Software Development
Project

Morgan Ericsson
<morgan.ericsson(@chalmers.se>

mailto:morgan.ericsson@chalmers.se
mailto:morgan.ericsson@chalmers.se

Hello

® Morgan Ericsson
® morgan.ericsson@(gu|chalmers).se
® (@moercth

® | ectures and administration

® |ess than 3 weeks at GU/Chalmers, so be
gentle!

Staff

® TA:s

® Emil Alegroth
(emil.alegroth@chalmers.se)

mailto:emil.alegroth@chalmers.se
mailto:emil.alegroth@chalmers.se

Textbook

Agile Software

Cockburn,A., (2009) Agile Software [T [1]1]) (o1 | it
Development, 2ed The Cooperative Game

Papers

Online resources and lecture
material

Practical Details

® https://github.com/morganericsson/EDA397

® course material (vc'd)
® wiki
® ssue tracking
® (@moertech (with #EDA397)
® updates

® Further resources may be added during the course...

https://github.com/morganericsson/DAT255
https://github.com/morganericsson/DAT255

Practical Details
(cont'd)

® Schedule
® (0-3 lectures per week
® (0-2 workshops per week
® S0, 3 scheduled activities per week

® cven if there is no lecture, we will be
available and you can (should!) use the
rooms/time to work

Examination

® Project (teams)
® final product
® artifacts
® Report (individual)
® post-mortem experience report

® \Written exam

Project

® Develop an Android app for a customer
® Work in predetermined teams

® You will be assigned teams and meet with
the customer during course week 2

® and get all the details!

Environment

® Ve strive to create a realistic scenario/
environment

® We rely on a nhumber of real-world services
and tools, e.g.

® Android (SDK)
® GitHub / BitBucket

Outcomes

® You will learn a lot, e.g.
® the software development process
® useful tools and APIs

® By doing (a lot) and failing (a lot)

® And hopefully have fun while doing it!

Week |

® Intro to course and development process

® [ntro to Android and tools/services

® You should:
® complete the survey
® get everything working on your computer
® play around with the Android SDK and Git

® read the recommended reading

Week |

Tuesday: Course and Agile intro
Thursday: Intro to Android
Wednesday: Getting started (tutorial)
Friday: Getting started (tutorial)

Schedule sessions with TAs.

f' SimCity servers are down. Attemphing
J 10 reconnect

ALERT

The SimCity servers down. We cannot complete your

request at this time. Please try again later

The Making of a Fly: The Genetics of Animal Design (Paperback) Price at a Glance
P . .

- by Peter A. Lawrence Ust .

. ' Price:

e J)I < Return to product information Used: from $35.54
- ' ; i New: f

. Always pay through Amazon.com's Shopping Cart or 1-Click. ew: from

. Learn more about Safe Onling Shopping and our safe buying guarantee. $1,730,045.91
- Have cne 10 se? | Sell yours here |
- Y

All New (2 from $1,730,045.91) Used (15 from $35.54)
Show (O New Prime offers only (0) Sorted by | Price + Shipping *

New 1-2 of 2 offers

Price + Shipping Condition Seller Information Buying Options

$1,730,04591 New Sever: profnath P

+ $3.99 shipping Seller Rating: iy 93% positive over the past 12 months Slon Mt .o:" o 1-Click
(8,193 total ratings) ._'E_'_.;c-:r.: 1-Clic

In Stock. Ships from NJ, Unted States.

Domastic shipping rates and return policy.

Brand new, Perfect condition, Satisfaction Guaranteed.

$2,198,177.95 New Sever: bordeebook e
* $3.99 shipping Seller Rat Frdrioies itive over the past 12 months. Sien i 1o "::‘ o 1-Click

(125,891 total ratings) orcer g

In Stock. Ships from United States
Romestic shipping rates and return policy.-

New item in excellent condition. Not used. May be a publisher
overstock or have slight shelf wear. Satisfaction guaranteed!

Software Development is
Difficult/ Complex!

® The problems of characterizing the behavior
of discrete systems.

® The flexibility possible through software
® The complexity of the problem domain

® The difficulty of managing the development
process

“The complexity of software is an essential property, not an accidental one”

| .What should | do?

“Binary search is an elegant but simple algorithm that many of you have seen. The basic idea is to start
with two inputs: a sorted array and a key to search for. If the key is found in the array, the index of the
key is returned. Otherwise, an indication that the search failed is returned. What binary search does is to
look first at the element in the middle of the array: if it is equal to the key, return the index; if it is less
than the key, perform binary search on the "top half" of the array (not including the middle element); and
if it is greater than the key, perform binary search on the "bottom half" of the array (not including the
middle element). Correct implementations of the algorithm run in O(Ig2N), which means that the worst
case for running the program will take time proportional to the (base 2) logarithm of N, where N is the
length of the sorted array.”

Open questions (some):

* How does binary search indicate that it did not find the
key?

* Which “middle element” should be picked if the
(sub)array's length is even (like the second step above)?

* What if a value appears multiple times in the sorted array
and that value is matched by a key for a search! Which
index gets returned!?

2. Doing it!

int search(int key, int[] a, int first, int last)

if (last <= first)
return -1;

int mid = (first + last)/2;
if (key < a[mid])

return search(key, a, first, mid - 1);
if (key > a[mid])

return search(key, a, mid + 1, last);

return mid;

(Can you spot the bugs?)

3. Did | actually do it!

Build it and try a few values that should work...

Using array [0 1 2 3 4].
Found 2 at index 2
Found 0 at index O
Found 3 at index 3

(Seems to work, but...)

What Did We Learn?

® A simple assighment can raise a number of
questions, some without good answers ...

® A simple implementation can contain several
bugs/issues/problems ...

® And the above may not be detected when
evaluating

® How does this scale with the problem?

Software Crisis and
Engineering

® Established as a reaction to the “Software Cirisis’
® software was inefficient
® software did not meet requirements

® projects ran over time/budget

projects were unmanageable and software
unmaintainable

“The major cause of the software crisis is that the machines have become several orders of magnitude
more powerful! To put it quite bluntly: as long as there were no machines, programming was no problem
at all; when we had a few weak computers, programming became a mild problem, and now we have
gigantic computers, programming has become an equally gigantic problem.”

Software Engineering

® The branch of computer science that creates
practical, cost-effective solutions to computing and
information processing problems

® “Application of engineering to software”

® systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of
software

® Assure the quality of the process and the product

“Engineering Seeks
Quality”

® So, the goal of software engineering is the
production of quality software

® However, software is inherently complex

® the complexity of software systems often
exceeds the human intellectual capacity.

® The task of the software development team
is to engineer the illusion of simplicity.

Three Steps Revisited

Quality
Requirements Implementation Assurance
|.What should | do!? 2. Doing it! 3. Did | actually do it?

A sequential model of software development

Five Steps

Requirements Implementation Evolution

e ——————————>

Design Quality
Assurance

A sequential model of software development

f SimCity servers are down. Aftempting
10 reconnect

There Is one thing, and one thing alone, that doosa't give a crap aboat Error 37

Price at a Glance

—
‘ 1
- - Ust &25.00
- - Price:
- Used: from $35.54
- .- New: from
$1,730,045.91

&

Have ¢ne 10 sei? | Sell yours here

A s

Sorted by | Price + Shipping <

Buying Options

‘e‘ Addte Cant |

or
Sign in to tumn on 1-Click
orcenng

ver the past 12 months

Uiar rourys

In Stock. Ships from NJ, Unted States.
Domastic shipping rates and return policy.

Brand new, Perfect condition, Satisfaction Guaranteed.

$2,198,177.95 New Sever: bordeebook pr—

* $3.99 shipping Seller Rating: Yoirdoid: 939% positive over the past 12 months.

or
(125,891 total ratings) 2160 10 10 turn 00 1-Click

orcening
In Stock. Ships from United States.

Romestic shipping rates and return policy.-

New item in excellent condition. Not used. May be a publisher

overstock or have slight shelf wear. Satisfaction guaranteed!

Change is Ubiquitous

® Manage
® change
® uncertainty

® quality

Production vs. Creation

Change is Ubiquitous

Design | Requirements

Quality
| Assurance

Implementation

An iterative model of software development

Defined Process vs.
Empirical Process

® |aying out a process that repeatedly will
produce acceptable quality output is called
defined process control

® When defined process control cannot be
achieved because of the complexity of the
intermediate activities, something called
empirical process control has to be
employed

Defined Process
control

planning heavy

assumes (more) static environment
longer iterations

Change Management intensive
typical pre-study heavy

assumes good estimations

control over Actual work (seen seen as bureaucratic)

Empirical Process
control

change is reality

shorter iterations

problem vs. solution space (empowering the developers)
just-enough (management, documentation, etc.)

self organizing teams

continuous ‘“customer’ interaction

NOT UNPLANNED, rather adaptive!!!

Production vs. Creation

Going Agile

® Reaction against heavy-weight models mid
1990s

® regulated, micro-managed, etc.

® Resulted in the development of light-weight
models with focus on

® in principle, a return to “earlier” methods

AGILE DEVELOPMENT

Agility is...

burndown

velocity

goals

release

vision

backlog

burnup

review

iteration

adaptability

transparency

simplicity

charter .
art funding

STRATEGY

estimation

RELEASE

ITERATION retrospective

acceptance

DAILY

standup

CONTINUOUS
TDD build
refactoring integration

collaboration

’ Working
Software

,A-"/

tests

unity

ACCELERATE DELIVERY

Non-agile

Analysis Develop Deploy

Design Test
Agile

Deploy Deploy Deploy

Agile Manifesto

Individuals and interactions over
processes and tools

Working software over comprehensive
documentation

Customer collaboration over contract
negotiation

Responding to change over following a plan

“That is, while there is value in the items on
the right, we value the items on the left more.”

Principles behind the
Agile Manifesto

® Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

® Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

® Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Principles behind the
Agile Manifesto

® Business people and developers must work
together daily throughout the project.

® Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

® The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

Principles behind the
Agile Manifesto

® Working software is the primary measure of
progress.

® Agile processes promote sustainable
development. The sponsors, developers, and

users should be able to maintain a constant
pace indefinitely.

® Continuous attention to technical excellence
and good design enhances agility.

Principles behind the
Agile Manifesto

® Simplicity — the art of maximizing the amount of
work not done — is essential.

® The best architectures, requirements, and
designs emerge from self-organizing teams.

® At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

“We were doing incremental development as early
as 1957, in Los Angeles, under the direction of Bernie
Dimsdale. He was a colleague of John von Neumann, so
pberhaps he learned it there, or assumed it as totally

natural.

| do remember Herb Jacobs developing a large simulation for
Motorola, where the technique used was, as far as | can tell ...
All of us, as far as | can remember, thought waterfalling
of a huge project was rather stupid, or at least
ignorant of the realities. | think what the waterfall
description did for us was make us realize that we were doing
something else, something unnamed except for 'software
development.”

Gerald M.Weinberg

“What is new about Agile Methods is not the
practices they use, but their recognition of
people as the primary drivers of project
success, coupled with an intense focus on
effectiveness and maneuverability”

Cockburn and Highsmith

AGILE DEVELOPMENT

adaptability
transparency
Agility is... simplicity
charter fundi
unaing
STRATEGY
estimation unity
RELEASE

goals

release retrospective
ITERATION 5

vision plan ,

review acceptance

backlog DAILY
iteration standup
plan
CONTINUOUS
TDD build
refactoring integration
burndown |
collaboration
/’ Working
Software
velocity
burnup

tests

ACCELERATE DELIVERY

Methodologies &
Practices

® Scrum
® eXtreme Programming (XP)

® Kanban

Why Scrum!?

We need to do a better job of change management. We had too many outside distractions.
We need customer feedback during the iterative development approach we're taking.

The users gave us a huge list of requirements. We knew we weren’t going to be able to
deliver everything they wanted.

Development took place in focused chaos, and there was no one to go to with questions.
We need a way fo structure the chaos somehow, because all NBOs must deal with that.
We have been used to thinking in terms of years for development; now we have to turn out

products in months.

We're chasing an emerging market. It changes weekly.

We wasted a lot of time estimating and developing test plans for features that we never
developed.

We should have cancelled this project earlier. It took almost two years to recognize that.
We need well-defined phases and someone who is close enough to see progress and deter-
mine what we can check off.

Resing and Janoff (2000)

HEY PIG. | WAS THINGN wWE
SHOND OPEN A RESTAMIRINT.

NO THANKS, T'D B
COMMTTED, BUT YOU'D ONLY

BE WWOVED!S

\ I DONT KNOW.,

WHAT WOLD wiE

C 2006 arplerreriingady vy Lo

Commitment vs. Involvement

The Pigs

® Product owner

® Represents interests of everyone with a
stake in the project and resulting
system

® Responsible for initial/ongoing funding,
initoal overall requirements, ROI
objectives, release plans

The Pigs

® Scrum master
® responsible for the Scrum process

® teaching Scrum to everyone involved in the
project

® implements Scrum so that it fits within an
organization’s culture and still delivers the
expected benefits for ensuring that everyone
follows Scrum rules and practices.

The Pigs

® Scrum team

® Self-managing, self-organizing, and cross-
functional

® responsible for figuring out how to turn a
ist of requirements into an increment of
functionality

The Chickens

® Stakeholders

® Users

Scrum Process

Product
| P.E.?J E-f}n pﬁ_]pnr:]?r:g e Increment
nitia

Sprint

Retrospective

Scrum Process

Sprint' Backlog: Increment of
L_|st of functionality
requirements

NE =
Product) Sprint
Backlog

Product Backlog:
<] > emerging, prioritized

’ requirements

‘ VISION: Anticipated
ROI, releases,
milestones

Product Vision

What are the aims and objectives of the
planned product

Which markets to cover,
Which competitors to compete,

What is product’s differentiation etc

Product Backlog

® The requirements for the system or
product being developed by the project(s)
are listed in the Product Backlog

® Product Owner is resonsible for the
contents, prioritization, and availability of
the Product Backlog

Product Backlog

Never complete
Merely an initial estimate of the requirements

Evolves as the product and the environment in
which it will be used evolves

Dynamic - management constantly changes it to
identify what the product needs to be
appropriate, competitive, and useful.

Exists as long as a product exists

Sprint Backlog

® Defines the work, or tasks, that a Team
defines for turning the Product Backlog it
selected for that Sprint into an increment of
potentially shippable product functionality

® The Team compiles an initial list of these tasks
in the second part of the Sprint planning
meeting

Sprint Backlog

Should contain tasks such that each task takes
roughly 4 to |16 hours to finish

Tasks longer than 4 to |6 hours are considered
mere placeholders for tasks that have not yet
been appropriately defined

Only the Team can change it

Highly visible, real-time picture of the current
Sprint

Burndown Chart

® Shows the amount of work remaining
across time

® The Team compiles an initial list of these
tasks in the second part of the Sprint
planning meeting

Burndown Chart

® Excellent way of visualizing the correlation between
the amount of work remaining at any point in time

and the progress of the project Team(s) in reducing
this work

® Allows to “what if” the project by adding and
removing functionality from the release to get a

more acceptable date or extend the date to include
more functionality

® Highly visible, real-time picture of the current Sprint

Burndown Chart

Remaining effort (hours)

250

200

150

100

50

Sample Burndown Chart

T T T T T T T T T

Day Day
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

25

20

15

10

Remaining and completed tasks

mm Completed tasks
—&— Remaining effort
——— |deal burndown

——— Remaining tasks

Project Initiation

® ProductVision

® might be vague at first, perhaps stated in market terms
rather than system terms, but becomes clearer as the

project moves forward

® Product Backlog

® |ist of functional and nonfunctional requirements that,
when turned into functionality, will deliver this vision

® Prioritized so that the items most likely to generate value
are top priority

Project Initiation

® Release Plan

® based on the product backlog and priori/zed items
® Sprint Team

® Product owner

® Scrum master

® T[he Team

Team Formation

Introductions and backgrounds

Team name

Team room and daily Scrum time/place

Development process for making product backlog done
Definition of “Done” for product and Sprint Backlog items
Rules of development

Rules of etiquette, and

Training in conflict resolution

Sprint Planning Meeting

® Part |, commit to Product Backlog for the next
Sprint

® calculate The Team capacity. Every resource is
100% allocated less 10% for forward looking
Product Backlog analysis and 10% for severity |

Issues

® commit to Product Owner as much backlog as
the Team believes it can turn into a “Done”
increment in the Sprint

Sprint Planning Meeting

® Part 2, the Team plans out the Sprint

® self managing teams requiring a tentative
plan to start the Sprint

® tasks that compose this plan are placed in
a Sprint Backlog

Sprint / Daily Scrum

® The team gets together for a | 5-minute meeting
® Each member answers

® what have you done on this project since the last
Daily Scrum meeting?

® What do you plan on doing on this project
between now and the next Daily Scrum meeting!?

® What impediments stand in the way of you meeting
your commitments to this Sprint and this project

Sprint / Daily Scrum

® Do not forget

® it is the inspect and adapt process
control for the Team

® the 3 questions provide the information

the Team needs (inspect) to adjust its
work to meet its commitments

Sprint

® What does it mean when a team member says
“done”

® code adheres to the standard
® s clean

® has been refactored

® has been unit tested

® has been checked in

® has been built

® has had a suite of unit tests applied to it

Sprint Review

® TJeam presents what was developed during the
Sprint to the Product Owner and any other
stakeholders who want to attend

® C(Collaborative work session to inspect and adapt:
® the most current Product Backlog
® the functionality increment are for inspection,

® the adaptation is the modified Product Backlog

Scrum Retrospective

® Scrum master encourages the Team to
revise, within the Scrum process
framework and practices, its development
process to make it more effective and
enjoyable for the next Sprint

Scrum Adyvice

Give it time to get started before expecting big results. It gets better as the
team gains experience.

Tasks for a sprint must be well quantified and achievable within the sprint time
period. Determine the sprint time by considering the tasks it contains.

Tasks for sprints must be assigned to one individual. If the task is shared, give
one person the primary responsibility.

Sprint tasks might include all design-cycle phases. We set goals related to fu-
ture product releases in addition to current development activity.

Scrum meetings need not be daily. Two or three times a week works for us.
The Scrum master must have the skill to run a short, tightly focused meeting.

Stick to the topics of the sprint. It's very easy to get off topic and extend what
was supposed to be a 10 to 15 minute meeting info a half-hour or more.

Some people are not very good at planning their workload. Sprint goals are
an effective tool for keeping people on track and aware of expectations.

I've noticed an increase in volunteerism within the team. They're taking an in-
terest in each other’s tasks and are more ready to he|p each other out.

The best part of Scrum meetings has been the problem resolution and clearing
of obstacles. The meetings let the team take advantage of the group’s experi-
ence and ideas.

eXtreme Programming

® XP is what it says, an extreme way of
developing software.

® if a practice is good, then do it all the
time.

® if a practice causes problems with project
agility, then don’t do it.

eXtreme Programming

® Team, 3-10 programmers + | customer
® |[teration, tested and directly useful code

® Requirements, user story, written on index
cards

® Estimate development time per story, prio on
value

® Dev starts with discussion with expert user

eXtreme Programmign

® Programmers work in pairs
® Unit tests passes at each check-in

® Stand-up meeting daily: Done? Planned?
Hinders!?

® |teration review:Well? Improve! => Wall list

XP practices

Whole Team (Customer Team Member, on-site
customer)

Small releases (Short cycles)

Continuous Integration

Test-Driven development (Testing)
Customer tests (Acceptance Tests, Testing)

Pair Programming

XP practices

Collective Code Ownership
Coding standards

Sustainable Pace (40-hour week)
The Planning Game

Simple Design

Design Improvement (Refactoring)

Metaphor

Whole Team

® Everybody involved in the project works
together as ONE team.

® Everybody on the team works in the same
room. (Open Workspace)

® One member of this team is the customer,
or the customer representative.

Small Releases

The software is frequently released and deployed to
the customer.

The time for each release is planned ahead and are
never allowed to slip. The functionality delivered with

the release can however be changed right up to the
end.

A typical XP project has a new release every 3 months.

Each release is then divided into |-2 week iterations.

Continuous Integration

® Diaily build

® A working new version of the complete
software is released internally every night

® (Continuous build

® A new version of the complete software is
build as soon as some functionality is added,
removed or modified

Test-Driven
Development

® No single line of code is ever written,
without first writing a test that tests it

® All tests are written in a test framework
like JUnit so they become fully automated

Customer Tests

® The customer (or the one representing the
customer) writes tests that verifies that the
program fulfills his/her needs

Pair Programming

All program code is written by two programmers working
together; a programming pair.

Working in this manner can have a number of positive
effects:

® better code Quality
® fun way of working

® skills spreading

Collective Code
Ownership

All programmers are responsible for all code

You can change any code you like, and the
minute you check in your code somebody

else can change it

You should not take pride in and
responsibility for the quality of the code you
written yourself but rather for the complete

program

Coding standards

® |n order to have a code base that is
readable and understandable by everybody
the team should use the same coding style

Sustainable Pace

® Work pace should be constant throughout
the project and at such a level that people
do not drain their energy reserves

® QOvertime is not allowed two weeks in a
row

Simple design

® Never have a more complex design than is
needed for the current state of the
implementation

® Make design decisions when you have to,
not up front

Design Improvement

® Always try to find ways of improving the
design

® Since design is not made up front it needs
constant attention in order to not end up
with a program looking like a snake pit

® Strive for minimal, simple, comprehensive
code

Metaphor

® [ry to find one or a few metaphors for
your program

® The metaphors should aid in
communicating design decisions and
intends

® The most well known software
metaphor is the desktop metaphor

