
Software Development
Project
Morgan Ericsson

<morgan.ericsson@chalmers.se>

mailto:morgan.ericsson@chalmers.se
mailto:morgan.ericsson@chalmers.se

Hello

• Morgan Ericsson

• morgan.ericsson@(gu|chalmers).se

• @moercth

• Lectures and administration

• Less than 3 weeks at GU/Chalmers, so be
gentle!

Staff

• TA:s

• Emil Alégroth
(emil.alegroth@chalmers.se)

mailto:emil.alegroth@chalmers.se
mailto:emil.alegroth@chalmers.se

Textbook

• Cockburn, A., (2009) Agile Software
Development, 2ed

• Papers

• Online resources and lecture
material

Practical Details

• https://github.com/morganericsson/EDA397

• course material (vc’d)

• wiki

• issue tracking

• @moertech (with #EDA397)

• updates

• Further resources may be added during the course...

https://github.com/morganericsson/DAT255
https://github.com/morganericsson/DAT255

Practical Details
(cont’d)

• Schedule

• 0-3 lectures per week

• 0-2 workshops per week

• So, 3 scheduled activities per week

• even if there is no lecture, we will be
available and you can (should!) use the
rooms/time to work

Examination

• Project (teams)

• final product

• artifacts

• Report (individual)

• post-mortem experience report

• Written exam

Project

• Develop an Android app for a customer

• Work in predetermined teams

• You will be assigned teams and meet with
the customer during course week 2

• and get all the details!

Environment

• We strive to create a realistic scenario/
environment

• We rely on a number of real-world services
and tools, e.g.

• Android (SDK)

• GitHub / BitBucket

• ..

Outcomes

• You will learn a lot, e.g.

• the software development process

• useful tools and APIs

• By doing (a lot) and failing (a lot)

• And hopefully have fun while doing it!

Week 1

• Intro to course and development process

• Intro to Android and tools/services

• You should:

• complete the survey

• get everything working on your computer

• play around with the Android SDK and Git

• read the recommended reading

Week 1

• Tuesday: Course and Agile intro

• Thursday: Intro to Android

• Wednesday: Getting started (tutorial)

• Friday: Getting started (tutorial)

• Schedule sessions with TAs.

Software Development is
Difficult/Complex!

• The problems of characterizing the behavior
of discrete systems.

• The flexibility possible through software

• The complexity of the problem domain

• The difficulty of managing the development
process

“The complexity of software is an essential property, not an accidental one”

1. What should I do?
“Binary search is an elegant but simple algorithm that many of you have seen. The basic idea is to start
with two inputs: a sorted array and a key to search for. If the key is found in the array, the index of the
key is returned. Otherwise, an indication that the search failed is returned. What binary search does is to
look first at the element in the middle of the array: if it is equal to the key, return the index; if it is less
than the key, perform binary search on the "top half" of the array (not including the middle element); and
if it is greater than the key, perform binary search on the "bottom half" of the array (not including the
middle element). Correct implementations of the algorithm run in O(lg2N), which means that the worst
case for running the program will take time proportional to the (base 2) logarithm of N, where N is the
length of the sorted array.”

Open questions (some):

• How does binary search indicate that it did not find the
key?

• Which “middle element” should be picked if the
(sub)array's length is even (like the second step above)?

• What if a value appears multiple times in the sorted array
and that value is matched by a key for a search? Which
index gets returned?

2. Doing it!
public static int search(int key, int[] a, int first, int last)
{
 if (last <= first)
 return -1;

 int mid = (first + last)/2;
 if (key < a[mid])
 return search(key, a, first, mid - 1);
 if (key > a[mid])
 return search(key, a, mid + 1, last);

 return mid;
}

(Can you spot the bugs?)

3. Did I actually do it?

Using array [0 1 2 3 4].
Found 2 at index 2
Found 0 at index 0
Found 3 at index 3

Build it and try a few values that should work...

(Seems to work, but...)

What Did We Learn?
• A simple assignment can raise a number of

questions, some without good answers ...

• A simple implementation can contain several
bugs/issues/problems ...

• And the above may not be detected when
evaluating

• How does this scale with the problem?

Software Crisis and
Engineering

• Established as a reaction to the “Software Crisis”

• software was inefficient

• software did not meet requirements

• projects ran over time/budget

• projects were unmanageable and software
unmaintainable

“The major cause of the software crisis is that the machines have become several orders of magnitude
more powerful! To put it quite bluntly: as long as there were no machines, programming was no problem

at all; when we had a few weak computers, programming became a mild problem, and now we have
gigantic computers, programming has become an equally gigantic problem.”

Software Engineering

• The branch of computer science that creates
practical, cost-effective solutions to computing and
information processing problems

• “Application of engineering to software”

• systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of
software

• Assure the quality of the process and the product

“Engineering Seeks
Quality”

• So, the goal of software engineering is the
production of quality software

• However, software is inherently complex

• the complexity of software systems often
exceeds the human intellectual capacity.

• The task of the software development team
is to engineer the illusion of simplicity.

Three Steps Revisited

Requirements Implementation
Quality

Assurance

A sequential model of software development

1. What should I do? 2. Doing it! 3. Did I actually do it?

Five Steps

Requirements

Design

Implementation

Quality
Assurance

Evolution

A sequential model of software development

Change is Ubiquitous

• Manage

• change

• uncertainty

• quality

Production vs. Creation

Change is Ubiquitous

RequirementsDesign

Implementation Quality
Assurance

An iterative model of software development

Defined Process vs.
Empirical Process

• Laying out a process that repeatedly will
produce acceptable quality output is called
defined process control

• When defined process control cannot be
achieved because of the complexity of the
intermediate activities, something called
empirical process control has to be
employed

Defined Process
control

• planning heavy

• assumes (more) static environment

• longer iterations

• Change Management intensive

• typical pre-study heavy

• assumes good estimations

• control over Actual work (seen seen as bureaucratic)

Empirical Process
control

• change is reality

• shorter iterations

• problem vs. solution space (empowering the developers)

• just-enough (management, documentation, etc.)

• self organizing teams

• continuous “customer” interaction

• NOT UNPLANNED, rather adaptive!!!

Production vs. Creation

Going Agile

• Reaction against heavy-weight models mid
1990s

• regulated, micro-managed, etc.

• Resulted in the development of light-weight
models with focus on

• in principle, a return to “earlier” methods

Tradi7onal&Waterfall&Approach&
Analysis&

Design&

Develop&

Test&

Deploy&

Agile&Approach&
Analysis&

Design&

Develop&

Test&

Deploy&

Analysis&

Design&

Develop&

Test&

Deploy&

Analysis&

Design&

Develop&

Test&

Deploy&

Most&Agile&methodologies&have&similar&concepts&

Tradi7onal&Waterfall&Approach&
Analysis&

Design&

Develop&

Test&

Deploy&

Agile&Approach&
Analysis&

Design&

Develop&

Test&

Deploy&

Analysis&

Design&

Develop&

Test&

Deploy&

Analysis&

Design&

Develop&

Test&

Deploy&

Most&Agile&methodologies&have&similar&concepts&

Non-agile

Agile

Agile Manifesto

• Individuals and interactions over
processes and tools

• Working software over comprehensive
documentation

• Customer collaboration over contract
negotiation

• Responding to change over following a plan

“That is, while there is value in the items on
the right, we value the items on the left more.”

Principles behind the
Agile Manifesto

• Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

• Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

• Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Principles behind the
Agile Manifesto

• Business people and developers must work
together daily throughout the project.

• Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

Principles behind the
Agile Manifesto

• Working software is the primary measure of
progress.

• Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

• Continuous attention to technical excellence
and good design enhances agility.

Principles behind the
Agile Manifesto

• Simplicity – the art of maximizing the amount of
work not done – is essential.

• The best architectures, requirements, and
designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

“We were doing incremental development as early
as 1957, in Los Angeles, under the direction of Bernie
Dimsdale. He was a colleague of John von Neumann, so
perhaps he learned it there, or assumed it as totally
natural.

I do remember Herb Jacobs developing a large simulation for
Motorola, where the technique used was, as far as I can tell
All of us, as far as I can remember, thought waterfalling
of a huge project was rather stupid, or at least
ignorant of the realities. I think what the waterfall
description did for us was make us realize that we were doing
something else, something unnamed except for 'software
development.'”

Gerald M. Weinberg

“What is new about Agile Methods is not the
practices they use, but their recognition of

people as the primary drivers of project
success, coupled with an intense focus on
effectiveness and maneuverability”

Cockburn and Highsmith

Methodologies &
Practices

• Scrum

• eXtreme Programming (XP)

• Kanban

Why Scrum?

ment—as software devel-
opers we must learn how
to meet customer needs
and turn this chaos to our
advantage.

In seeing that some of
our NBO projects were
more successful than oth-
ers, we struggled to exam-
ine the postmortem data to
learn the secrets of those
successful projects. Here
are some comments from
successful teams:

! We did the first piece and then reesti-
mated—learn as you go!

! We held a short, daily meeting. Only
those who had a need attended.

! The requirements document was high-
level and open to interpretation, but we
could always meet with the systems en-
gineer when we needed help.

About this time, we discovered the Scrum
Web sites (www.controlchaos.com/safe and
www.jeffsutherland.org) and read a paper pre-
senting patterns for using the Scrum software
development process from the 1998 Pattern
Language of Programs Conference.1 From the
Scrum Web sites we learned that Scrum is a
process for incrementally building software in
complex environments. Scrum provides em-
pirical controls that allow the development to
occur as close to the edge of chaos as the de-
veloping organization can tolerate.

The Scrum software development process
described in this article developed in a col-
laboration between Advanced Development
Methods and VMARK Software. Both com-
panies were reporting breakthrough pro-
ductivity. This approach overlapped signifi-
cantly with what we saw in postmortems of
successful projects. Our organization has
long used patterns successfully, not just for
design but for organization and process as
well.2,3 Many existing patterns supported
what we learned about Scrum and saw in
the postmortem data (see the “What’s a Pat-
tern?” sidebar). For example, Scrum advo-
cates the use of small teams—no more than
10 team members. Jim Coplien’s “Size the
Organization” pattern recommends 10-per-
son teams,4 while Fred Brooks argues that
“the small sharp team, which by common

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 27

! We need to do a better job of change management. We had too many outside distractions.
! We need customer feedback during the iterative development approach we’re taking.
! The users gave us a huge list of requirements. We knew we weren’t going to be able to

deliver everything they wanted.
! Development took place in focused chaos, and there was no one to go to with questions.

We need a way to structure the chaos somehow, because all NBOs must deal with that.
! We have been used to thinking in terms of years for development; now we have to turn out

products in months.
! We’re chasing an emerging market. It changes weekly.
! We wasted a lot of time estimating and developing test plans for features that we never

developed.
! We should have cancelled this project earlier. It took almost two years to recognize that.
! We need well-defined phases and someone who is close enough to see progress and deter-

mine what we can check off.

Figure 1. Participant
comments from proj-
ects facing challenges.

In the late 1970s, two books appeared, written by Christopher Alexan-
der and his building architect colleagues. The Timeless Way of Building and
A Pattern Language presented Alexander’s description of recurring problems
in creating cities, towns, neighborhoods, and buildings, and the solutions to
these problems.1,2 He used the pattern form to document the problems and
their solutions.

Each pattern describes a problem that occurs over and over again in
our environment and then describes the core of the solution to that
problem in such a way that you can use this solution a million times
over without ever doing it the same way twice.2

Software professionals have also observed recurring problems and solu-
tions in software engineering. There is evidence of patterns at all levels of
software development, from high-level architecture to implementation, testing,
and deployment. There is considerable work going on to apply this technol-
ogy to software engineering. Patterns go a long way toward capturing what
experts know, letting them share that knowledge with others.

On the surface, a pattern is simply a form of documentation. Pattern au-
thors document solutions they have observed across many software projects.
Experienced designers read these patterns and remark, “Sure, I’ve done
that—many times!”

This kind of documentation captures knowledge, previously found only in
the heads of experienced developers, in a form that is easily shared.

Patterns are not theoretical constructs created in an ivory tower; they are
artifacts that have been discovered in multiple systems. In patterns, the solu-
tion is one that has been applied more than twice. This “rule of three” en-
sures that the pattern is documenting tried and true applications, not just a
good idea without real use behind it.

The approach calls to mind the notions of cohesion and coupling Ed Your-
don and Larry Constantine developed during many late Friday afternoon
postmortem sessions, discussing lessons learned from past projects.3 The co-
hesion and coupling ideas captured qualities of real systems. The guidelines
were not theoretical musings, but rested on observations of system capabili-
ties that made life easier for developers and maintainers.

This is true for all patterns.

References
1. C.A. Alexander, The Timeless Way of Building, Oxford Univ. Press, New York, 1979.

2. C.A. Alexander et al., A Pattern Language, Oxford Univ. Press, New York, 1977.

3. E. Yourdon and L. Constantine, Structured Design, Prentice Hall, Englewood Cliffs, N.J., 1978.

What’s a Pattern?Resing and Janoff (2000)

Roles

Commitment vs. Involvement

The Pigs

• Product owner

• Represents interests of everyone with a
stake in the project and resulting
system

• Responsible for initial/ongoing funding,
initoal overall requirements, ROI
objectives, release plans

The Pigs

• Scrum master

• responsible for the Scrum process

• teaching Scrum to everyone involved in the
project

• implements Scrum so that it fits within an
organization’s culture and still delivers the
expected benefits for ensuring that everyone
follows Scrum rules and practices.

The Pigs

• Scrum team

• Self-managing, self-organizing, and cross-
functional

• responsible for figuring out how to turn a
list of requirements into an increment of
functionality

The Chickens

• Stakeholders

• Users

Scrum Process

Process&

Sprint&

Sprint&Review&

Sprint&
Retrospec7ve&

Sprint&
Planning&

Project&
Ini7a7on&

Product&
Increment&

Scrum ProcessSCRUM&–&What&is&the&Process?&

Sprint&Backlog:&
List&of&

requirements&
Increment&of&
func7onality&

Itera7ve&

Con7nuous&
inspec7on&

VISION:&An7cipated&
ROI,&releases,&
milestones&

Product&Backlog:&
emerging,&priori7zed&

requirements&

(Selected&
Product)&Sprint&

Backlog&

Product Vision

• What are the aims and objectives of the
planned product

• Which markets to cover,

• Which competitors to compete,

• What is product’s differentiation etc

Product Backlog

• The requirements for the system or
product being developed by the project(s)
are listed in the Product Backlog

• Product Owner is resonsible for the
contents, prioritization, and availability of
the Product Backlog

Product Backlog
• Never complete

• Merely an initial estimate of the requirements

• Evolves as the product and the environment in
which it will be used evolves

• Dynamic - management constantly changes it to
identify what the product needs to be
appropriate, competitive, and useful.

• Exists as long as a product exists

Sprint Backlog

• Defines the work, or tasks, that a Team
defines for turning the Product Backlog it
selected for that Sprint into an increment of
potentially shippable product functionality

• The Team compiles an initial list of these tasks
in the second part of the Sprint planning
meeting

Sprint Backlog

• Should contain tasks such that each task takes
roughly 4 to 16 hours to finish

• Tasks longer than 4 to 16 hours are considered
mere placeholders for tasks that have not yet
been appropriately defined

• Only the Team can change it

• Highly visible, real-time picture of the current
Sprint

Burndown Chart

• Shows the amount of work remaining
across time

• The Team compiles an initial list of these
tasks in the second part of the Sprint
planning meeting

Burndown Chart

• Excellent way of visualizing the correlation between
the amount of work remaining at any point in time
and the progress of the project Team(s) in reducing
this work

• Allows to “what if” the project by adding and
removing functionality from the release to get a
more acceptable date or extend the date to include
more functionality

• Highly visible, real-time picture of the current Sprint

Burndown Chart

Project Initiation

• Product Vision

• might be vague at first, perhaps stated in market terms
rather than system terms, but becomes clearer as the
project moves forward

• Product Backlog

• list of functional and nonfunctional requirements that,
when turned into functionality, will deliver this vision

• Prioritized so that the items most likely to generate value
are top priority

Project Initiation

• Release Plan

• based on the product backlog and priori7zed items

• Sprint Team

• Product owner

• Scrum master

• The Team

Team Formation
• Introductions and backgrounds

• Team name

• Team room and daily Scrum time/place

• Development process for making product backlog done

• Definition of “Done” for product and Sprint Backlog items

• Rules of development

• Rules of etiquette, and

• Training in conflict resolution

Sprint Planning Meeting

• Part 1, commit to Product Backlog for the next
Sprint

• calculate The Team capacity. Every resource is
100% allocated less 10% for forward looking
Product Backlog analysis and 10% for severity 1
issues

• commit to Product Owner as much backlog as
the Team believes it can turn into a “Done”
increment in the Sprint

Sprint Planning Meeting

• Part 2, the Team plans out the Sprint

• self managing teams requiring a tentative
plan to start the Sprint

• tasks that compose this plan are placed in
a Sprint Backlog

Sprint / Daily Scrum

• The team gets together for a 15-minute meeting

• Each member answers

• what have you done on this project since the last
Daily Scrum meeting?

• What do you plan on doing on this project
between now and the next Daily Scrum meeting?

• What impediments stand in the way of you meeting
your commitments to this Sprint and this project

Sprint / Daily Scrum

• Do not forget

• it is the inspect and adapt process
control for the Team

• the 3 questions provide the information
the Team needs (inspect) to adjust its
work to meet its commitments

Sprint
• What does it mean when a team member says

“done”

• code adheres to the standard

• is clean

• has been refactored

• has been unit tested

• has been checked in

• has been built

• has had a suite of unit tests applied to it

Sprint Review

• Team presents what was developed during the
Sprint to the Product Owner and any other
stakeholders who want to attend

• Collaborative work session to inspect and adapt:

• the most current Product Backlog

• the functionality increment are for inspection,

• the adaptation is the modified Product Backlog

Scrum Retrospective

• Scrum master encourages the Team to
revise, within the Scrum process
framework and practices, its development
process to make it more effective and
enjoyable for the next Sprint

Scrum Advice

consensus shouldn’t exceed 10 people.”5 Be-
cause Brooks, Coplien, and postmortems of
successful teams all support this and many
other Scrum tenets, we felt confident about
undertaking a pilot project.

Although most of our NBO teams were
small, some had grown to exceed the limit of
10. We thought initially that we could simply

divide larger teams into collections of smaller
subteams, each no larger than 10. We found
that when the subteams are independent and
the interfaces well defined, this works. When
the overlap is considerable and the interfaces
poorly understood, the benefits are not as
great. Clearly, this is not an approach for
large, complex team structures, but we found

28 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

The following reports summarize
three diverse software development
teams’ experience with Scrum at AG
Communication Systems. The A-Team
developed a new multiplatform simulator
for the internal use of our GTD-5 EAX
switching system software developers.
The B-Team’s focus was a new product
in the small call center market. The C-
team developed a new feature for the
GTD-5 EAX switching system.

A-Team
A-Team’s new leader called for a

project checkup. As a result of some
problems that surfaced during the
checkup, we offered to give a short
Scrum presentation. The team decided to

pilot a one-month sprint. To provide
some on-the-job training in the ap-
proach and also to learn how this team
would adapt the approach to its appli-
cation, we sat in on the Scrum meetings.

At first, the team was uneasy about
spending a lot of time in daily meetings
and proposed holding sprint meetings
every other day. The schedule of Mon-
day, Wednesday, and Friday one week,
followed by Tuesday and Thursday of
the following week seemed to work best.
During these meetings, the team began
to grow together and display increasing
involvement in and delight with others’
successes. The team completed a suc-
cessful sprint, with the planned compo-
nents delivered on time.

The team began to cooperate almost
immediately. The changes happened be-
fore our eyes. One plausible explanation
is that our developers are superb engi-
neers; they love to solve problems. When
one team member shares an obstacle in
the Scrum meeting, the entire team’s re-
sources come together to bear on that
problem. Because the team is working
together toward a shared goal, every
team member must cooperate to reach
that goal. The entire team immediately
owns any one individual’s problems.

Detailed problem solving does not
happen in the meeting, of course—only
an offer of help and an agreement to
meet after the Scrum meeting. For exam-
ple, a team member would say, “I ran into
a problem.” Typical responses would be,
“I had that problem a couple of weeks
ago. I can help with that. Let’s talk offline;”
“I know who is working in that area. I’ll
help you get in touch with them;” or “I’m
having the same problem myself. Let’s get
together after the meeting and talk about
it.” We immediately noticed an increase
in volunteerism in the team.

The celebration of small successes
was also evident. At every meeting, as
small tasks were completed and the
team could see progress toward the
sprint’s goal, everyone rejoiced. On
the sprint’s last day, we could feel the
excitement as the responses around
the table were, “I finished my task! I
finished my task! I finished my task!”
They did it. They reached their goal
together.

Figure A lists comments from the
team leader at the end of the sprint.

Our biggest outcome from this pilot
came in the definition of the Scrum mas-
ter’s task. We originally thought that this
role would be hard to fill: we needed
someone who could facilitate a tight

Experience Reports

! Give it time to get started before expecting big results. It gets better as the
team gains experience.

! Tasks for a sprint must be well quantified and achievable within the sprint time
period. Determine the sprint time by considering the tasks it contains.

! Tasks for sprints must be assigned to one individual. If the task is shared, give
one person the primary responsibility.

! Sprint tasks might include all design-cycle phases. We set goals related to fu-
ture product releases in addition to current development activity.

! Scrum meetings need not be daily. Two or three times a week works for us.

! The Scrum master must have the skill to run a short, tightly focused meeting.

! Stick to the topics of the sprint. It’s very easy to get off topic and extend what
was supposed to be a 10 to 15 minute meeting into a half-hour or more.

! Some people are not very good at planning their workload. Sprint goals are
an effective tool for keeping people on track and aware of expectations.

! I’ve noticed an increase in volunteerism within the team. They’re taking an in-
terest in each other’s tasks and are more ready to help each other out.

! The best part of Scrum meetings has been the problem resolution and clearing
of obstacles. The meetings let the team take advantage of the group’s experi-
ence and ideas.

Figure A. A-Team’s team leader comments.

eXtreme Programming

• XP is what it says, an extreme way of
developing software.

• if a practice is good, then do it all the
time.

• if a practice causes problems with project
agility, then don’t do it.

eXtreme Programming

• Team, 3-10 programmers + 1 customer

• Iteration, tested and directly useful code

• Requirements, user story, written on index
cards

• Estimate development time per story, prio on
value

• Dev starts with discussion with expert user

eXtreme Programmign

• Programmers work in pairs

• Unit tests passes at each check-in

• Stand-up meeting daily: Done? Planned?
Hinders?

• Iteration review: Well? Improve? => Wall list

XP practices

• Whole Team (Customer Team Member, on-site
customer)

• Small releases (Short cycles)

• Continuous Integration

• Test-Driven development (Testing)

• Customer tests (Acceptance Tests, Testing)

• Pair Programming

XP practices

• Collective Code Ownership

• Coding standards

• Sustainable Pace (40-hour week)

• The Planning Game

• Simple Design

• Design Improvement (Refactoring)

• Metaphor

Whole Team

• Everybody involved in the project works
together as ONE team.

• Everybody on the team works in the same
room. (Open Workspace)

• One member of this team is the customer,
or the customer representative.

Small Releases

• The software is frequently released and deployed to
the customer.

• The time for each release is planned ahead and are
never allowed to slip. The functionality delivered with
the release can however be changed right up to the
end.

• A typical XP project has a new release every 3 months.

• Each release is then divided into 1-2 week iterations.

Continuous Integration

• Daily build

• A working new version of the complete
software is released internally every night

• Continuous build

• A new version of the complete software is
build as soon as some functionality is added,
removed or modified

Test-Driven
Development

• No single line of code is ever written,
without first writing a test that tests it

• All tests are written in a test framework
like JUnit so they become fully automated

Customer Tests

• The customer (or the one representing the
customer) writes tests that verifies that the
program fulfills his/her needs

Pair Programming

• All program code is written by two programmers working
together; a programming pair.

• Working in this manner can have a number of positive
effects:

• better code Quality

• fun way of working

• skills spreading

• ...

Collective Code
Ownership

• All programmers are responsible for all code

• You can change any code you like, and the
minute you check in your code somebody
else can change it

• You should not take pride in and
responsibility for the quality of the code you
written yourself but rather for the complete
program

Coding standards

• In order to have a code base that is
readable and understandable by everybody
the team should use the same coding style

Sustainable Pace

• Work pace should be constant throughout
the project and at such a level that people
do not drain their energy reserves

• Overtime is not allowed two weeks in a
row

Simple design

• Never have a more complex design than is
needed for the current state of the
implementation

• Make design decisions when you have to,
not up front

Design Improvement

• Always try to find ways of improving the
design

• Since design is not made up front it needs
constant attention in order to not end up
with a program looking like a snake pit

• Strive for minimal, simple, comprehensive
code

Metaphor

• Try to find one or a few metaphors for
your program

• The metaphors should aid in
communicating design decisions and
intends

• The most well known software
metaphor is the desktop metaphor

