49±2.85 3.42±0.41 3.66±0.31 0.93 (1.00 ↑)
Dynamic 31.90±0.12 98.14±0.17 7.24±8.41 3.63±1.63 2537.78±9.46 0.37±0.74 97.60±1.61 3.68±0.43 3.89±0.33 0.99 (0.99)
RobustMPC 31.95±0.005 98.24±0.03 ↑ 7.64±8.52 5.13±1.81 2536.17±0.015 0.00±0.00 98.47±0.27 ↑ 3.31±0.41 3.60±0.31 0.92 (0.98)
Pensieve 31.96±0.005 ↑ 98.10±0.10 13.77±9.68 11.67±3.63 2520.09±0.57 0.08±0.18 98.41±0.43 2.49±0.50 2.99±0.37 0.76 (0.95)

Av
g.

A
L

L

Ahaggar 06.64±0.80 85.39±2.71 17.97±11.73 ↓ 6.20±2.82 ↓ 590.81±63.35 ↓ 56.50±9.74 ↑ 37.79±7.91 3.24±0.55 ↑ 3.49±0.42 ↑ 1.00 ↑ (0.99 ↑)
TH 18.23±1.61 91.04±1.57 45.67±22.99 13.13±4.61 1533.41±130.05 33.87±6.14 61.30±5.59 2.36±0.46 2.87±0.34 0.82 (0.96)
BOLA 18.84±1.50 77.38±4.51 66.34±30.79 27.12±10.09 1598.95±119.29 14.31±4.61 61.23±6.13 2.11±0.54 2.51±0.32 0.70 (0.78)
Dynamic 18.49±1.61 91.27±1.60 ↑ 42.07±23.82 10.78±4.77 1537.75±122.00 33.12±5.96 62.11±5.45 2.68±0.53 3.11±0.40 0.88 (0.96)
RobustMPC 20.65±0.72 86.76±3.04 143.53±42.03 38.43±11.14 1698.60±56.37 21.33±5.40 65.07±4.69 ↑ 2.03±0.41 2.55±0.34 0.72 (0.74)
Pensieve 21.52±1.43 ↑ 88.69±3.81 269.48±115.34 33.15±12.21 1766.14±105.41 27.24±6.62 63.62±4.56 1.81±0.44 2.38±0.36 0.68 (0.59)

D. Results for Multiple Diverse Clients
To evaluate the effectiveness of Ahaggar in adapting to

different device resolutions (DR), we ran two clients with each
DR (total of six). Table IV highlights the results over five runs.
The key takeaway is that Ahaggar achieved different average
results for each DR, confirming Ahaggar’s DR awareness.
Ahaggar picked a higher bitrate on the average for a UHDTV
compared to an HDTV and a phone. For instance, it selected
1.5x-2x higher bitrate for UHDTV compared to the phone
with almost a 1-JND difference between the VMAF scores for
various network traces. This is because devices with a phone-
like resolution can achieve the highest VMAF score (95-98)
requiring only half of the bitrate that a UHDTV requires. We
note that the VMAF score differences at a similar bitrate level
(e.g., phone vs. HDTV in NYU LTE) are due to the different
per-device VMAF models used to calculate the scores.

V. CONCLUSIONS

This paper presented Ahaggar, a server-side, learning-
based, quality-aware bitrate guidance solution that comple-
ments the client-side heuristic-based ABR schemes. Ahaggar
adopts two key enablers: (i) a meta-RL approach to find the
best bitrate for each client under the given circumstances
and quickly adapt to changing network conditions, and (ii)
CMCD/SD specification to simplify the metadata exchange be-
tween the server and clients. Experiments show that Ahaggar
delivers better user experience with less bandwidth consump-
tion over a variety set of network conditions.
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TABLE IV: Average QoEitu (O.46) scores and its metrics
produced by Ahaggar running on devices with different
resolutions. ↑: higher is better (green), ↓: lower is better
(green), format: average±std.

Avg. Selected
Bitrate (Mbps)

Avg. Perceptual
Quality (VMAF)

Avg. RD
(s)

Avg. TD
(MB)

Avg. QoEitu

(O.46)

Lumous 4G

Phone 03.61±0.19 95.20±0.23 ↑ 0.61±0.52 ↓ 316.91±11.85 ↓ 4.30±0.24

HDTV 03.81±0.21 88.82±0.30 0.86±1.20 319.65±16.68 4.35±0.30 ↑
UHDTV 08.17±0.85 ↑ 88.94±0.74 1.25±0.86 762.18±72.24 3.98±0.27

Belgium 4G/LTE

Phone 2.83±0.34 ↑ 90.72±3.07 ↑ 49.62±35.42 244.74±15.46 2.82±0.59

HDTV 2.61±0.34 82.24±4.45 42.25±23.02 ↓ 240.20±18.78 ↓ 2.90±0.57 ↑
UHDTV 2.63±0.29 74.67±5.48 46.15±22.09 242.46±20.51 2.70±0.47

NYU LTE

Phone 03.26±0.21 94.58±0.79 ↑ 5.24±5.54 ↓ 269.32±11.58 ↓ 3.99±0.64 ↑
HDTV 03.33±0.13 87.99±0.57 5.78±7.06 270.26±12.05 3.88±0.58

UHDTV 04.13±0.90 ↑ 83.61±2.52 18.98±16.57 406.58±92.05 3.35±0.54

Lumous 5G

Phone 07.62±2.81 97.26±1.31 ↑ 5.40±7.29 627.18±213.14 ↓ 3.97±0.45 ↑
HDTV 09.78±2.66 94.95±3.00 5.33±7.11 ↓ 797.95±199.95 3.90±0.26

UHDTV 11.62±1.16 ↑ 94.36±2.12 5.49±7.39 952.02±68.60 3.92±0.38

Avg. ALL

Phone 4.20±0.89 94.44±1.35 ↑ 15.22±12.19 364.54±63.00 ↓ 3.77±0.48 ↑
HDTV 4.88±0.84 88.5±2.08 13.55±9.60 ↓ 407.01±61.61 3.76±0.43

UHDTV 6.64±0.8 ↑ 85.40±2.72 17.97±11.73 590.81±63.35 3.49±0.42
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