Agile

Morgan Ericsson
<morgan.ericsson(@chalmers.se>

mailto:morgan.ericsson@chalmers.se
mailto:morgan.ericsson@chalmers.se

This VWeek

® Joday,Agile + XP and some practice
® Thursday, first meeting with customer
® ~|h presentation, |h per 3 groups

® Friday, lecture on Pair Programming and
Automated Testing

Next VWeek

® First sprint!
® Tuesday, follow-up meeting with customer

® Thursday, special event (follow up from this
afternoon)

® Friday, first acceptance test!

® more about that this friday

Production vs. Creation

AGILE DEVELOPMENT

Agility is...

burndown

velocity

goals

release

vision

backlog

burnup

review

iteration

adaptability

transparency

simplicity

charter .
art funding

STRATEGY

estimation

RELEASE

ITERATION retrospective

acceptance

DAILY

standup

CONTINUOUS
TDD build
refactoring integration

collaboration

’ Working
Software

,A-"/

tests

unity

ACCELERATE DELIVERY

Agile Manifesto

Individuals and interactions over
processes and tools

Working software over comprehensive
documentation

Customer collaboration over contract
negotiation

Responding to change over following a plan

“That is, while there is value in the items on
the right, we value the items on the left more.”

Principles behind the
Agile Manifesto

® Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

® Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

® Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Principles behind the
Agile Manifesto

® Business people and developers must work
together daily throughout the project.

® Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

® The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

Principles behind the
Agile Manifesto

® Working software is the primary measure of
progress.

® Agile processes promote sustainable
development. The sponsors, developers, and

users should be able to maintain a constant
pace indefinitely.

® Continuous attention to technical excellence
and good design enhances agility.

Principles behind the
Agile Manifesto

® Simplicity — the art of maximizing the amount of
work not done — is essential.

® The best architectures, requirements, and
designs emerge from self-organizing teams.

® At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

Methodologies &
Practices

® Scrum
® eXtreme Programming (XP)

® Kanban

Why Scrum!?

We need to do a better job of change management. We had too many outside distractions.
We need customer feedback during the iterative development approach we're taking.

The users gave us a huge list of requirements. We knew we weren’t going to be able to
deliver everything they wanted.

Development took place in focused chaos, and there was no one to go to with questions.
We need a way fo structure the chaos somehow, because all NBOs must deal with that.
We have been used to thinking in terms of years for development; now we have to turn out

products in months.

We're chasing an emerging market. It changes weekly.

We wasted a lot of time estimating and developing test plans for features that we never
developed.

We should have cancelled this project earlier. It took almost two years to recognize that.
We need well-defined phases and someone who is close enough to see progress and deter-
mine what we can check off.

Resing and Janoff (2000)

HEY PIG. | WAS THINGN wWE
SHOND OPEN A RESTAMIRINT.

NO THANKS, T'D B
COMMTTED, BUT YOU'D ONLY

BE WWOVED!S

\ I DONT KNOW.,

WHAT WOLD wiE

C 2006 arplerreriingady vy Lo

Commitment vs. Involvement

The Pigs

® Product owner

® Represents interests of everyone with a
stake in the project and resulting
system

® Responsible for initial/ongoing funding,
initoal overall requirements, ROI
objectives, release plans

The Pigs

® Scrum master
® responsible for the Scrum process

® teaching Scrum to everyone involved in the
project

® implements Scrum so that it fits within an
organization’s culture and still delivers the
expected benefits for ensuring that everyone
follows Scrum rules and practices.

The Pigs

® Scrum team

® Self-managing, self-organizing, and cross-
functional

® responsible for figuring out how to turn a
ist of requirements into an increment of
functionality

The Chickens

® Stakeholders

® Users

Scrum Process

Product
| P.E.?J E-f}n pﬁ_]pnr:]?r:g e Increment
nitia

Sprint

Retrospective

Scrum Process

Sprint' Backlog: Increment of
L_|st of functionality
requirements

NE =
Product) Sprint
Backlog

Product Backlog:
<] > emerging, prioritized

’ requirements

‘ VISION: Anticipated
ROI, releases,
milestones

Product Vision

What are the aims and objectives of the
planned product

Which markets to cover,
Which competitors to compete,

What is product’s differentiation etc

Product Backlog

® The requirements for the system or
product being developed by the project(s)
are listed in the Product Backlog

® Product Owner is resonsible for the
contents, prioritization, and availability of
the Product Backlog

Product Backlog

Never complete
Merely an initial estimate of the requirements

Evolves as the product and the environment in
which it will be used evolves

Dynamic - management constantly changes it to
identify what the product needs to be
appropriate, competitive, and useful.

Exists as long as a product exists

Sprint Backlog

® Defines the work, or tasks, that a Team
defines for turning the Product Backlog it
selected for that Sprint into an increment of
potentially shippable product functionality

® The Team compiles an initial list of these tasks
in the second part of the Sprint planning
meeting

Sprint Backlog

Should contain tasks such that each task takes
roughly 4 to |16 hours to finish

Tasks longer than 4 to |6 hours are considered
mere placeholders for tasks that have not yet
been appropriately defined

Only the Team can change it

Highly visible, real-time picture of the current
Sprint

Burndown Chart

® Shows the amount of work remaining
across time

® The Team compiles an initial list of these
tasks in the second part of the Sprint
planning meeting

Burndown Chart

® Excellent way of visualizing the correlation between
the amount of work remaining at any point in time

and the progress of the project Team(s) in reducing
this work

® Allows to “what if” the project by adding and
removing functionality from the release to get a

more acceptable date or extend the date to include
more functionality

® Highly visible, real-time picture of the current Sprint

Burndown Chart

Remaining effort (hours)

250

200

150

100

50

Sample Burndown Chart

T T T T T T T T T

Day Day
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

25

20

15

10

Remaining and completed tasks

mm Completed tasks
—&— Remaining effort
——— |deal burndown

——— Remaining tasks

Project Initiation

® ProductVision

® might be vague at first, perhaps stated in market terms
rather than system terms, but becomes clearer as the

project moves forward

® Product Backlog

® |ist of functional and nonfunctional requirements that,
when turned into functionality, will deliver this vision

® Prioritized so that the items most likely to generate value
are top priority

Project Initiation

® Release Plan

® based on the product backlog and priori/zed items
® Sprint Team

® Product owner

® Scrum master

® T[he Team

Team Formation

Introductions and backgrounds

Team name

Team room and daily Scrum time/place

Development process for making product backlog done
Definition of “Done” for product and Sprint Backlog items
Rules of development

Rules of etiquette, and

Training in conflict resolution

Sprint Planning Meeting

® Part |, commit to Product Backlog for the next
Sprint

® calculate The Team capacity. Every resource is
100% allocated less 10% for forward looking
Product Backlog analysis and 10% for severity |

Issues

® commit to Product Owner as much backlog as
the Team believes it can turn into a “Done”
increment in the Sprint

Sprint Planning Meeting

® Part 2, the Team plans out the Sprint

® self managing teams requiring a tentative
plan to start the Sprint

® tasks that compose this plan are placed in
a Sprint Backlog

Sprint / Daily Scrum

® The team gets together for a | 5-minute meeting
® Each member answers

® what have you done on this project since the last
Daily Scrum meeting?

® What do you plan on doing on this project
between now and the next Daily Scrum meeting!?

® What impediments stand in the way of you meeting
your commitments to this Sprint and this project

Sprint / Daily Scrum

® Do not forget

® it is the inspect and adapt process
control for the Team

® the 3 questions provide the information

the Team needs (inspect) to adjust its
work to meet its commitments

Sprint

® What does it mean when a team member says
“done”

® code adheres to the standard
® s clean

® has been refactored

® has been unit tested

® has been checked in

® has been built

® has had a suite of unit tests applied to it

Sprint Review

® TJeam presents what was developed during the
Sprint to the Product Owner and any other
stakeholders who want to attend

® C(Collaborative work session to inspect and adapt:
® the most current Product Backlog
® the functionality increment are for inspection,

® the adaptation is the modified Product Backlog

Scrum Retrospective

® Scrum master encourages the Team to
revise, within the Scrum process
framework and practices, its development
process to make it more effective and
enjoyable for the next Sprint

Scrum Adyvice

Give it time to get started before expecting big results. It gets better as the
team gains experience.

Tasks for a sprint must be well quantified and achievable within the sprint time
period. Determine the sprint time by considering the tasks it contains.

Tasks for sprints must be assigned to one individual. If the task is shared, give
one person the primary responsibility.

Sprint tasks might include all design-cycle phases. We set goals related to fu-
ture product releases in addition to current development activity.

Scrum meetings need not be daily. Two or three times a week works for us.
The Scrum master must have the skill to run a short, tightly focused meeting.

Stick to the topics of the sprint. It's very easy to get off topic and extend what
was supposed to be a 10 to 15 minute meeting info a half-hour or more.

Some people are not very good at planning their workload. Sprint goals are
an effective tool for keeping people on track and aware of expectations.

I've noticed an increase in volunteerism within the team. They're taking an in-
terest in each other’s tasks and are more ready to he|p each other out.

The best part of Scrum meetings has been the problem resolution and clearing
of obstacles. The meetings let the team take advantage of the group’s experi-
ence and ideas.

eXtreme Programming

® XP is what it says, an extreme way of
developing software.

® if a practice is good, then do it all the
time.

® if a practice causes problems with project
agility, then don’t do it.

eXtreme Programming

® Team, 3-10 programmers + | customer
® |[teration, tested and directly useful code

® Requirements, user story, written on index
cards

® Estimate development time per story, prio on
value

® Dev starts with discussion with expert user

eXtreme Programmign

® Programmers work in pairs
® Unit tests passes at each check-in

® Stand-up meeting daily: Done? Planned?
Hinders!?

® |teration review:Well? Improve! => Wall list

XP practices

Whole Team (Customer Team Member, on-site
customer)

Small releases (Short cycles)

Continuous Integration

Test-Driven development (Testing)
Customer tests (Acceptance Tests, Testing)

Pair Programming

XP practices

Collective Code Ownership
Coding standards

Sustainable Pace (40-hour week)
The Planning Game

Simple Design

Design Improvement (Refactoring)

Metaphor

Whole Team

® Everybody involved in the project works
together as ONE team.

® Everybody on the team works in the same
room. (Open Workspace)

® One member of this team is the customer,
or the customer representative.

Small Releases

The software is frequently released and deployed to
the customer.

The time for each release is planned ahead and are
never allowed to slip. The functionality delivered with

the release can however be changed right up to the
end.

A typical XP project has a new release every 3 months.

Each release is then divided into |-2 week iterations.

Continuous Integration

® Diaily build

® A working new version of the complete
software is released internally every night

® (Continuous build

® A new version of the complete software is
build as soon as some functionality is added,
removed or modified

Test-Driven
Development

® No single line of code is ever written,
without first writing a test that tests it

® All tests are written in a test framework
like JUnit so they become fully automated

Customer Tests

® The customer (or the one representing the
customer) writes tests that verifies that the
program fulfills his/her needs

Pair Programming

All program code is written by two programmers working
together; a programming pair.

Working in this manner can have a number of positive
effects:

® better code Quality
® fun way of working

® skills spreading

Collective Code
Ownership

All programmers are responsible for all code

You can change any code you like, and the
minute you check in your code somebody

else can change it

You should not take pride in and
responsibility for the quality of the code you
written yourself but rather for the complete

program

Coding standards

® |n order to have a code base that is
readable and understandable by everybody
the team should use the same coding style

Sustainable Pace

® Work pace should be constant throughout
the project and at such a level that people
do not drain their energy reserves

® QOvertime is not allowed two weeks in a
row

Simple design

® Never have a more complex design than is
needed for the current state of the
implementation

® Make design decisions when you have to,
not up front

Design Improvement

® Always try to find ways of improving the
design

® Since design is not made up front it needs
constant attention in order to not end up
with a program looking like a snake pit

® Strive for minimal, simple, comprehensive
code

Metaphor

® [ry to find one or a few metaphors for
your program

® The metaphors should aid in
communicating design decisions and
intends

® The most well known software
metaphor is the desktop metaphor

User Stories

One or more sentences in the everyday or
business language

Captures what a user does or needs to do
as part of his or her job function

Quick way of handling requirements without
formalized requirement documents

Respond faster to rapidly changing real-
world requirements

User Stories

"As a <role>, | want <goal/desire> (so that
<benefit>")

"As <who> <when> <where>, | <what> because
<why>."

“As a user, | want to search for my customers by their first
and last names.”

“As a user closing the application, | want to be prompted
to save if | have made any change in my data since the
last save.”

Benefits

Represent small chunks of business value that can be implemented
in a period of days to weeks.

Needing very little maintenance.
Allowing projects to be broken into small increments.

Being suited to projects where the requirements are volatile or
poorly understood. Iterations of discovery drive the refinement
process.

Making it easier to estimate development effort.

Require close customer contact throughout the project so that the
most valued parts of the software get implemented.

Story Maps

) sTMap-y 2| [sweas 2%) sTseny 2 swex 29
0301 As a User | can Oeme Q401 AsaUserigetoral 0501 As 8 potential Chemt | 07 01 Agmional Swry
2 mew Boic RratTONS 8 3USess SO0 A% T JIRA P g

f»

] STMAP-1T z
el Asasericanmowe s Q403 A3 o User | Con ume
$00y 10 SNOMET eDIC modiie Devices

0404 As 8 User | can ollow &
Tk 2O JIRA- Borgl 10 Te

Seory Map

Until Next Time

Form teams (not people, but name, schedule, etc...)

Sit down with Max and/or Erik to discuss what you
should do (if you haven’t already)

Write user stories

Sign up for pivotal tracker and invite Max or Erik to
your project

Set up Github repo anv invite Max or Erik

Next time

Working with user stories
Good and bad stories
Planning

Follow up

